Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Vorwissen und Trigonometrische Funktionen/Didaktischer Kommentar: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Main>Silvia Joachim
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
== Zufallsexperiment ==
*[[Trigonometrische Funktionen 2|Zurück zur Einführung]]
 
{{Box|1=Aufgaben 1.1|2=
 
Weißt du noch, was genau ein '''Zufallsexperiment''' ist? Schreibe es auf!
 
[[Datei:Roulette.jpg|rechts|250px]]
Versuche dich zu erinnern und schreibe eine möglichst genaue Beschreibung des Begriffs "Zufallsexperiment" auf. Informiere dich wenn nötig in deinen Unterlagen aus der Schule oder recherchiere im Internet danach.
 
{{Lösung versteckt|1=
;Zufallsexperiment
:Ein realer, stochastischer Vorgang heißt '''Zufallsexperiment''', wenn:
:* das Experiment unter exakt festgelegten Bedingungen, denn sogenannten ''Versuchsbedingungen'', durchgeführt wird,
:* die möglichen Ergebnisse (Ausgänge) vor der Durchführung des Experiments bekannt sind,
:* das Experiment beliebig oft unter identischen Bedingungen wiederholt werden kann.
}}
|3=Arbeitsmethode}}
 
 
{{Box|1=Aufgabe 1.2|2=
Welche der folgenden Beispiele sind Zufallsexperimente? Kreuze die richtigen Antworten an und klicke anschließend auf „prüfen!“
 
<div class="multiplechoice-quiz">
(Ziehung der Lottozahlen) (Schere, Stein, Papier) (!Wettervorhersage) (!Elfmeterschießen im WM-Finale) (dreimaliges Werfen eines Würfels)  (ein Marmeladenbrot fällt vom Tisch)  (!Benotung deiner Klassenarbeit)  (Werfen einer Münze) (Werfen eines gezinkten Würfels) (!Geschwindigkeitsmessung der Polizei) (!physikalisches Experiment)
</div>
 
 
|3=Arbeitsmethode}}
 
 
{{Box|1=Aufgabe 1.3|2=
Anna wirft mit ihrem Banknachbar Fritz eine Münze, um zu entscheiden wer morgen das Mathebuch in die Schule mitbringen muss. Lege für die beiden die oben angesprochenen ''Versuchsbedingungen'' vor dem Zufallsexperiment „Münzwurf“ fest.
 
 
{{Lösung versteckt|1=
Es wird festgelegt, dass die Münze auf den gebeugten Zeigefinger gelegt und mit dem Daumen in die Luft geschnipst werden soll. Die Münze wird gefangen und auf den Handrücken gelegt. Die Seite gewinnt, welche nach der Landung oben liegt.
}}
|3=Arbeitsmethode}}
 
 
== Ergebnis und Ereignis ==
 
Zur korrekten mathematischen Beschreibung von Zufallsexperimenten benötigt man eine formale Sprache.
 
In der folgenden Aufgabe, kannst du am Beispiel des Würfelwurfs kontrollieren, ob du die richtige Schreibweise beherrschst.
 
 
{{Box|1= Aufgabe 1.4|2=Orden die Begriffe, Schreibweisen und Beispiele richtig zu! Ziehe dazu die grünen Kästchen in die richtige Zeile.
 
Fallen dir noch mehr Beipiele ein?
 
|3=Arbeitsmethode}}
 
<div class="zuordnungs-quiz">
{|
| <math>\omega_i</math> || Ergebnis || 6
|-
| <math>E</math> || Ereignis || <math>\left\{2,4,6\right\}</math>
|-
| Elementarereignis ||<math>\left\{6\right\}</math> || <math>\left\{\omega\right\}</math>
|-
| <math>\Omega</math> || Ergebnismenge || <math>\left\{1,2,3,4,5,6\right\}</math>
|-
| Gegenereignis || <math>\overline{E}</math>
|-
| unmögliches Ereignis || <math>\emptyset</math>
|-
| Mächtigkeit des Ergebnisraums || <math>\left| \Omega \right|</math>
|-
|}
</div>
 
Lösungshinweise:
{{Lösung versteckt|1=
*;Ergebnis: Man bezeichnet die einzelnen '''Ergebnisse''' (Ausgänge) eines Zufallsexperiments mit <math>\omega_1,\omega _2,\omega _3,...,\omega_n</math>.
 
