Diagramme auswerten und interpretieren und Chemie-Lexikon/Stöchiometrie - Satz von Avogadro: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
main>Berny1
 
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Lernpfad Erdkunde|{{Vorlage:Diagramme auswerten und interpretieren}}}}  
{{SORTIERUNG:{{SUBPAGENAME}}}}<div class="grid">
nach Ideen von Robert Roseeu --> [http://satgeo.zum.de/satgeo/methoden/infobank_k.htm Stundenskizzen zum Klima]
<div class="width-3-4">Der Italienier '''Amadeo Avogardo''' war Professor für mathematische Phsik und untersuchte im 19. Jahrhundert Gase und stieß dabei auf eine Besonderheit bei der Anzahl der Gasteilchen pro Volumeneinheit.
</div>
<div class="width-1-4">[[File:Avogadro Amedeo.jpg]]</div>
</div>
 
{{Box|AKTIVITÄT (Freiwillig) - Entdecke den Satz von Avogadro über die Dichte|
Auf '''→ [[/Den  Satz von Avogadro theoretisch entdecken/|dieser Unterseite]]''' kannst du mit Hilfe von recht einfachen Berechnungen die Entdeckung des Satzes von Avogadro nachvollziehen.
|3=Lernpfad}}
 
== Avogadros Überlegungen ==
 
Ende des 18. Jahrhunderts hatte man endlich ausreichend gute Waagen, um die Dichte von Gasen zu bestimmen. Dazu gehört auch die bei der Elektrolyse von Wasser gewonnenen zwei Gasarten Sauerstoff und Wasserstoff.
 
[[File:Antoine lavoisier.jpg|right|200px]]Ein wichtiger Chemiker zur Zeit Avogadros war der Franzose {{wpde|Antoine_Laurent_de_Lavoisier|Antoine de Lavoisier}}. Er stellte fest, dass alle chemischen Stoffe aus den Elementarstoffen, den Elementen, aufgebaut sind. Die damals bekannten Metalle wie Silber, Kupfer, Blei, Zinn wurden von Lavoisier als Elemente eingeordnet. Und diese Elemente konnten mit dem Gas der Luft – ''Oxygène'', also Sauerstoff – Verbindungen eingehen, wodurch zusammengesetzte Stoffe wie Bleioxid, Zinnoxid oder Kupferoxid entstanden. Lavoisier nannte die Stoffe, die wir heute als Elemente bezeichnen würden, als ''Substances simples'' ''(einfache Substanzen)'', weil sie sich nach Lavoisier nicht weiter mit chemischen Mitteln zerlegbar liesen.
 
Bei einigen Stoffen war also klar, was Elemente und was Verbindungen waren. Aber nicht bei allen! So fragten sich die Chemiker damals, welche Stoffe Elemente waren und welche Stoffe zusammengesetzt waren? Die Gase waren dabei der Schlüssel zur Bestimmung der Elemente.
 
Da sich Sauerstoff und Wasserstoff von Wasserdampf unterschieden, musste das Wasser, das ja bei einer Knallgasexplosion aus Sauerstoff und Wasserstoff entstand, ein zusammengesetzter Stoff sein.


{{Schrift_grün|in Arbeit}}
Avogadro leitete sein Gesetz aus den von Gay-Lussac gefundenen gesetzmäßigen Beziehungen bei gasförmigen Stoffen ab.


= {{Schrift_grün|Das Klimadiagramm}} =
{{Box|Gesetze von Gay-Lussac |2=
{{:zum:Klimadiagramm#Klimadiagramme_auswerten}}
'''1. Gesetz:''' Der Quotient aus '''Volumen''' und '''Temperatur''' bei einem Gas ist bei gleichbleibender Menge und Druck gleich:
{{Definition|1=
:<math>\frac{V}{T} = \text{konst} \qquad \qquad \frac{V_1}{V_2} = \frac{T_1}{T_2}</math>
'''Vegetationsperiode:''' <br>
}}<br><br>
{{Definition|1=
'''Agronomische Trockengrenze:'''<br>


}}
'''2. Gesetz:''' Der '''Druck''' von Gasen ist bei gleichbleibendem Volumen und gleichbleibender Teilchenanzahl direkt proportional zur Temperatur, weswegen der Quotient gleich bleibt.
<br><br>
:<math>\frac{p}{T} = \text{konst} \qquad \qquad \frac{p_1}{p_2} = \frac{T_1}{T_2}</math>
{{Merke-M|1= '''Die vollständige Auswertung eines Klimadiagrammes umfasst''' (sofern alle Angaben gegeben oder ableitbar) sind:
|3=Merksatz}}


