Extremwertaufgaben: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Problemstellung)
(Verfasser)
Zeile 21: Zeile 21:
 
==GeoGebra-Datei==
 
==GeoGebra-Datei==
 
<ggb_applet width="1272" height="632"  version="4.0" ggbBase64="UEsDBBQACAAIAPddkD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAD3XZA/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1d3XLktpW+Tqr2HVhabyrZ1XCAg3+vJimLjGOn7CSV8SZbudhUS01JnWl1K92tGY0rV3u3D7J3+1R5kj0Am2SzAQnE/JATu2x3iw0COAcH5/tA4iPPfvFwu8xeV5vtYr16cUJzcpJVq8v1fLG6fnFyv7t6pk9+8fMfn11X6+vqYjPLrtab29nuxQm3JRfzFydzydRczOHZHOYXzzi9qp4ZAPlMzGYEQM/MjFYnWfawXXy+Wv9mdltt72aX1cvLm+p29s36crZzDd/sdnefP3/+5s2bvGkqX2+un19fX+QP2/lJht1cbV+c7L98jtX1TnrDXHEghD7/z2+/qat/tlhtd7PVJbZvTbhf/PzHPzp7s1jN12+yN4v57gYNBq1PsptqcX2DRilpTrLnttQdeuSuutwtXldbPPfgT2f07vbuxBWbrezvP6q/ZcvWnpNsvni9mFebFyckl5orDZJoaYQUACfZerOoVrt9Wbpv83lT29nrRfWmrtZ+cy1iodeL7eJiWWHrm3s0abG62qA7X5xczZZb/Hu7e7usLmab9kDXG4a/Lr7Holpj47UHsEpCTu1/Ev/jhNS9OGiSn2S79XrpqiTZ3/6WAQGSndoPWn8AfkhZ/0TqY4TVH1B/8PpD1GV4fTqvi/K6DK/LcJZgYf17ZyBtDGRaDDcQDlrcN/EuTqW26uM2QYTbpPKJRmuznmiztZOKgzaxKfev+89rkT1l5nGLjzo2oUHJRzHx7HkzTc72YZptb2zZffDsqtutDVxmMmFs/NFMYJBKheEmMmrwQ0GGYZlRkXGBf1KdSfupMqbwB56xTGe2HGWZi1Kh8X9cucpkJrAye1Th5MgoNsQzwTLqgptnGNKZmyA4WYBhCSEygSfZ5inYKpjMuMS/mM449tHODUWxIMMT8W9sHjJGM2ZPpioDmUlbH+V2zkltu45VQiZJJqmtEKcXTq16WmF5nTFrjdy7a7G6u9/1XHR5O2++7tZ37VhgacxFXcarc1MvIf7obDm7qJYIEi/tSGbZ69nSzgjX0NV6tcuaQYT62PVmdnezuNy+rHY7PGub/WX2evbNbFc9fImlt03bruzlerX93Wa9K9bL+9vVNssu10vS9nm9pAffoe01/sEOfuCHP4iDH+TBdxVsd42/ZPfbCttfb7ZN8dl8/rUt0aUG9ORvV8u355tq9upuveibcfbc4c1ZdX+5XMwXs9UfMFhtK9YvWQM/Lh836CMpbzqy3sxfvt1iBGcPf6o2a/SjMbmRiKscp4XhjOMce1v/JDTNQQhGDeXaMIUJcHs5s3OPspwBUYIrKo2mFOxJ+99ITiRnkipM5qCkQGSqG69et2M0e6ha8683dmrvTbd/fL09Xy+7Q84Bxexud79x1AGz48aa9cXqelm5IHH5FnH58tXF+uFlHR2sruu7t3e2S3UHLq6d4zNMDmgWFth/XtSfroztWVuKuDLElSBNuC3m7e/UgCvhPi/qT1cK47fu2t5S2phJSdPMYutSGjnpTRwX/Bbk71eL3TfNH7vF5au9pbQu/5v724uqDaF+lfQDVXn2/CjEzrZ3GJHz7U1V7YJB5zCyCTqhVd0xPOmqqJbLl4dFFelKwt5rB9XXM7TxUEOp6H6QttXSJoz1KstuXl5u1sulK/b64Pulq8B93Vhf6P3AzN6u720OQYO/RMJ5v5ydH4CFPfwrN1B7NMG/v6prPe9AzB79Q/DoOba1rTa/Q7q17FVa2/MVmlf1Tvg91u8OZm02WC7Xb15iQlzMlr+cL3brrnfup+8Qkb5b3LXTp/rrPf76e/xYbKp5L+0c+hP9/6Uj2NmeaH87w7xMTsnpxSkVp5enz4AwIzT/nJ3K05l//PTqlH1OTwV1P3wOpwD1N/pEeThlsinP99/YYR2s+Ubbb1w09UJbr61ItKdD8+2gAD04LNpjdN8msibedfLqlNoKWVPeGPsNbNuqrY00vzZ1YH/annHTHiNNC9L+yvAL5T1/UNcea89m7dl4jqvbNqxbO3lrXdsFY7vFsbxyh/ALk31ziHVv7wg209bEVGtM2wnadULtOxEaQ2qt5W1R10081NRIbBj02qWHNZt98YNmdetD1hRTvKlVt7WyY/soC3iVtvVhLWzvGwygY0+0TTHvN9Z1qA0bTtvhpe2gtZEIrTuY10sMoOO22xqaurCr7pttvHUVBsDxidA2w49d3J2nYO+7pjjUgWijmXYB0M49F0E2lDj3GmwnCxUBXxM7sKEhgK6j6niSidZ6WccwPcgIj+cNVkeaLd6lDRdNNj9Ba2ovATSJg9igCMYKa4e1/dalFReFzjPM80wXvm3ScOHmetMeYm0HmPYc0fa5yyes7QVvpxOG2fGZbRpgbRhjKB0HHvU63U56F27WMmaOK29SEbTpidhIOq6qzU5dTurylAtBN1TtVGJdxnhijB/LN+Hj0OYhaFMMtJmF2FA7zvCqKdUlAAFeqS7pPNJul2OENzq8dUiXFhyeGOutFuh4O/epDE+i1p1u+koba90h2YSmN4BdJgDh9a1F6KYq2iQHUmOKjRwgx8OtxT60dTMljNwnLM2aI2J/uhDHoSjq4N/XVXcdfdE50UMq1cxsbfbVg/FqVYe1kn2ttAV9Q/Z1GL2vQ5iDM0wbt91IqMBIYGca61VbkZcqVZvMWqToxsE3r/FB6wIDjT+bNgxrIKElFIbvXSxJawg9+J3SYJYG5bnOgynTAJBW+66JltvQtgHwMKn5DbvRJn0K4WR7SN5Em8RZO2C9AtDloQ6q2jnesrL2kOigrVdNd04LPBoaE9tErWkzfN3J5DQEGqyNW3oQwZQEi9LOJ49ktq4Eg+MxCUUjtAEGXYCxRypvu6fb6GqP1OMNB9Gj6wlM25En9XR3k6UJ2C4WdBOfppke3XmSt/FJ6glvC4oW53sj3QWOMk18s8Pzzf58aDm2aImJbvivIfved6W6wKEtmjIPJ0MUhtQ5w3WFHnRFNTlO6camNscr1XSzhXPaBl+3iujKy31duqnLNLDZxaVh+0PQ1kDbdMW8PG34fph6YSzhIO11dUO3Bmir1I0RLh/wetHvLfLPXlUbXM/uL2TtFqv79f22vi53sNic44r1Fv+sf9iv6Gf2Gs1/rBa7+ui8ut5UzeWKpbsXU18lcb+Sw2tU3mFX1Zeb9e3Xq9ffbRbXRx04e9708mx7uVnc2etM2cVyffmqWxRn88V2drHsrZLdtTlcSdeXE3aLnb0i8suHu/WqQlNx1Vxtsz/OLm+2u/vb7Kd/Wqy2m+ryZnW/uv4ZLsjvdzd2ff7rPy52uwrrqRYrbGW2wzrcXZw3680r58nvqoddNrtYv8Zf/ukn/0zJvz/9/5Psolra6xauj9UDjsnW3khrruacU1z5P+AK/id/vV/v/v2LFTpzvcto/Wd90rK6RRuynbsEtsMOnByc7a4P3KzfZOuLv1SXu+5yeV3iYGCxwCMXxLLZ8u5m5q74+RfY7CXB6/3nxf5zX7692Lacva02vVF2zX+7nh+O/dnzvSlBTxRhT8AwTxQfyRMfwrIybBkbZln5CVv2BRxZtpxdV9lilf39v/9vmHVYww8mgr9gPW/YHLOd7b63/viXgd5gn/BY855138zur76vEBDQul/PbjbVaqCJ/NM18Vz1TPzlZreZXQ/MxOodzaKCfXzDinc3rHhXww7Hyxn5UVLruxtWvp9hQPhHnW19w9wMGzjBPsSATZNRe0at7m+rzeKy7XWTcP5c4yFWcb+vCETTx57Rvbtm3e21YZOPPmnEb6+uttUue3hx8gwreIsflAZt3B/dLu1Gn+x2Ue9euJ092P0K2NzFdr2831UvL5FOr7q9TnXXm7tlxI6BbczYz7f2pqi1OLtaPFTtHS7kr4vvkdXPesZ29y93N4vLVysMMneTdbe/neq+fLWYz6tV29nZCvm/Y9HIg+/q24p3VVXfkGxPvEPXuNu4B8w9eSjheCg5e9ehfDzdPD2UH2usKOwHC4z5YQwWOx4spt9vsEIpdKLB4vvB4kZ+6oPls5aGmB1kyMwHieNxPeeP59GkHOmcVddwsInh/mGxXMw2b/s/RGiKZwkMsaTwLOnSSFKK+HCWlJ4lbIglpWdJN8eS5s87W/Jk977Qx92jwQzwXnQjMQO865z6EO4w3gz6gbvDp6mU7AMdsn/NvjDZswyDZECk2xOPQz02ZwNuecdO08NOU2J7bYb12iOffLxeQ6/X1PaakmHd9ohWMNV/nG6zXrfBdXsQQtlTj7otx+s273WbuW4PgiN76lG31XjdFr1uc9ftQdhjTz3q9hPY86G7LXvdFq7bfFi35XG3zXjdVr1uS9dtMazbysNSMl6/da/fyvVbDuu3zwHoeP02vX5r1281rN8eWFMYrd/QQ0nqYJIOw0nwcJKOB5TQA0pwQEmHISV4SEnHg0roQSU4qIRhUAkeVNLxsBJ6WAkOK2EYVoKHlXQ8sIQeWIIDSxgGluCBJR0PLaGHluDQEoahJXhoSceDS+jBJTi4hGFwCR5c0vHwEnp4CQ4vYRhegoeXMB5eQg8vweElDMNL8PASxsNL6OElOLyEYXgJ/uJ2PLxkPbwEh5cwDC+Zh5cwHl6yHl4yh5cwDC+Zf1tjPLxkPbxkDi/ZMLxkHl6GLyN+nH738JI5vGTD8JJ5eAnj4SXr4SVzeMmG4SXzL9uOh5esh5fM4SUbhpfMw0sYDy9ZDy+Zw0s2DC+Zh5cwHl6yHl4yh5dsGF4yDy/ZeHjJenjJHF6yYXjJPLxk4+El6+Elc3jJhuEl8/CSjYeXvIeXzOElG4aX3L8OOx5e8h5ecoeXbBhecg8v2Xh4yXt4yR1e8mF4yT28ZOPhJe/hJXd4yYfhJfdv/46Hl7yHl9zhJR+Gl9y/pTYeXvIeXnKHl3wYXnIPL5+6Ffih+93DS+7wkg/DS+7hJRsPL3kPL7nDSz4ML7mHl3w8vOQ9vOQOL/kwvOQeXvLx8JL38JI7vOTD8JJ7eMnHw0vRw0vu8JIPw0vh4WV8s8GH63cPL4XDSz4ML4V/53I8vBQ9vBQOL8UwvBT+HrHx8FL08FI4vBTD8FJ4eMnHw0vRw0vh8FIMw0vhb6YZDy9FDy+Fw0sxDC+Fh5d8PLwUPbwUDi/FMLwUHl7y8fBS9PBSOLwUw/BSeHgpPhZePtmRRmXhbwuW+f5ZMePvChb1pmB18OOTWxfJfuui3c6RuHWx2blo2IgbF60nPsjWxSa/HozikK2LgX0h+h3G8ePskmtt8ZHrk9rc/B5B525Bu83Nknz6YTdstLyY0rl5n9H6wLub32e0ZLO7WfwjJonCSxLDdgX7BGzqTcGeIcM2BT8emZ/AnuBX/mVmEkxz/wi7YA/Nvlzf3s5W82zlHkpqdd9Xi2o5d+bWD8qcEWt+bcP9rjniSmJBWle4r8bz466tsHFJd+KHJS1Pq9I60kLrJMEg6Fnyfp51KeVVNf9Vta7nwN5xy2p1vbvZg3h96HJ25xpwx2pJ8Z/pAC7RrDFfDaIQ/mVYEuSvE5GI5Q91Wj1t9u0P1exh2WT5aDaBd80mAX39exHOwdkEaoJI5CjpZJmUTmAA62jSyXIQ2RiaTj4a3RgWYLePBhh71wALPLLgvTjy4ADTNVwZMUqA3SYFGBvABpsAux1EAtMC7CPQwH6AfX11FFmfnfPs7//zvxm6dUbtn/aS0k9p9m/ZZ+cse57hcuRn//XTL7R92g60w3MQiLOnA/DYITP/djvJOTn4hyUCQoKx55/Vxlqtk7X2/LPW2vPP+tYem3mu0+w89/dDDDA0ygbff8BbH5infWACPjCJPvD3VnDIqVYwreVuLf6E6ZQEbKck0fiAUk6KnAthwMg6AsTEfqARP9CQHyILJN8P/o4PQ3JGpGGgKWhC6MRugIgbIOSGCLPz3eBfVqQyt++PIRw4J2ryaGARN7CQGyL8w3eDf3mHi5waxgXHgJBSsan9wCN+4CE/8FQ/BO7XYXaQUhKjpSa6eXr/ZG4QETeIkBtEqhu823+CqFwZzZjBfynVSTcIPoIbZMQNMuQGmeoG726iQKTE/Cjte0E4VYELh6N6QUW8oEJeUKle8O9NKpPjUtQoRihhnE2NFBHeSEPEkaYyR1+qKanOhWGEK6oE4ZJP7IYIdaQh7khTyaOv/MTcmEuhmOJMg+Fm4gwJERoJIRoJqTTSF5IiU8iFtq//0ZwYQyZm0xBhkRBikZDKIn1dqhIsF5JKIY3RVKmJgQIiLBJCLBJSWaQvc0X6mGvCNDdScSLY1JMiwiIhxCIhlUX6qlktTC4YEZRygaTBTEwiIUIiIUQiIZVE+iJcQ1VulBZIHHCFRaeeExEOCSEOCakc0pf0Gm0vtVDKiH2jGpk8Q0Y4JIQ4JKRyyIBCmNg9gBJRQhpcYFKYelJEWCSEWCSkskhfcUxxGZGDNASnBQWp6dTxEKGREKKRkEojfQUzpYbnDKeF4AJXWHzqlTZEeCSEeCSk8khfEU0Bl9oCuACpKK4rJl5VsAiPZCEeyVJ5pC+wpkwCTguCUSFAMU2n9kOESLIQkWSpRNIXbCNjQAplmNZKCQyLia/LswiRZCEiyVKJpK//pgIJtbZX4IACCCTVE/shwiRZiEmyVCbp68l/M/vNxIZHuCMLcUeWyh19Qfr0hkfoIgvRRZZKF31F+/SGRwgiCxFElkoQfUn89IZHGCELMUKWygh9Tf30hkcoIAtRQJZKAX1R/vSGRzgfC3E+lsr5fFX/5IbzCMvjIZbHU1me/1iA6Q2P0DoeonU8ldb5zxWY3vAIkeMhIsdTiZz/YILpDY8wNx5ibjyVuflPNpje8Ahz4yHmxlOZm/9ohOkNjzA3HmJuPJW5+c9WmN7wCHPjIebGU5mb/3CG6Q2PMDceYm48lbn5T3eY3vAIc+Mh5sZTmZv/eIjpDY8wNx5ibjyVufnPl5jccBFhbiLE3EQqc/MfUDG94RHmJkLMTaQyN/8JF9MbHmFuIsTcRCpz8x+RMb3hEeYmQsxNpDI3/xkb0xseYW4ixNxEKnPzH9IxveER5iZCzE2kMjf/KR/TGx5hbiLE3EQqc/MfEzK94RHmJkLMTaQyN/85I1MZXhyJPorO7iIi+igSaVsReAhm9OlYQTnZBzTbPG12gLUViaStCDxDk+c8cP9oTLsblcdjhodUHkWqyqMIqDyYyrkwgT0Go1pPI9YHuFuRqu0oAtoOQXIjlJB6r3IK7FUd1Q8Q8UOAyhWp4o7CF3cwyXNjhFYkpHYa1QMs4oEApytSdR2Fr+tgyuQCQ4EIwUO7+Ef1AY/4IEDvilRNR+FrOpjhuVJGYE7AQBAQ2GExqhtExA0BslekajoKX9PBKckxEBQVFKjQMPWMkBE3BKhfkarpKHxNBweJOYEJzhRIzgUP7NUd1Q8q4ocAEyxSVR2Fr+rg9hGWioFGDwhBWETx+9HdECGGIVVHkarqKHxVB5c010wCldruwArtxhvVDRGiGFJ1FKmqjsJXdXBt1aBGSoEpghHOJ/YDRHhjSNZRpMo6Cl/WwQ3iJQBBlDCMUjlxcoAIgQzJOopUWUfhyzoERTcQMIyDJprTiZMDRPhjSNZRpMo6Cl/WITjJQVtBgxRW6jOxFyIcMqTqKFJVHYWv6hA2RRrES6aoRuYwsRciLDIk6ihSRR2FL+oQmudMEcq1lFLr0AbVUd0QYZEhVUeRquoofFWHtMpgzo1A4GRChPanjuqGCIsMqTqKVFVH4as6pH1BiWVOoIymZGoyDRESGRJ1FKmijsIXdUihcsak4WCwJZBTuyFCIkOajiJV01H4mg6pWS6RNQGxUnFQE19ugQiJDEk6ilRJR+FLOhSuMI0SkikuME/yid3AIhwyJOkoUiUdhS/pUMzknHIprTwa15mPPm90JDdEOGRI0VGkKjoKX9GhpMaFNgVuuMQ8KSam0izCIUOKjiJV0VH4ig6FKwoliDaGcwkg5cRuiJDIkKCjSBV0FL6gQzOKvIHYCy/AkUpPHQ0RFhmSdxSp8o7Cl3doKXJCiVCAqyrCpr4kyyIsMiT2KFLFHoUv9sDZkEtKjL1JwaWe+v4Ei7DIkPSjSJV+FL70A2eDvTrPkUhrXFeoqSdFhEWGhCBFqhCk8IUgRjGcFAYEI0QjiZx4nc0iLDIkCylSZSGFLwuhhNLccOTRjIIWZuIVJouwyJBIpEgViRS+SASzIyB/UhLckzTY1NfgeIRGhjQjRapmpPA1I5geeY48moEhVGg99eKKR3hkSEJSpEpICl9CQinTuaXSBDAoBNCJGRSPEMmQoqRIVZQUvqKEUl1Lgw3+jwkNU/shwiRDApMiVWBS+AITiukxp8ooKanhdHI3RJhkSG5SpMpNCl9uYh/amXOQRkikktpMfFebR5hkSHxSpIpPCl98QhlGg+ScMEGpEHLq9RWPUMmQFqVI1aIUvhYFkyTPDTHK2FsVNPjspVH9EOGSIWlKkSpNKXxpCsVQyN1TlzTTuMBQU8+LCJkMKVWKVKVK4StVKDcqN1Tj2sJQCUxOvNLkETYZEq4UqcKVwheuYE5QucbkoBgTgCxq4vwgImwypGMpUnUsha9jwRhAc7gWmoBWwadxjeqGCJkMqVqKVFVLMVDVMqrhEfYYUrUUqaqWYqCqZVTDI3QxpGopUlUtxUBVy6iGRwhiSNVSpKpaioGqllENj1DCkKqlSFW1FANVLaMaHuGAIVVLkapqKQaqWkY1PEL6QqqWIlXVUgxUtYxgeHmkaik7u8uIqqVMpHhl4FUmMn/00tgT77D5gGabp80OULoykdGVvqpFiFwp+ejF0XEsb3Qtj5ke0rWUqbqWMqBr0Sq3i11DpHH/TBwBjcLlUT8EeFyZqnApfYULB5obAGF3LwOgHx69gzSSHyDihwCtK1MVLmXg9SXC5FwxaXCZYxjjj65uRnIDi7ghQPLKVJlL6ctcBMFFv5QYDXaFY8TU0cAjbghQvjJV6VL6Shc0P9fGCMIFrnh56J0+o7pBRNwQIIBlqtKlDLy9xLCc4YyQhGO+lGrqSSEjbgjQwTJV6VL6ShfJZQ4EsVIwqjQNPZt/VDeoiBsC5LBMFbqUvtBFEZYrICAkZ/ZBw1NHQ4QrhoQuZarQpfSFLkrKHJMCE/Y+u32HycRuiHDHkNClTBW6lL7QRTOe29sEjABYpcvEkwIiPDKkcylTdS6lr3MxROeaAUUXUAUs9DKbUd0QoZEhnUuZqnMpfZ2L