*;Ergebnismenge:Die Menge aller Ergebnisse bezeichnet als '''Ergebnismenge''' (man sagt auch auch Ergebnisraum oder Grundraum) <math>\Omega=\left\{\omega_1,\omega _2,\omega _3...\omega_n\right\}</math>.
 
*;Ereignis:Jede Teilmenge <math>E\subseteq\Omega</math> wird als '''Ereignis''' bezeichnet. Ein Ereignis ist also eine Menge von Ergebnissen. Mehrere Ereignisse kann man mit <math>E_1,E_2,E_3,...</math> benennen. Ein Ereignis <math>E</math> tritt ein, wenn das Ergebnis des Zufallsexperiments in der Menge <math>E</math> enthalten ist.
 
*;Elementarereignis:Eine einelementige Teilmenge <math>\left\{\omega_i\right\},i=1,...,n</math> der Ergebnismenge <math>\Omega</math> ist ein '''Elementarereignis'''.
 
*;sicheres Ereignis:Ganz sicher tritt das Ereignis <math>\Omega=\left\{\omega_1,\omega _2,\omega _3...\omega_n\right\}</math> ein. (Sicherlich ist <math>\Omega</math> eine Teilmenge von sich selbst.)
 
*;unmögliches Ereignis:Das Ereignis das nie eintritt, ist die leere Menge <math>\emptyset</math>. (Auch das ist eine Teilmenge von <math>\Omega\ .</math>)
 
*;Gegenereignis:Bildet man aus allen Elementen von <math>\Omega</math>, die nicht in <math>E</math> enthalten sind ein Ereignis, so erhält man das '''Gegenereignis''' &nbsp;<math>\overline{E}=\Omega\setminus E\ .</math>&nbsp;(man sagt auch Komplement)
 
*;Mächtigkeit: Anzahl der Elemente einer Menge, z.B. eines Ereignisses: <math>\left| E \right|</math> <math>\left|\Omega_4\right|=3\cdot 3\cdot 3=3^3</math>
}}
 
 
{{Box|1=Aufgabe 1.5|2=
Bestimme für die folgenden vier Zufallsexperimente eine geeignete Ergebnismenge <math> \Omega </math>.
 
Kreuze zur Überprüfung jeweils dessen Mächtigkeit <math>n= \vert \Omega \vert </math> an.
 
 
 
<quiz display="simple">
 
{ Eine Münze und ein Würfel werden gleichzeitig geworfen. }
- 8
+ 12
- 36
 
{ Es wird dreimal gewürfelt. }
- 18
- 56
+ 216
 
{ Drei Münzen und zwei Würfel werden geworfen.}
- 72
- 216
+ 288
 
 
{ Aus einer Urne, die jeweils fünf blaue, rote und grüne Kugeln enthält, werden nacheinander drei Kugeln gezogen. }
 
- 9
+ 27
- 72
 
</quiz>
 
Lösungshinweise:
{{Lösung versteckt|1=
:* <math>\left|\Omega_1\right|=2\cdot 6</math>
:* <math>\left|\Omega_2\right|=6\cdot 6\cdot 6=6^3</math>
:* <math>\left|\Omega_3\right|=2\cdot 2\cdot 2\cdot 6\cdot 6=2^3\cdot 6^2</math>
:* <math>\left|\Omega_4\right|=3\cdot 3\cdot 3=3^3</math>
}}
|3=Arbeitsmethode}}
 
{{Box|1= Aufgabe 1.6|2=
 
a) Notiere dir für folgende Ergebnismengen ''alle'' Ereignisse. Wie viele sind es jeweils? Kannst du ein Gesetz erkennen?
 
:<math>\quad \Omega_1=\left\{1\right\},\qquad \Omega_2=\left\{1,2\right\},\qquad \Omega_3=\left\{1,2,3\right\},\qquad \Omega_4=\left\{1,2,3,4\right\}</math>
 
 
b) Wie viele Ereignisse gibt es bei dem Zufallsexperiment „Werfen von drei Münzen“?
 