}}<br>
Daraus folgerte Avogadro seinen Satz, wobei er auch Begriffe wie ''molécules élémentaires'' (Atome) und ''molécules intégrantes'' (Moleküle) verwendete, sein Gesetz galt aber auch Gasgemische. Bei seinen Überlegungen nahm Avogadro an, dass auch die Elemente zusammengesetzt sein können. Denn jedes Molekül eines Elementes in der Gasphase sollte aus zwei Atomen des Elementes bestehen, was wir ja von Sauerstoff O<sub>2</sub>, Stickstoff N<sub>2</sub> Wasserstoff H<sub>2</sub> usw. kennen.
<br>


{{Merke-M|1='''Lage auf der Südhalbkugel (SHK)/Nordhalbkugel (NHk)''':
Die Idee Avogadros war nicht unumstritten, denn einige Chemiker waren der Meinung, dass die von ihm quasi eingeführten "Moleküle" aus mindestens 8 Atomen bestehen müssten. Dies konnte aber widerlegt werden. Stattdessen wurde mit Hilfe der Dichte von Gasen und dem Satz von Avogadro durch Jean Baptiste Dumas die Molekülmassen einer Vielzahl von gasförmigen Stoffen bestimmt und Charles Frédéric Gerhardt formulierte mit Hilfe der Dichte und den Molekülmassen Formeln für Chlorwasserstoff, Wasser, Ammoniak, Kohlenstoffdioxid. Dabei ergaben sich allerdings Widersprüche zu den Atommassen, die von Berzelius in einer erste Liste von Elementen mit ihren Symbolen und Massen aufgestellt hatte.


}}<br><br>
Es folgten viele weitere Experimente und Untersuchungen an Gasen und erst ein halbes Jahrhundert später gelangten Avogadros Ansichten nach ihrer ersten Formulierung wirklich zur Geltung. Avogadros Gesetz war damit von großer Bedeutung, insbesondere für die Chemie. Es ist aber auch für die Physik bedeutend, vor allem für die kinetische Gastheorie, die von James Clerk Maxwell weiterentwickelt wurde. Der Satz von Avogadro ist auch – wenn auch versteckt – in der allgemeinen Gasgleichung enthalten.
{{Aufgaben-blau|1=|2=
interaktive Übungen  1 + 2
[[File:Klimadiagramm-metrisch-deutsch-Chesterfield-Inlet-Kanada.png|300px]][[File:Klimadiagramm-metrisch-deutsch-Maiduguri.Nigeria.png|300px]]


: <math>p \cdot V = n \cdot R_m \cdot T</math>


}}
== Der Satz von Avogadro ==


Das Gesetz von Avogadro sagt aus, dass zwei gleich große Gasvolumina, die unter demselben Druck stehen und die dieselbe Temperatur haben, auch dieselbe Teilchenzahl einschließen. Dies gilt sogar dann, wenn die Volumina verschiedene Gase enthalten, also gemischt sind. Umgekehrt kann man daraus schließen, dass ein Gaspaket in einem bestimmten Volumen auch eine bestimmte Anzahl von Teilchen hat, die unabhängig von der Stoffart ist.


{{Box|Satz von Avogadro|2=
Alle Gase enthalten bei gleicher Temperatur und gleichem Druck in gleichen Volumina die gleiche Teilchenzahl.


[[Datei:Satz von Avogadro.svg|700px|center]]|3=Merksatz}}


== Für was ist der Satz von Avogadro wichtig? ==
Was die Chemiker im 19. Jahrhundert mit Hilfe des Satzes von Avogadro gefunden haben, können wir nun auch umgekehrt nutzen und damit von Volumina auf die Anzahl der Teilchen und damit auf mögliche Formeln von Verbindungen schließen.


* Siehe auch [[Klimadiagramm]]
interaktive Übung<br>
Def
Lage Süd/Nordhalbkugel
agronomische Trockengrenze
Vegetationsperiode


= {{Schrift_grün|Von Pol zu Pol}} =
<div class="grid">
<div class="width-2-3">
:Bei der '''Elektrolye von Wasser''' entstehen Wasserstoff und Sauertoff immer im Volumen-Verhältnis 2 zu 1. Daraus kann man die Formel von Wasser herleiten, wenn man den Satz von Avogadro kennt.
::<math>H_2O \; \longrightarrow \; 2 H_2 \;+\; O_2</math>


{{Aufgaben-blau|1=|2=
:[[Datei:Satz von Avogadro bei Wasser-Elektrolyse.svg]]


*Arbeite zunächst als Wiederholung [[Klimadiagramme erstellen und auswerten/Von Pol zu Pol]] durch
*Bearbeite dann die folgenden interaktiven Übungen
}}<br>
'''Übung 1'''<br>
- {{Schrift_orange|Diagramme und Text gehören noch geändert}}
{{Schrift_grün|Zum Vergrößern der Diagramme: mit Rechtsklick ins Bild! - Link in neuem Fenster/Tab öffnen}}
<div class="zuordnungs-quiz">
{|
| [[File:Klimadiagramm-metrisch-deutsch-Chesterfield-Inlet-Kanada.png|100px]] ||  a||  a
|-
| [[File:Klimadiagramm-metrisch-deutsch-Nguigmi.Niger.png|100px]] ||a || a
|-
| [[File:Klimadiagramm-metrisch-deutsch-San Juan (Puerto Rico)-USA.png|100px]] ||a  ||  a 
|-
| [[File:Klimadiagramm-metrisch-deutsch-Perpignan-Frankreich-1961-1990.png|100px]] || a ||a
|-
| [[File:Klimadiagramm-metrisch-deutsch-Auckland.Neuseeland.png|100px]] ||a  ||a
|-
| [[File:Klimadiagramm-metrisch-deutsch-Mariscal Estigarribia.Paraguay.png|100px]] ||a  ||a
|}
</div>
</div>
<div class="width-1-3"><center>[[File:Hofmann voltameter.svg|200px]]</center></div>
</div>
Wir wissen auch, in welchen Volumina gasförmige Verbindungen mit einander reagieren.


'''Übung 2:'''<br>
<div class="grid">
Öffne [http://www.zum.de/Faecher/Ek/BAY/gym/Ek9/klivergl.htm Datei] mit Shift+Klick in einem separaten Fenster und beantworte folgende Fragen:
<div class="width-2-3">
:Zur '''Herstellung von Ammoniak''' braucht man Wasserstoff und Stickstoff. Denn die Formel von Ammoniak ist NH<sub>3</sub> und somit braucht man ein dreimal so großes Volumen an Wasserstoff wie an Stickstoff.
::<math>N_2 \; + \; 3 H_2 \; \longrightarrow \; 2 NH_3</math>


<quiz display="simple">
:[[Datei:Satz von Avogadro bei Ammoniak-Synthese.svg]]
{Die Station Hobart }
- ist tropisch immerfeucht
+subtropisch immerfeucht
+hat eine ganzjährige Vegetationsperiode.


{Perth }
</div>
- hat seine Regenzeit im Sommerhalbjahr
<div class="width-1-3"><center>[[Datei:Ammoniak Reaktor BASF.jpg|200px]]</center>
- liegt in den Tropen
''Der erste Ammoniak-Reaktor, der bei BASF eingesetzt wurde. Wegen dem großen Volumen muss man viel Druck verwenden, um die Atome zu dem einen Molekül zu verbinden!''
+liegt in den Subtropen
</div>
- hat Niederschläge unterhalb der agronomischen Trockengrenze
</div>
+besitzt eine ganzjährige Vegetationsperiode


{Darwin }
== Übungen zum Satz von Avogadro ==
+liegt in den Tropen
Übungen zum Satz von Avogadro haben immer mit Volumenverhältnissen zu tun. Dabei hat man meist keine bestimmte Anzahl an Teilchen - wie in den Darstellungen zu sehen ist - sondern es geht um Volumen und Vielfache davon. Das gilt aber nur für gasförmige Stoffe. Wir können natürlich nicht die Volumen von gasförmigen Stoffen und flüssigen Stoffen vergleichen, aber auch flüssige Stoffe untereinander können wir nicht vergleichen, denn es gibt keinen vergleichbaren Satz für Flüssigkeiten, wie den Satz von Avogadro.
- liegt in den Subtropen
+ hat seine Niederschläge im Sommerhalbjahr der SHK
+ hat Trockensavannenklima
-  hat Feuchtsavannenklima


{Alice Springs }
+ besitzt tropisches Wüstenklima
- subtropisches Klima
+ hat eine ganzjährige Vegetationsperiode
+ hat Niederschläge unterhalb der agronomischen Trockengrenze


</quiz>


= {{Schrift_grün|Von der Küste zum Binnenland}} =


{{Aufgaben-blau|1=|2=
[[File:Klimadiagramm-metrisch-deutsch-Valentia-Irland.png|250px]]
[[File:Klimadiagramm-metrisch-deutsch-HamburgFuhlsbuettel-Deutschland-1961-1990.png|250px]]
[[File:Klimadiagramm-metrisch-deutsch-BerlinTempelhof-Deutschland-1961-1990.png|250px]]


Die Stationen liegen auf etwa dem gleichen Breitengrad in Europa. Was stellst Du fest? Erkläre dies!}}


{{Lösung_versteckt|
{{Merke-M|1=
Von der Küste zum Binnenland nimmt die '''Temperaturamplitude''' zu und normalerweise ab.