0SZXVAMyJ4VM8vF9SCO5IcIiQzqXMlXnUvo6F4ooYd9fQoUEdEPw3ZCj+iFCI0NKlzJV6VL6ShdKlcUKXF0qKimXbGo/RHhkSOtSpmpdSl/rQkHpnGrDjNRSa/a4KnIkP0SIZEjsUqaKXUpf7EKZsTuyNCImtZtwpl5tQ4RJhtQuZarapQy8w0RQgXBBJVcKONFTp8kIkwypXcpUtUsZeIWJFMRuYpbIJBUV8Pi95ZH8EKGSIblLmSp3KQOvMFFG5VJIoRkuvHG1NbUfIlwypHcpU/UuZeAVJkagH7i2L+9ALsUf39Q+jh9YhEyGBC9lquCl9AUvQBnNtdISI0FSSaZ2Q4RMhgQvZargpfQFL4AxkEsqNKKmAPOo7GckL0S4ZEjvUqbqXUpf7wICdA7MKKueB0MmnxQRLhkSvJSpgpfSF7yAfTWi3dLOJUFeOfUFahahkiHBS5kqeCl9wQvOA7t7F4RU1L4FjU284GYRKhlSvJSpipfSV7wwkCKnyB2Iu1IvYOppEaGSIclLmSp5KX3JCxP2/p19z5XBJbehE68sWIRKhiQvZarkpfQlLwzX2Dk1WlOgxCCTnPh+JotQyZDmpUzVvJS+5oUDlbkGLohkyB+mXmCxCJMMaV7KVM1L6Wte7KMKcwwFrRUXT0mGx3EDjxDJkOSlTJW8lL7kBVcTJLcvVbaP59Jm6stQPEIkQ4qXMlXxUvqKF8G5sO/CU5po+8LxiZdXPMIkQ4KXMlXwUvqCF/uy9VwozUAxJBAwcYrkESIZ0ruUqXqX0te7SC50zjA1Gm3ZpJj4/hWPEMmQ3qVM1buUvt5FEcYQMZE6EGGMfFwVOJIbIjwypHcpU/Uupa93UVKYnArLnrhik9/N5BEaGZK7lKlyl3Lgq1dGNTxCHEP6ljJV31IOfPXKqIZHmGJI0FKmClrKga9eGdXwCDcMKVjKVAVLOfDVK2MaLiJsMCRZKVMlK+XAV6+ManiE/4VEKmWqSKVMEqmMZHiE8YVEKmWqSKVMEqmMZHiE44VEKmWqSKVMEqmMZHiE1YVEKmWqSKVMEqmMZHiEx4VEKmWqSKVMEqmMZHiEuYVEKmWqSKVMEqmMZHiEuYVEKmWqSKVMEql8SMO/vF9d7hbr1ZH55917ZjpbH35Wu8K2C/a9b57hV0+bfdU01thde317s36ToZnV5W7f5fb32XJb+W6IvoFmOXtbbWoXtEewwm/X86p/dLGqXu7eLqtsd7O4fLWqttsXJ1h33V1Sf/lqMZ9XK2z1nTxZdNqmRz1Z+J68TvTk9bt58nHV06fnybKbgI96svQ9eZPoyZv38WRoao7qSbRztcX+Opvs39fV+rq62Mx+/v9QSwcIFINcg/QeAABd/gAAUEsBAhQAFAAIAAgA912QP0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAD3XZA/FINcg/QeAABd/gAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIwfAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1272" height="632"  version="4.0" ggbBase64="UEsDBBQACAAIAPddkD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAD3XZA/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1d3XLktpW+Tqr2HVhabyrZ1XCAg3+vJimLjGOn7CSV8SZbudhUS01JnWl1K92tGY0rV3u3D7J3+1R5kj0Am2SzAQnE/JATu2x3iw0COAcH5/tA4iPPfvFwu8xeV5vtYr16cUJzcpJVq8v1fLG6fnFyv7t6pk9+8fMfn11X6+vqYjPLrtab29nuxQm3JRfzFydzydRczOHZHOYXzzi9qp4ZAPlMzGYEQM/MjFYnWfawXXy+Wv9mdltt72aX1cvLm+p29s36crZzDd/sdnefP3/+5s2bvGkqX2+un19fX+QP2/lJht1cbV+c7L98jtX1TnrDXHEghD7/z2+/qat/tlhtd7PVJbZvTbhf/PzHPzp7s1jN12+yN4v57gYNBq1PsptqcX2DRilpTrLnttQdeuSuutwtXldbPPfgT2f07vbuxBWbrezvP6q/ZcvWnpNsvni9mFebFyckl5orDZJoaYQUACfZerOoVrt9Wbpv83lT29nrRfWmrtZ+cy1iodeL7eJiWWHrm3s0abG62qA7X5xczZZb/Hu7e7usLmab9kDXG4a/Lr7Holpj47UHsEpCTu1/Ev/jhNS9OGiSn2S79XrpqiTZ3/6WAQGSndoPWn8AfkhZ/0TqY4TVH1B/8PpD1GV4fTqvi/K6DK/LcJZgYf17ZyBtDGRaDDcQDlrcN/EuTqW26uM2QYTbpPKJRmuznmiztZOKgzaxKfev+89rkT1l5nGLjzo2oUHJRzHx7HkzTc72YZptb2zZffDsqtutDVxmMmFs/NFMYJBKheEmMmrwQ0GGYZlRkXGBf1KdSfupMqbwB56xTGe2HGWZi1Kh8X9cucpkJrAye1Th5MgoNsQzwTLqgptnGNKZmyA4WYBhCSEygSfZ5inYKpjMuMS/mM449tHODUWxIMMT8W9sHjJGM2ZPpioDmUlbH+V2zkltu45VQiZJJqmtEKcXTq16WmF5nTFrjdy7a7G6u9/1XHR5O2++7tZ37VhgacxFXcarc1MvIf7obDm7qJYIEi/tSGbZ69nSzgjX0NV6tcuaQYT62PVmdnezuNy+rHY7PGub/WX2evbNbFc9fImlt03bruzlerX93Wa9K9bL+9vVNssu10vS9nm9pAffoe01/sEOfuCHP4iDH+TBdxVsd42/ZPfbCttfb7ZN8dl8/rUt0aUG9ORvV8u355tq9upuveibcfbc4c1ZdX+5XMwXs9UfMFhtK9YvWQM/Lh836CMpbzqy3sxfvt1iBGcPf6o2a/SjMbmRiKscp4XhjOMce1v/JDTNQQhGDeXaMIUJcHs5s3OPspwBUYIrKo2mFOxJ+99ITiRnkipM5qCkQGSqG69et2M0e6ha8683dmrvTbd/fL09Xy+7Q84Bxexud79x1AGz48aa9cXqelm5IHH5FnH58tXF+uFlHR2sruu7t3e2S3UHLq