 
Lösungshinweise:
{{Lösung versteckt|1=
:a)
:* <math>\Omega_1\ \mathrm{besitzt\ } 2\ (=2^1)\ \mathrm{Ereignisse.}</math> &nbsp;(Das sichere und das unmögliche Ereignis)
:* <math>\Omega_2\ \mathrm{besitzt\ } 4\ (=2^2)\ \mathrm{Ereignisse.}</math>
:* <math>\Omega_3\ \mathrm{besitzt\ } 8\ (=2^3)\ \mathrm{Ereignisse.}</math>
:* <math>\Omega_4\ \mathrm{besitzt\ } 16\ (=2^4)\ \mathrm{Ereignisse.}</math>
|2=Tipp einblenden|3=Tipp ausblenden}}
 
 
Lösung:
{{Lösung_versteckt|1=
:a) Das vermutete Gesetz lautet:
 
<math>\mathrm{Zu\ jedem\ } \Omega\ \mathrm{gibt\ es\ } 2^{\vert \Omega \vert }\ \mathrm{verschiedene\ Ereignisse.}  </math>
 
 
 
:b) <math>\left|\Omega\right|=8 \quad \Rightarrow \quad \mathrm{Es\ gibt\ } 2^8=256\ \mathrm{Ereignisse\ .}</math>
}}
 
|3=Arbeitsmethode}}
 
== Laplace-Wahrscheinlichkeit ==
 
[[File:Pierre-Simon Laplace.jpg|150px|right]]
 
{{wpde|Laplace|Pierre-Simon Laplace}} (1749 - 1827) war ein Physiker und Mathematiker, unter anderem auch am Hofe Napoleons.
Er beschäftigte sich mit der Wahrscheinlichkeitsrechnung, vor allem in Verbindung mit dem Glücksspiel.
<br><br>
 
 
 
{{Box|1= Aufgabe 1.7|2=
Schreibe auf, was man unter den Begriffen '''Laplace-Experiment''', '''Laplace-Würfel''' und '''Laplace-Wahrscheinlichkeit''' versteht!
 
{{Lösung versteckt|1=
;Laplace-Experiment
:Haben alle Ergebnisse eines Zufallsexperiments die gleiche Wahrscheinlichkeit, dann spricht man von einem '''Laplace-Experiment'''.
:Beispiel: Ziehung der Lottozahlen.
;Laplace-Würfel
:Ist ein Würfel ungezinkt, fair, oder symmetrisch, so spricht man von einem '''Laplace-Würfel'''. Jede Augenzahl wird mit der Wahrscheinlichkeit&nbsp;&nbsp;<math>\frac{1}{6}</math>&nbsp;&nbsp;gewürfelt.
:Achtung: In der Realität gibt es keinen echten Laplace-Würfel, aufgrund von Symmetrieeigenschaften. Eine Geldmünze ist aus dem selben Grund keine echte Laplace-Münze.
;Laplace-Wahrscheinlichkeit
:Die '''Laplace-Wahrscheinlichkeit''' eines Ereignisses E, ist gegeben durch den Quotienten
 
:<math> p(E) = \frac { \mathrm{Anzahl\ der\ f\ddot{u}r\  E\ g\ddot{u}nstigen\ Ergebnisse} } { \mathrm{Anzahl\ der\ m\ddot{o}glichen\ Ergebnisse} } = \frac{\vert E \vert }{\vert \Omega \vert }.</math>
 
:Beispiel:  Die Wahrscheinlichkeit mit einem Spielwürfel eine gerade Zahl zu würfeln beträgt&nbsp;&nbsp;<math>\frac{3}{6}=\frac{1}{2}\ .</math>
}}
|3=Arbeitsmethode}}
 
 
{{blau|'''„Racing Game with One Die“ (Rennspiel mit einem Würfel)'''


----
----


===Didaktischer Kommentar===


:Hast du Lust auf eine kurzes Laplace-Experiment zu zweit, oder gegen den Computer?
Der Lernpfad besteht aus zwei Stationen und einer Physik-Ecke.
* Station 1: Einfluss der Parameter (2-3 Std.)
* Station 2: Bestimmung der Funktionsgleichung und mehr (1-2 Std.)
* Physik-Ecke: Anwendungen in der Physik (1-2 Std.)


[http://www.shodor.org/interactivate/activities/RacingGameWithOneDie/ Racing Game with One Die] ist ein Autorennspiel auf einer englischsprachigen Internetseite (dazu muss Java installiert sein).
Die GeoGebra-Applets bieten vielfältige Möglichkeiten, mathematische  Zusammenhänge experimentell zu erkunden. So können die SchülerInnen in der ersten Station selbstständig den Einfluss der Variation der Parameter einer allgemeinen Sinus- und Kosinusfunktion auf das Aussehen ihrer Graphen erforschen und erleben. Wie man umgekehrt aus den Graphen die zugehörigen Parameter bestimmt, erfahren die SchülerInnen in der Station zwei. Um das unterschiedliche Lerntempo auszugleichen, bietet am Ende der zweiten Station eine Zusatzaufgabe den schnelleren SchülerInnen die Möglichkeit, die evtl. übrige Zeit sinnvoll zu nutzen. Normalerweise werden die SchülerInnen die Stationen in der vorgegebenen Reihenfolge vollständig bearbeiten. Aber es ist natürlich auch möglich, nur eine der Stationen in den Unterricht einzubauen. In der Physik-Ecke können die SchülerInnen - anhand von Anwendungsbeispielen aus der Physik - die in Station 1 und 2 erworbenen mathematischen Kenntnisse festigen und lernen dabei auch unterschiedliche Variablenbezeichnungen zu identifizieren.