'''Erklärung:''' Das Festland erwärmt sich stärker als das Meer, kühlt aber auch schneller aus, wenn die Sonneneinstrahlung nachlässt. Das Meer wirkt als Wärmespeicher und gibt die Wärme verzögert ab.  Somit sind die Tamperaturen im Sommer in Küstennähe niedriger, im Winter aber höher als im Binnenland.


Mit zunehmender Entfernung zum Meer nehmen die Niederschläge ab, da die Luftmassen diese teilweise vorher abgegeben haben.


}}
}}
interaktive Übung<br>


= {{Schrift_grün|Luv und Lee}} =
[[Kategorie:Stöchiometrie]]
interaktive Übung<br>
[[Kategorie:Satz von Avogadro]]
= {{Schrift_grün|Vom Tiefland zur Gebirgsstation}} =
[[Kategorie:ChemieUnfertig]]

Version vom 21. März 2018, 07:48 Uhr

Der Italienier Amadeo Avogardo war Professor für mathematische Phsik und untersuchte im 19. Jahrhundert Gase und stieß dabei auf eine Besonderheit bei der Anzahl der Gasteilchen pro Volumeneinheit.
Avogadro Amedeo.jpg


AKTIVITÄT (Freiwillig) - Entdecke den Satz von Avogadro über die Dichte

Auf dieser Unterseite kannst du mit Hilfe von recht einfachen Berechnungen die Entdeckung des Satzes von Avogadro nachvollziehen.

Avogadros Überlegungen

Ende des 18. Jahrhunderts hatte man endlich ausreichend gute Waagen, um die Dichte von Gasen zu bestimmen. Dazu gehört auch die bei der Elektrolyse von Wasser gewonnenen zwei Gasarten Sauerstoff und Wasserstoff.

Antoine lavoisier.jpg

Ein wichtiger Chemiker zur Zeit Avogadros war der Franzose Antoine de LavoisierWikipedia-logo.png. Er stellte fest, dass alle chemischen Stoffe aus den Elementarstoffen, den Elementen, aufgebaut sind. Die damals bekannten Metalle wie Silber, Kupfer, Blei, Zinn wurden von Lavoisier als Elemente eingeordnet. Und diese Elemente konnten mit dem Gas der Luft – Oxygène, also Sauerstoff – Verbindungen eingehen, wodurch zusammengesetzte Stoffe wie Bleioxid, Zinnoxid oder Kupferoxid entstanden. Lavoisier nannte die Stoffe, die wir heute als Elemente bezeichnen würden, als Substances simples (einfache Substanzen), weil sie sich nach Lavoisier nicht weiter mit chemischen Mitteln zerlegbar liesen.

Bei einigen Stoffen war also klar, was Elemente und was Verbindungen waren. Aber nicht bei allen! So fragten sich die Chemiker damals, welche Stoffe Elemente waren und welche Stoffe zusammengesetzt waren? Die Gase waren dabei der Schlüssel zur Bestimmung der Elemente.

Da sich Sauerstoff und Wasserstoff von Wasserdampf unterschieden, musste das Wasser, das ja bei einer Knallgasexplosion aus Sauerstoff und Wasserstoff entstand, ein zusammengesetzter Stoff sein.

Avogadro leitete sein Gesetz aus den von Gay-Lussac gefundenen gesetzmäßigen Beziehungen bei gasförmigen Stoffen ab.


Gesetze von Gay-Lussac

1. Gesetz: Der Quotient aus Volumen und Temperatur bei einem Gas ist bei gleichbleibender Menge und Druck gleich:

2. Gesetz: Der Druck von Gasen ist bei gleichbleibendem Volumen und gleichbleibender Teilchenanzahl direkt proportional zur Temperatur, weswegen der Quotient gleich bleibt.