6d4zNMDmgWFth/XtSfroztWVuKuDLElSBNuC3m7e/UgCvhPi/qT1cK47fu2t5S2phJSdPMYutSGjnpTRwX/Bbk71eL3TfNH7vF5au9pbQu/5v724uqDaF+lfQDVXn2/CjEzrZ3GJHz7U1V7YJB5zCyCTqhVd0xPOmqqJbLl4dFFelKwt5rB9XXM7TxUEOp6H6QttXSJoz1KstuXl5u1sulK/b64Pulq8B93Vhf6P3AzN6u720OQYO/RMJ5v5ydH4CFPfwrN1B7NMG/v6prPe9AzB79Q/DoOba1rTa/Q7q17FVa2/MVmlf1Tvg91u8OZm02WC7Xb15iQlzMlr+cL3brrnfup+8Qkb5b3LXTp/rrPf76e/xYbKp5L+0c+hP9/6Uj2NmeaH87w7xMTsnpxSkVp5enz4AwIzT/nJ3K05l//PTqlH1OTwV1P3wOpwD1N/pEeThlsinP99/YYR2s+Ubbb1w09UJbr61ItKdD8+2gAD04LNpjdN8msibedfLqlNoKWVPeGPsNbNuqrY00vzZ1YH/annHTHiNNC9L+yvAL5T1/UNcea89m7dl4jqvbNqxbO3lrXdsFY7vFsbxyh/ALk31ziHVv7wg209bEVGtM2wnadULtOxEaQ2qt5W1R10081NRIbBj02qWHNZt98YNmdetD1hRTvKlVt7WyY/soC3iVtvVhLWzvGwygY0+0TTHvN9Z1qA0bTtvhpe2gtZEIrTuY10sMoOO22xqaurCr7pttvHUVBsDxidA2w49d3J2nYO+7pjjUgWijmXYB0M49F0E2lDj3GmwnCxUBXxM7sKEhgK6j6niSidZ6WccwPcgIj+cNVkeaLd6lDRdNNj9Ba2ovATSJg9igCMYKa4e1/dalFReFzjPM80wXvm3ScOHmetMeYm0HmPYc0fa5yyes7QVvpxOG2fGZbRpgbRhjKB0HHvU63U56F27WMmaOK29SEbTpidhIOq6qzU5dTurylAtBN1TtVGJdxnhijB/LN+Hj0OYhaFMMtJmF2FA7zvCqKdUlAAFeqS7pPNJul2OENzq8dUiXFhyeGOutFuh4O/epDE+i1p1u+koba90h2YSmN4BdJgDh9a1F6KYq2iQHUmOKjRwgx8OtxT60dTMljNwnLM2aI2J/uhDHoSjq4N/XVXcdfdE50UMq1cxsbfbVg/FqVYe1kn2ttAV9Q/Z1GL2vQ5iDM0wbt91IqMBIYGca61VbkZcqVZvMWqToxsE3r/FB6wIDjT+bNgxrIKElFIbvXSxJawg9+J3SYJYG5bnOgynTAJBW+66JltvQtgHwMKn5DbvRJn0K4WR7SN5Em8RZO2C9AtDloQ6q2jnesrL2kOigrVdNd04LPBoaE9tErWkzfN3J5DQEGqyNW3oQwZQEi9LOJ49ktq4Eg+MxCUUjtAEGXYCxRypvu6fb6GqP1OMNB9Gj6wlM25En9XR3k6UJ2C4WdBOfppke3XmSt/FJ6glvC4oW53sj3QWOMk18s8Pzzf58aDm2aImJbvivIfved6W6wKEtmjIPJ0MUhtQ5w3WFHnRFNTlO6camNscr1XSzhXPaBl+3iujKy31duqnLNLDZxaVh+0PQ1kDbdMW8PG34fph6YSzhIO11dUO3Bmir1I0RLh/wetHvLfLPXlUbXM/uL2TtFqv79f22vi53sNic44r1Fv+sf9iv6Gf2Gs1/rBa7+ui8ut5UzeWKpbsXU18lcb+Sw2tU3mFX1Zeb9e3Xq9ffbRbXRx04e9708mx7uVnc2etM2cVyffmqWxRn88V2drHsrZLdtTlcSdeXE3aLnb0i8suHu/WqQlNx1Vxtsz/OLm+2u/vb7Kd/Wqy2m+ryZnW/uv4ZLsjvdzd2ff7rPy52uwrrqRYrbGW2wzrcXZw3680r58nvqoddNrtYv8Zf/ukn/0zJvz/9/5Psolra6xauj9UDjsnW3khrruacU1z5P+AK/id/vV/v/v2LFTpzvcto/Wd90rK6RRuynbsEtsMOnByc7a4P3KzfZOuLv1SXu+5yeV3iYGCxwCMXxLLZ8u5m5q74+RfY7CXB6/3nxf5zX7692Lacva02vVF2zX+7nh+O/dnzvSlBTxRhT8AwTxQfyRMfwrIybBkbZln5CVv2BRxZtpxdV9lilf39v/9vmHVYww8mgr9gPW/YHLOd7b63/viXgd5gn/BY855138zur76vEBDQul/PbjbVaqCJ/NM18Vz1TPzlZreZXQ/MxOodzaKCfXzDinc3rHhXww7Hyxn5UVLruxtWvp9hQPhHnW19w9wMGzjBPsSATZNRe0at7m+rzeKy7XWTcP5c4yFWcb+vCETTx57Rvbtm3e21YZOPPmnEb6+uttUue3hx8gwreIsflAZt3B/dLu1Gn+x2Ue9euJ092P0K2NzFdr2831UvL5FOr7q9TnXXm7tlxI6BbczYz7f2pqi1OLtaPFTtHS7kr4vvkdXPesZ29y93N4vLVysMMneTdbe/neq+fLWYz6tV29nZCvm/Y9HIg+/q24p3VVXfkGxPvEPXuNu4B8w9eSjheCg5e9ehfDzdPD2UH2usKOwHC4z5YQwWOx4spt9vsEIpdKLB4vvB4kZ+6oPls5aGmB1kyMwHieNxPeeP59GkHOmcVddwsInh/mGxXMw2b/s/RGiKZwkMsaTwLOnSSFKK+HCWlJ4lbIglpWdJN8eS5s87W/Jk977Qx92jwQzwXnQjMQO865z6EO4w3gz6gbvDp6mU7AMdsn/NvjDZswyDZECk2xOPQz02ZwNuecdO08NOU2J7bYb12iOffLxeQ6/X1PaakmHd9ohWMNV/nG6zXrfBdXsQQtlTj7otx+s273WbuW4PgiN76lG31XjdFr1uc9ftQdhjTz3q9hPY86G7LXvdFq7bfFi35XG3zXjdVr1uS9dtMazbysNSMl6/da/fyvVbDuu3zwHoeP02vX5r1281rN8eWFMYrd/QQ0nqYJIOw0nwcJKOB5TQA0pwQEmHISV4SEnHg0roQSU4qIRhUAkeVNLxsBJ6WAkOK2EYVoKHlXQ8sIQeWIIDSxgGluCBJR0PLaGHluDQEoahJXhoSceDS+jBJTi4hGFwCR5c0vHwEnp4CQ4vYRhegoeXMB5eQg8vweElDMNL8PASxsNL6OElOLyEYXgJ/uJ2PLxkPbwEh5cwDC+Zh5cwHl6yHl4yh5cwDC+Zf1tjPLxkPbxkDi/ZMLxkHl6GLyN+nH738JI5vGTD8JJ5eAnj4SXr4SVzeMmG4SXzL9uOh5esh5fM4SUbhpfMw0sYDy9ZDy+Zw0s2DC+Zh5cwHl6yHl4yh5dsGF4yDy/ZeHjJenjJHF6yYXjJPLxk4+El6+Elc3jJhuEl8/CSjYeXvIeXzOElG4aX3L8OOx5e8h5ecoeXbBhecg8v2Xh4yXt4yR1e8mF4yT28ZOPhJe/hJXd4yYfhJfdv/46Hl7yHl9zhJR+Gl9y/pTYeXvIeXnKHl3wYXnIPL5+6Ffih+93DS+7wkg/DS+7hJRsPL3kPL7nDSz4ML7mHl3w8vOQ9vOQOL/kwvOQeXvLx8JL38JI7vOTD8JJ7eMnHw0vRw0vu8JIPw0vh4WV8s8GH63cPL4XDSz4ML4V/53I8vBQ9vBQOL8UwvBT+HrHx8FL08FI4vBTD8FJ4eMnHw0vRw0vh8FIMw0vhb6YZDy9FDy+Fw0sxDC+Fh5d8PLwUPbwUDi/FMLwUHl7y8fBS9PBSOLwUw/BSeHgpPhZePtmRRmXhbwuW+f5ZMePvChb1pmB18OOTWxfJfuui3c6RuHWx2blo2IgbF60nPsjWxSa/HozikK2LgX0h+h3G8ePskmtt8ZHrk9rc/B5B525Bu83Nknz6YTdstLyY0rl5n9H6wLub32e0ZLO7WfwjJonCSxLDdgX7BGzqTcGeIcM2BT8emZ/AnuBX/mVmEkxz/wi7YA/Nvlzf3s5W82zlHkpqdd9Xi2o5d+bWD8qcEWt+bcP9rjniSmJBWle4r8bz466tsHFJd+KHJS1Pq9I60kLrJMEg6Fnyfp51KeVVNf9Vta7nwN5xy2p1vbvZg3h96HJ25xpwx2pJ8Z/pAC7RrDFfDaIQ/mVYEuSvE5GI5Q91Wj1t9u0P1exh2WT5aDaBd80mAX39exHOwdkEaoJI5CjpZJmUTmAA62jSyXIQ2RiaTj4a3RgWYLePBhh71wALPLLgvTjy4ADTNVwZMUqA3SYFGBvABpsAux1EAtMC7CPQwH6AfX11FFmfnfPs7//zvxm6dUbtn/aS0k9p9m/ZZ+cse57hcuRn//XTL7R92g60w3MQiLOnA/DYITP/djvJOTn4hyUCQoKx55/Vxlqtk7X2/LPW2vPP+tYem3mu0+w89/dDDDA0ygbff8BbH5infWACPjCJPvD3VnDIqVYwreVuLf6E6ZQEbKck0fiAUk6KnAthwMg6AsTEfqARP9CQHyILJN8P/o4PQ3JGpGGgKWhC6MRugIgbIOSGCLPz3eBfVqQyt++PIRw4J2ryaGARN7CQGyL8w3eDf3mHi5waxgXHgJBSsan9wCN+4CE/8FQ/BO7XYXaQUhKjpSa6eXr/ZG4QETeIkBtEqhu823+CqFwZzZjBfynVSTcIPoIbZMQNMuQGmeoG726iQKTE/Cjte0E4VYELh6N6QUW8oEJeUKle8O9NKpPjUtQoRihhnE2NFBHeSEPEkaYyR1+qKanOhWGEK6oE4ZJP7IYIdaQh7khTyaOv/MTcmEuhmOJMg+Fm4gwJERoJIRoJqTTSF5IiU8iFtq//0ZwYQyZm0xBhkRBikZDKIn1dqhIsF5JKIY3RVKmJgQIiLBJCLBJSWaQvc0X6mGvCNDdScSLY1JMiwiIhxCIhlUX6qlktTC4YEZRygaTBTEwiIUIiIUQiIZVE+iJcQ1VulBZIHHCFRaeeExEOCSEOCakc0pf0Gm0vtVDKiH2jGpk8Q0Y4JIQ4JKRyyIBCmNg9gBJRQhpcYFKYelJEWCSEWCSkskhfcUxxGZGDNASnBQWp6dTxEKGREKKRkEojfQUzpYbnDKeF4AJXWHzqlTZEeCSEeCSk8khfEU0Bl9oCuACpKK4rJl5VsAiPZCEeyVJ5pC+wpkwCTguCUSFAMU2n9kOESLIQkWSpRNIXbCNjQAplmNZKCQyLia/LswiRZCEiyVKJpK//pgIJtbZX4IACCCTVE/shwiRZiEmyVCbp68l/M/vNxIZHuCMLcUeWyh19Qfr0hkfoIgvRRZZKF31F+/SGRwgiCxFElkoQfUn89IZHGCELMUKWygh9Tf30hkcoIAtRQJZKAX1R/vSGRzgfC3E+lsr5fFX/5IbzCMvjIZbHU1me/1iA6Q2P0DoeonU8ldb5zxWY3vAIkeMhIsdTiZz/YILpDY8wNx5ibjyVuflPNpje8Ahz4yHmxlOZm/9ohOkNjzA3HmJuPJW5+c9WmN7wCHPjIebGU5mb/3CG6Q2PMDceYm48lbn5T3eY3vAIc+Mh5sZTmZv/eIjpDY8wNx5ibjyVufnPl5jccBFhbiLE3EQqc/MfUDG94RHmJkLMTaQyN/8JF9MbHmFuIsTcRCpz8x+RMb3hEeYmQsxNpDI3/xkb0xseYW4ixNxEKnPzH9IxveER5iZCzE2kMjf/KR/TGx5hbiLE3EQqc/MfEzK94RHmJkLMTaQyN/85I1MZXhyJPorO7iIi+igSaVsReAhm9OlYQTnZBzTbPG12gLUViaStCDxDk+c8cP9oTLsblcdjhodUHkWqyqMIqDyYyrkwgT0Go1pPI9YHuFuRqu0oAtoOQXIjlJB6r3IK7FUd1Q8Q8UOAyhWp4o7CF3cwyXNjhFYkpHYa1QMs4oEApytSdR2Fr+tgyuQCQ4EIwUO7+Ef1AY/4IEDvilRNR+FrOpjhuVJGYE7AQBAQ2GExqhtExA0BslekajoKX9PBKckxEBQVFKjQMPWMkBE3BKhfkarpKHxNBweJOYEJzhRIzgUP7NUd1Q8q4ocAEyxSVR2Fr+rg9hGWioFGDwhBWETx+9HdECGGIVVHkarqKHxVB5c010wCldruwArtxhvVDRGiGFJ1FKmqjsJXdXBt1aBGSoEpghHOJ/YDRHhjSNZRpMo6Cl/WwQ3iJQBBlDCMUjlxcoAIgQzJOopUWUfhyzoERTcQMIyDJprTiZMDRPhjSNZRpMo6Cl/WITjJQVtBgxRW6jOxFyIcMqTqKFJVHYWv6hA2RRrES6aoRuYwsRciLDIk6ihSRR2FL+oQmudMEcq1lFLr0AbVUd0QYZEhVUeRquoofFWHtMpgzo1A4GRChPanjuqGCIsMqTqKVFVH4as6pH1BiWVOoIymZGoyDRESGRJ1FKmijsIXdUihcsak4WCwJZBTuyFCIkOajiJV01H4mg6pWS6RNQGxUnFQE19ugQiJDEk6ilRJR+FLOhSuMI0SkikuME/yid3AIhwyJOkoUiUdhS/pUMzknHIprTwa15mPPm90JDdEOGRI0VGkKjoKX9GhpMaFNgVuuMQ8KSam0izCIUOKjiJV0VH4ig6FKwoliDaGcwkg5cRuiJDIkKCjSBV0FL6gQzOKvIHYCy/AkUpPHQ0RFhmSdxSp8o7Cl3doKXJCiVCAqyrCpr4kyyIsMiT2KFLFHoUv9sDZkEtKjL1JwaWe+v4Ei7DIkPSjSJV+FL70A2eDvTrPkUhrXFeoqSdFhEWGhCBFqhCk8IUgRjGcFAYEI0QjiZx4nc0iLDIkCylSZSGFLwuhhNLccOTRjIIWZuIVJouwyJBIpEgViRS+SASzIyB/UhLckzTY1NfgeIRGhjQjRapmpPA1I5geeY48moEhVGg99eKKR3hkSEJSpEpICl9CQinTuaXSBDAoBNCJGRSPEMmQoqRIVZQUvqKEUl1Lgw3+jwkNU/shwiRDApMiVWBS+AITiukxp8ooKanhdHI3RJhkSG5SpMpNCl9uYh/amXOQRkikktpMfFebR5hkSHxSpIpPCl98QhlGg+ScMEGpEHLq9RWPUMmQFqVI1aIUvhYFkyTPDTHK2FsVNPjspVH9EOGSIWlKkSpNKXxpCsVQyN1TlzTTuMBQU8+LCJkMKVWKVKVK4StVKDcqN1Tj2sJQCUxOvNLkETYZEq4UqcKVwheuYE5QucbkoBgTgCxq4vwgImwypGMpUnUsha9jwRhAc7gWmoBWwadxjeqGCJkMqVqKVFVLMVDVMqrhEfYYUrUUqaqWYqCqZVTDI3QxpGopUlUtxUBVy6iGRwhiSNVSpKpaioGqllENj1DCkKqlSFW1FANVLaMaHuGAIVVLkapqKQaqWkY1PEL6QqqWIlXVUgxUtYxgeHmkaik7u8uIqqVMpHhl4FUmMn/00tgT77D5gGabp80OULoykdGVvqpFiFwp+ejF0XEsb3Qtj5ke0rWUqbqWMqBr0Sq3i11DpHH/TBwBjcLlUT8EeFyZqnApfYULB5obAGF3LwOgHx69gzSSHyDihwCtK1MVLmXg9SXC5FwxaXCZYxjjj65uRnIDi7ghQPLKVJlL6ctcBMFFv5QYDXaFY8TU0cAjbghQvjJV6VL6Shc0P9fGCMIFrnh56J0+o7pBRNwQIIBlqtKlDLy9xLCc4YyQhGO+lGrqSSEjbgjQwTJV6VL6ShfJZQ4EsVIwqjQNPZt/VDeoiBsC5LBMFbqUvtBFEZYrICAkZ/ZBw1NHQ4QrhoQuZarQpfSFLkrKHJMCE/Y+u32HycRuiHDHkNClTBW6lL7QRTOe29sEjABYpcvEkwIiPDKkcylTdS6lr3MxROeaAUUXUAUs9DKbUd0QoZEhnUuZqnMpfZ2L0SZXVAMyJ4VM8vF9SCO5IcIiQzqXMlXnUvo6F4ooYd9fQoUEdEPw3ZCj+iFCI0NKlzJV6VL6ShdKlcUKXF0qKimXbGo/RHhkSOtSpmpdSl/rQkHpnGrDjNRSa/a4KnIkP0SIZEjsUqaKXUpf7EKZsTuyNCImtZtwpl5tQ4RJhtQuZarapQy8w0RQgXBBJVcKONFTp8kIkwypXcpUtUsZeIWJFMRuYpbIJBUV8Pi95ZH8EKGSIblLmSp3KQOvMFFG5VJIoRkuvHG1NbUfIlwypHcpU/UuZeAVJkagH7i2L+9ALsUf39Q+jh9YhEyGBC9lquCl9AUvQBnNtdISI0FSSaZ2Q4RMhgQvZargpfQFL4AxkEsqNKKmAPOo7GckL0S4ZEjvUqbqXUpf7wICdA7MKKueB0MmnxQRLhkSvJSpgpfSF7yAfTWi3dLOJUFeOfUFahahkiHBS5kqeCl9wQvOA7t7F4RU1L4FjU284GYRKhlSvJSpipfSV7wwkCKnyB2Iu1IvYOppEaGSIclLmSp5KX3JCxP2/p19z5XBJbehE68sWIRKhiQvZarkpfQlLwzX2Dk1WlOgxCCTnPh+JotQyZDmpUzVvJS+5oUDlbkGLohkyB+mXmCxCJMMaV7KVM1L6Wte7KMKcwwFrRUXT0mGx3EDjxDJkOSlTJW8lL7kBVcTJLcvVbaP59Jm6stQPEIkQ4qXMlXxUvqKF8G5sO/CU5po+8LxiZdXPMIkQ4KXMlXwUvqCF/uy9VwozUAxJBAwcYrkESIZ0ruUqXqX0te7SC50zjA1Gm3ZpJj4/hWPEMmQ3qVM1buUvt5FEcYQMZE6EGGMfFwVOJIbIjwypHcpU/Uupa93UVKYnArLnrhik9/N5BEaGZK7lKlyl3Lgq1dGNTxCHEP6ljJV31IOfPXKqIZHmGJI0FKmClrKga9eGdXwCDcMKVjKVAVLOfDVK2MaLiJsMCRZKVMlK+XAV6+ManiE/4VEKmWqSKVMEqmMZHiE8YVEKmWqSKVMEqmMZHiE44VEKmWqSKVMEqmMZHiE1YVEKmWqSKVMEqmMZHiEx4VEKmWqSKVMEqmMZHiEuYVEKmWqSKVMEqmMZHiEuYVEKmWqSKVMEql8SMO/vF9d7hbr1ZH55917ZjpbH35Wu8K2C/a9b57hV0+bfdU01thde317s36ToZnV5W7f5fb32XJb+W6IvoFmOXtbbWoXtEewwm/X86p/dLGqXu7eLqtsd7O4fLWqttsXJ1h33V1Sf/lqMZ9XK2z1nTxZdNqmRz1Z+J68TvTk9bt58nHV06fnybKbgI96svQ9eZPoyZv38WRoao7qSbRztcX+Opvs39fV+rq62Mx+/v9QSwcIFINcg/QeAABd/gAAUEsBAhQAFAAIAAgA912QP0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAD3XZA/FINcg/QeAABd/gAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIwfAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
==Weiterführende Problemstellung==
 +
 +
Teste mit dem GeoGebra Aplett verschiedene Werte, Laufzeiten und Prozentsätze für die Geldanlagen.
 +
Gibt es Besonderheiten, welche dir bei den Graphen auffallen?
  