:Mit Hilfe des einfachen Würfelwurfs wird entschieden, welches Auto nach vorne fahren darf.
Mit Blick auf die Genderproblematik wurde bei den Stationen 1 und 2 darauf geachtet, dass sie Mädchen und Jungen gleichermaßen ansprechen. Die fächerübergreifende Physik-Ecke dürfte hingegen aber mehr auf die Interessen von Jungen ausgerichtet sein.


Anleitung:
Zu fast allen Aufgaben sind Lösungen angegeben. Die SchülerInnen haben so die Möglichkeit, ihre Antworten selbst zu kontrollieren. Die Lösungen stehen allerdings nicht unmittelbar nach der jeweiligen Aufgabe, sondern am Ende der zu bearbeitenden Seite. So soll verhindert werden, dass sich die SchülerInnen gleich nach dem Lesen der Aufgabe die Lösung anschauen.
:* Öffne den Link in einem neuen Fenster.
:* Entscheidet euch im mittleren Kasten, wer von euch das rote oder das blaue Auto „fährt“.
:* Klickt nun im oberen Kasten so oft auf den Buton '''„Roll Die“''', bis ein Auto über die Ziellinie fährt! <br> Es ist voreingestellt, dass rot bei ungerader Augenzahl fährt („Red moves on“) und blau bei gerader Augenzahl weiterkommt.
:* Wenn ihr auf den Button '''„Restart“''' klickt, kann es von vorne los gehen.
:* Verändere die Einstellungen nach deinen Wünschen:
:** Mit dem Schieberegler '''„Race segments“''' stellt ihr die Länge der Rennbahn, also die Anzahl der Spiele ein.
:** Jetzt müsst ihr noch untereinander aushandeln, bei welchen Augenzahlen euer Auto fahren darf.
:** Im unteren Kasten könnt ihr viele Rennen auf einmal durchführen lassen.


:Auf die Plätze, fertig, los!
Um SchülerInnen entgegenzukommen, denen es schwer fällt, die Bedeutung schriftlicher Texte zu verstehen, weil etwa ihre Lesekompetenz nur schwach ausgeprägt ist oder sie an Legastenie oder einer Sehbehinderung leiden, wurden in den Lernpfad Videos eingefügt, mit denen sie sich den Text von einem Avatar „vorlesen“ lassen können. Zu diesem Zweck sollte ihnen allerdings ein Kopfhörer zur Verfügung stehen.
}}


===Methodische Anleitung für den Unterricht===


{{Box|1=Aufgabe 1.8|2=
Es gibt verschiedene Möglichkeiten, diesen Lernpfad in den Lernprozess der SchülerInnen zu integrieren. Er kann zum selbstständigen Erarbeiten des Stoffes in Expertenteams beziehungsweise in Gruppen-, Partner- oder Einzelarbeit eingesetzt werden. Darüber hinaus  kann er auch gut zur Wiederholung des Stoffes im Unterricht oder zu Hause verwendet werden.  
[[Datei:Pasch.jpg|right]]Anna würfelt mit zwei unterscheidbaren Würfeln.  


Wie groß ist die Wahrscheinlichkeit, dass sie einen Pasch würfelt?
Die Station eins wurde so konzipiert, dass sie das Arbeiten in Expertenteams unterstützt. Für die Station zwei und für die Physik-Ecke empfiehlt sich Gruppenarbeit.