Daraus folgerte Avogadro seinen Satz, wobei er auch Begriffe wie molécules élémentaires (Atome) und molécules intégrantes (Moleküle) verwendete, sein Gesetz galt aber auch Gasgemische. Bei seinen Überlegungen nahm Avogadro an, dass auch die Elemente zusammengesetzt sein können. Denn jedes Molekül eines Elementes in der Gasphase sollte aus zwei Atomen des Elementes bestehen, was wir ja von Sauerstoff O2, Stickstoff N2 Wasserstoff H2 usw. kennen.

Die Idee Avogadros war nicht unumstritten, denn einige Chemiker waren der Meinung, dass die von ihm quasi eingeführten "Moleküle" aus mindestens 8 Atomen bestehen müssten. Dies konnte aber widerlegt werden. Stattdessen wurde mit Hilfe der Dichte von Gasen und dem Satz von Avogadro durch Jean Baptiste Dumas die Molekülmassen einer Vielzahl von gasförmigen Stoffen bestimmt und Charles Frédéric Gerhardt formulierte mit Hilfe der Dichte und den Molekülmassen Formeln für Chlorwasserstoff, Wasser, Ammoniak, Kohlenstoffdioxid. Dabei ergaben sich allerdings Widersprüche zu den Atommassen, die von Berzelius in einer erste Liste von Elementen mit ihren Symbolen und Massen aufgestellt hatte.

Es folgten viele weitere Experimente und Untersuchungen an Gasen und erst ein halbes Jahrhundert später gelangten Avogadros Ansichten nach ihrer ersten Formulierung wirklich zur Geltung. Avogadros Gesetz war damit von großer Bedeutung, insbesondere für die Chemie. Es ist aber auch für die Physik bedeutend, vor allem für die kinetische Gastheorie, die von James Clerk Maxwell weiterentwickelt wurde. Der Satz von Avogadro ist auch – wenn auch versteckt – in der allgemeinen Gasgleichung enthalten.

Der Satz von Avogadro

Das Gesetz von Avogadro sagt aus, dass zwei gleich große Gasvolumina, die unter demselben Druck stehen und die dieselbe Temperatur haben, auch dieselbe Teilchenzahl einschließen. Dies gilt sogar dann, wenn die Volumina verschiedene Gase enthalten, also gemischt sind. Umgekehrt kann man daraus schließen, dass ein Gaspaket in einem bestimmten Volumen auch eine bestimmte Anzahl von Teilchen hat, die unabhängig von der Stoffart ist.


Satz von Avogadro

Alle Gase enthalten bei gleicher Temperatur und gleichem Druck in gleichen Volumina die gleiche Teilchenzahl.

Satz von Avogadro.svg

Für was ist der Satz von Avogadro wichtig?

Was die Chemiker im 19. Jahrhundert mit Hilfe des Satzes von Avogadro gefunden haben, können wir nun auch umgekehrt nutzen und damit von Volumina auf die Anzahl der Teilchen und damit auf mögliche Formeln von Verbindungen schließen.


Bei der Elektrolye von Wasser entstehen Wasserstoff und Sauertoff immer im Volumen-Verhältnis 2 zu 1. Daraus kann man die Formel von Wasser herleiten, wenn man den Satz von Avogadro kennt.
Satz von Avogadro bei Wasser-Elektrolyse.svg
Hofmann voltameter.svg


Wir wissen auch, in welchen Volumina gasförmige Verbindungen mit einander reagieren.


Zur Herstellung von Ammoniak braucht man Wasserstoff und Stickstoff. Denn die Formel von Ammoniak ist NH3 und somit braucht man ein dreimal so großes Volumen an Wasserstoff wie an Stickstoff.
Satz von Avogadro bei Ammoniak-Synthese.svg
Ammoniak Reaktor BASF.jpg

Der erste Ammoniak-Reaktor, der bei BASF eingesetzt wurde. Wegen dem großen Volumen muss man viel Druck verwenden, um die Atome zu dem einen Molekül zu verbinden!

Übungen zum Satz von Avogadro

Übungen zum Satz von Avogadro haben immer mit Volumenverhältnissen zu tun. Dabei hat man meist keine bestimmte Anzahl an Teilchen - wie in den Darstellungen zu sehen ist - sondern es geht um Volumen und Vielfache davon. Das gilt aber nur für gasförmige Stoffe. Wir können natürlich nicht die Volumen von gasförmigen Stoffen und flüssigen Stoffen vergleichen, aber auch flüssige Stoffe untereinander können wir nicht vergleichen, denn es gibt keinen vergleichbaren Satz für Flüssigkeiten, wie den Satz von Avogadro.