 
==Verfasser==
 
==Verfasser==
 
{{Autoren|Janina Wittenstein und Thomas Müller}}
 
{{Autoren|Janina Wittenstein und Thomas Müller}}

Version vom 16. Dezember 2011, 12:31 Uhr

Inhaltsverzeichnis

Problemstellung

Onkel Dagobert sieht in einer Zeitung folgenden Artikel:

Großer Wettbewerb:

Kann Gustav Gans es in 15 Jahren schaffen der reichste Bürger Entenhausens zu werden?

Es heißt, Onkel Dagobert habe nur 1.000.000€ in seinem Speicher und er vermehrt es zur Zeit nicht mehr. Gustav Gans behauptet in einem Interview: „In 15 Jahren habe ich 1.006.440€ auf meinem Konto und bin damit reicher als Dagobert Duck!“ […] Wird Dagobert Duck es schaffen, der reichste Bürger Entenhausens zu bleiben?

Er bekommt von seinen „Sponsoren“ unterschiedlich viel Geld geschenkt plus Angebote für eine Anlage über 5Jahre. Welche der Anlagen kann er wählen, um nach den 5Jahren genug Geld zusammen zu haben, um der reichste Bürger Entenhausens zu bleiben?

Bank 1: Anlage von 3000€ über 15 Jahre zu einem Zinssatz von 5,9%

Bank 2: Anlage von 3500€ über 15 Jahre zu einem Zinssatz von 5%

Bank 3: Anlage von 4000€ über 15 Jahre zu einem Zinssatz von 2,7%


Löse grafisch oder rechnerisch und überprüfe deine Ergebnisse mit dem gestellten GeoGebra Aplett!

GeoGebra-Datei

Weiterführende Problemstellung

Teste mit dem GeoGebra Aplett verschiedene Werte, Laufzeiten und Prozentsätze für die Geldanlagen. Gibt es Besonderheiten, welche dir bei den Graphen auffallen?

Verfasser

Team.gif
Entstanden unter Mitwirkung von:

Janina Wittenstein und Thomas Müller