Lösungshilfe:
Beim Arbeiten in Expertenteams handelt es sich um eine spezielle Form von Gruppenarbeit, wobei sich jede Gruppe zunächst mit einem anderen Aspekt eines bestimmten Themas beschäftigt. Zur Einteilung der Gruppen können die vorgeschlagenen Karten verwendet werden. Sie sollten am besten auf farbiges Papier gedruckt, laminiert und zugeschnitten werden. Alle SchülerInnen erhalten eine Karte. Zunächst werden die SchülerInnen mit demselben Buchstaben auf der Karte zusammen arbeiten. Damit sich nicht gleich zu Beginn der Stunde alle SchülerInnen umsetzen müssen, ist es sinnvoll SchülerInnen, die neben einander sitzen, Karten mit demselben Buchstaben zu geben. Hinweise für die SchülerInnen für das Arbeiten in Expertenteams sind im Lernpfad integriert. Nun untersucht jede Gruppe den Einfluss eines anderen Parameters auf das Aussehen des Graphen. Jeder Schüler dieser Gruppe ist dann Experte für den Einfluss eines Parameters. Es wird ein erster Hefteintrag notiert. Dazu sollten die SchülerInnen ihr Heft im Querformat verwenden, eine Überschrift notieren und vier Spalten für den Einfluss je eines Parameters anlegen. Nach der Arbeitsphase in diesen Gruppen werden die SchülerInnen mit Hilfe der Zahlen auf den Karten in neue Gruppen eingeteilt. Die neuen Gruppen bestehen aus vier SchülerInnen, genauer je einem Experten für einen der vier Parameter. Die SchülerInnen sollen nun auch die Auswirkungen der anderen Parameter erforschen, sich über deren Einfluss austauschen und die Spalten des Hefteintrages vervollständigen. Danach werden gemeinsam Aufgaben bearbeitet. Diese sind so konzipiert, dass zu ihrer Lösung meist das Expertenwissen der einzelnen SchülerInnen benötigt wird.
{{Lösung versteckt|1=
:Übertrage die Tabelle auf dein Blatt. In die Lücken gehören alle Ereignisse des zweifachen Würfelwurfs eingetragen. Kannst du sie vervollständigen?


:[[Datei:FeldertafelzweiWürfel.jpg|250px]]
[[Trigonometrische_Funktionen/Einteilung der Expertenteams|Expertenteamkarten zum Ausdrucken]]
|2=Tipp anzeigen|3=Tipp ausblenden}}
 
 
{{Lösung versteckt|1=
:Man kann aus der Tabelle prima die Ergebnismenge und das Ereignis „Pasch“ ablesen:
 
:[[Datei:FeldertafelzweiWürfel.png|250px]]
 
:Man sagt dazu „36-Feldertafel“, auf Grund der Mächtigkeit der Ergebnismenge.
 
 
:<math>\Omega=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),...,(6,5),(6,6)\}, \quad \vert \Omega \vert = 6^2 = 36 </math>
 
:<math>E_{Pasch} =  \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}, \quad  \vert E_{Pasch} \vert = 6 </math>
 
:<math>\Rightarrow \quad p(E_{Pasch}) = \frac{6}{36} =\frac{1}{6}\ .</math>
|2=Lösung anzeigen|3=Lösung ausblenden}}
|3=Arbeitsmethode}}
 
 
----
 
 
{{Weiter|Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Glücksspiel|Glücksspiel}}


----
----
{{Lernpfad Laplace-Wahrscheinlichkeit wiederholen und vertiefen}}


{{SORTIERUNG:Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Vorwissen}}
*[[Trigonometrische Funktionen 2|Zurück zur Einführung]]
[[Kategorie:Laplace-Experimente]]
[[Kategorie:Stochastik]]
[[Kategorie:Interaktive Übungen/Mathematik]]

Version vom 8. Dezember 2010, 13:51 Uhr


Didaktischer Kommentar

Der Lernpfad besteht aus zwei Stationen und einer Physik-Ecke.

  • Station 1: Einfluss der Parameter (2-3 Std.)
  • Station 2: Bestimmung der Funktionsgleichung und mehr (1-2 Std.)
  • Physik-Ecke: Anwendungen in der Physik (1-2 Std.)

Die GeoGebra-Applets bieten vielfältige Möglichkeiten, mathematische Zusammenhänge experimentell zu erkunden. So können die SchülerInnen in der ersten Station selbstständig den Einfluss der Variation der Parameter einer allgemeinen Sinus- und Kosinusfunktion auf das Aussehen ihrer Graphen erforschen und erleben. Wie man umgekehrt aus den Graphen die zugehörigen Parameter bestimmt, erfahren die SchülerInnen in der Station zwei. Um das unterschiedliche Lerntempo auszugleichen, bietet am Ende der zweiten Station eine Zusatzaufgabe den schnelleren SchülerInnen die Möglichkeit, die evtl. übrige Zeit sinnvoll zu nutzen. Normalerweise werden die SchülerInnen die Stationen in der vorgegebenen Reihenfolge vollständig bearbeiten. Aber es ist natürlich auch möglich, nur eine der Stationen in den Unterricht einzubauen. In der Physik-Ecke können die SchülerInnen - anhand von Anwendungsbeispielen aus der Physik - die in Station 1 und 2 erworbenen mathematischen Kenntnisse festigen und lernen dabei auch unterschiedliche Variablenbezeichnungen zu identifizieren.

Mit Blick auf die Genderproblematik wurde bei den Stationen 1 und 2 darauf geachtet, dass sie Mädchen und Jungen gleichermaßen ansprechen. Die fächerübergreifende Physik-Ecke dürfte hingegen aber mehr auf die Interessen von Jungen ausgerichtet sein.

Zu fast allen Aufgaben sind Lösungen angegeben. Die SchülerInnen haben so die Möglichkeit, ihre Antworten selbst zu kontrollieren. Die Lösungen stehen allerdings nicht unmittelbar nach der jeweiligen Aufgabe, sondern am Ende der zu bearbeitenden Seite. So soll verhindert werden, dass sich die SchülerInnen gleich nach dem Lesen der Aufgabe die Lösung anschauen.

Um SchülerInnen entgegenzukommen, denen es schwer fällt, die Bedeutung schriftlicher Texte zu verstehen, weil etwa ihre Lesekompetenz nur schwach ausgeprägt ist oder sie an Legastenie oder einer Sehbehinderung leiden, wurden in den Lernpfad Videos eingefügt, mit denen sie sich den Text von einem Avatar „vorlesen“ lassen können. Zu diesem Zweck sollte ihnen allerdings ein Kopfhörer zur Verfügung stehen.

Methodische Anleitung für den Unterricht

Es gibt verschiedene Möglichkeiten, diesen Lernpfad in den Lernprozess der SchülerInnen zu integrieren. Er kann zum selbstständigen Erarbeiten des Stoffes in Expertenteams beziehungsweise in Gruppen-, Partner- oder Einzelarbeit eingesetzt werden. Darüber hinaus kann er auch gut zur Wiederholung des Stoffes im Unterricht oder zu Hause verwendet werden.

Die Station eins wurde so konzipiert, dass sie das Arbeiten in Expertenteams unterstützt. Für die Station zwei und für die Physik-Ecke empfiehlt sich Gruppenarbeit.

Beim Arbeiten in Expertenteams handelt es sich um eine spezielle Form von Gruppenarbeit, wobei sich jede Gruppe zunächst mit einem anderen Aspekt eines bestimmten Themas beschäftigt. Zur Einteilung der Gruppen können die vorgeschlagenen Karten verwendet werden. Sie sollten am besten auf farbiges Papier gedruckt, laminiert und zugeschnitten werden. Alle SchülerInnen erhalten eine Karte. Zunächst werden die SchülerInnen mit demselben Buchstaben auf der Karte zusammen arbeiten. Damit sich nicht gleich zu Beginn der Stunde alle SchülerInnen umsetzen müssen, ist es sinnvoll SchülerInnen, die neben einander sitzen, Karten mit demselben Buchstaben zu geben. Hinweise für die SchülerInnen für das Arbeiten in Expertenteams sind im Lernpfad integriert. Nun untersucht jede Gruppe den Einfluss eines anderen Parameters auf das Aussehen des Graphen. Jeder Schüler dieser Gruppe ist dann Experte für den Einfluss eines Parameters. Es wird ein erster Hefteintrag notiert. Dazu sollten die SchülerInnen ihr Heft im Querformat verwenden, eine Überschrift notieren und vier Spalten für den Einfluss je eines Parameters anlegen. Nach der Arbeitsphase in diesen Gruppen werden die SchülerInnen mit Hilfe der Zahlen auf den Karten in neue Gruppen eingeteilt. Die neuen Gruppen bestehen aus vier SchülerInnen, genauer je einem Experten für einen der vier Parameter. Die SchülerInnen sollen nun auch die Auswirkungen der anderen Parameter erforschen, sich über deren Einfluss austauschen und die Spalten des Hefteintrages vervollständigen. Danach werden gemeinsam Aufgaben bearbeitet. Diese sind so konzipiert, dass zu ihrer Lösung meist das Expertenwissen der einzelnen SchülerInnen benötigt wird.

Expertenteamkarten zum Ausdrucken