Extremwertaufgaben: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
K (Problemstellung: typo)
(Visualisiserung zur Überprüfung der Ergebnisse)
Zeile 51: Zeile 51:
  
 
==Visualisiserung zur Überprüfung der Ergebnisse==
 
==Visualisiserung zur Überprüfung der Ergebnisse==
Bewege den roten Punkt, um die Größe der Schachtel zu verändern. <ggb_applet width="1008" height="601"  version="4.0" ggbBase64="UEsDBBQACAAIAKOpP0AAAAAAAAAAAAAAAAAvAAAAOTdkNmNkYjkxYTJlMWUzOTg2NDZlYmY3ZDk3ZDEzMjFcc2NoYWNodGVsMS5wbmfVWWlYklu7fkFySE2L1Nzk0N6ptd1qgzszFShTt1lamWmZSpmaqeE8I5h9mpZZWpqRodtME+csJzRNc06chxBxHnJEQBQEDvXtc77z4/vqXNc513XO4ccNF2u9D/d7r/t53mctYs9amklv/WkrAADS5n+cPA8AIsKPoFFxsPAt7WiaLwAoppifPH4h+PMi9eozvOkb3LnCNslnrODfR07LT+iQqxOSgkVP/u5gozv+nNBidwI3mmV/ghYBAgzb9YgAIIsEALA4gARAgLiqMDAEUMUBAEQWwAHgfzF4G8SUBkY7hHNUcd/AEfJwvzEwaklgbUcKr9vxT+BfxeqXUEVoSQJ5m5IrwkFZ5Dc4DLoetx2wW/FD/OO7fwbfZ/7PifyY0l8RIA+/C98T6B/KfB9+oDNo73fhByslrvp9+H4EJCDxXfiBW8B/fBd+4LfvLPn/wLr/ePH/HHJC1GDvcfgThfMK6zNN9NsRm6VXQ5wf6dWB0XfX61xijSXB4p/eDEcGML2dQq6nXUrulkspRdm+SI1z/LAZfQmVqVHjblF2s9tXOT83WatkIcxBKJs2PLpf5fzhFL151V7/cCfPibXdn6ocP6zcCp8yLbyyP3V5aIR/a+hnc6tr3haAT+F2BpE2ZdKG917tuFRy2/kad7bFq7HooiLwE3WWZfS0RMJDwc9tu/275pLlAKEj7ObzSgbFLeboN24pSsrcVZDKuO7W+TETydXJDsosI3lksxs4WeFvw84s/VpsVDZlLou8MgLHo/tHQapTefB3JCcFPc6yjt1g4706ycZzJTKMFOktSl7pyfHK2MTFmG2EN1x4YmlxeoZtCGlJnvKzaAREVu8eodaetdL1yirSvQ1mcMjp4LbegN+PlqKqNK8x0wmhteQQiQmZ0PLYXL3QEVYj/Ze0kWuY5b7azx4hMG2uowISfDe2zGMznrOao8eOIMe/HZ0nIK6St9lpHRR9zPHCkwaebuw4HzTRHf9C99cdYSrPw0Suq9hPy2hqoetdaPNCL/ks5T8L8jkGhYrEJK+Dy/Z2Nh8vDkAahj15cEWgrsR9gz/K7HxklkuZleMuEJsMi7NcNWZObdPUiq35+5J8mZ9hZRLg8za7z4l1DPnF5H5I8h9wlHUqSLSsRjU9pcYTj4TalCxro8fErpY0Vl9L6Fk9cmWtWluYv0osxriqAyLPkC9Vd+5ealLAlHlonVLG9WusREzITF2SxhXTI6Ge1BeX88MkDddQT7ickXsy8PNtFO8hdqXQhJs3K+c215Keh9ZG9rjPxch1EIj2UemudTfhGfiVOA/2dCy13FWuwbJwpn+uY0fh4xqKDqLcxT6w9e933hUUWbJhmKWivk9QcKo+6OqzhNixLW1Vdu89Aw8erEkSw8nPEdLMVOzQrKbk2MUu5l+0H9YRvtQ9HhC7Pdbkydnom+15Hh7ngp0p9gRyls+XM9UWFhpbVMSsdO73hHVNHzIbsCcXu4wX+Y41l0kcADUkrboxWn5Fr9AO338YtAPDBqUX1DWOpxSx1ltoR1tVrpo74Dd6LKzRfQyLG8AfQn03egJ8Suj+zuiNDIO4M8pnTqGleL38uX3pqynegXoFg7OsMh0BR6q46UsVt67xmJ07OC8UuQN00oefRx/5req9AzuEmQpFGX2qXth4dS0zRuVNmO+UfJM8FCWUwKifesuyK1yvuBUIXQI6bZy2XkZlF9gV2XgsK/81RZFf8dHgjd8akVPLmuS/rtk/zuNqCGAoalX3mQda6rXCWp6IiMaqE4qXoobReqCL8GMrORJFJljnMXXjtm/j3YigYOfkTRLbBcRcAKV/pke6SQPS/I7gtiV/vPM9oSx7ccqvWfUNn9rwb2sDVPoxwYLHop31HLcDuGNrOZTd9qdxEqqg6+tmAl2xznqN2lMx4r5OH2bMPPS3J/f5t1kGEP6KwiTjz2CnlC60wZtXmKD0VqUDLLXwiKIXMhEp8SEBC7Z6x949BaBI8Gxk8ubg9YuCSS3voYxNPq+HbZ1l+24qJevKG6yl3Nm+mixsgaK1CZCBPaRQ/iVTKoEAaBqeca25U0jBfpQoYmy5UIyl5mC/0XqJZVo1Mh48/0kFAXr3YfTzWKb65g2HCVMV3l7/LnhgdkXANx3nVAgCd8dz6rVfLB+761z1ACksERhRyNdohgGm7APkqdDPZEZ/GaLd8P4FpfYzuL6PLt0WgyFPXTRqp6E5CzEPUowm8F+5/yFY54exoXiASJGEOn7gGzOHN0JvZlqpnZ235Woj3p0uyPUUFWYXx23p6JMQRRtWS2Yl3qIsf26D9+eNXSXMl/2HQUequshY+RwGQzuIAzzkbxcq4jC8yCfbYoBKT2BWWr12h3ze9AV9zGphaF81DMMZjvDds9SLyKpq3UprFJK4W6C5bKLdq40HNBVfBtMkinJ9mruJHNhpnAMFqV4rJTQuk2yjcDPV7FFu4YtUgAjTPABKPtZ4js2o4ZgJxFX7I2h44DAokAhShaLmiC+npy+q137VUzjAfhEU+GKx5OsIkWlVB3TyjZd0hvKFpGiEsT7BKyjqVuQ+HKRTRAx3c1t4phmOWPArRmQhTaPWchick41tPcJpv2/lnTHiB86bkkdyzACfAVD6/SFmdX27je0TGxXgEOgIqWmn1Enl6jvxU1UzELt+2O8l0kvMuQ8vtLr1X8UB44mg9I1z6QoxA/dEca0RYfVo1GYlH4ZyixBZqIGi9i/31IYRJ8e/dIRVfc1qL5HZBvxqg9x0rAc9ur4ZzJuQvxtAKzCg/7KiRwDw6PQJE82q8kpfYX6oC4lTdh1dSwudSVC2l6FtDEgRU1gJEkWVfHOMBIH80AiK8nL7cFjav3TrLV0RV/BpoZagC96/dcArHA7lObIpDPXaZL50EVUMf8wkv6KrCTaLUhu+Idr+zUNWF+BMPGYn6ZpddQF2UzzcQTBZc8eKS20nRkTFK1+WZKeC7BfMRlkJwHgIaGcozcn7Qh/iiWQgRpCHV1x0+1AHOSWZ7mG18S1xdyDVmnIWNGYRufIjIZ8hdtQUTrIRLc8ImhhcRqZAHn7LOUjnW9BOQ5m3TghbqmAI6CxsxR/TMhgrWjC10umu+sekw6iuJjQc23sG+5b02I+9bF+CVR5Itk2T6FFPTamur5erivsqZWi3yNQCFx5aumz05gl/5SYvfb2Fq6AX32870kOBDLJi33HsbGfkDwqFDHYE5J7HHLPyMkEIRgIiBi9v9hpI62IUSb7UZ4CmfUMYpPMaFPU1FyQdBb0joj6jXcSmvFDTfQWVIj2HeNahxmgoSqstuPRu0NO1rwEhD/ekPwty5UDsQkrS2glQso3RvpqKTeJpnJzgRQssvEqbZOZlODl8r7Xqw2zVRf338n8vTOI5k/mX/AApxJfeupccPVtioaFeCmL17EC4rkHAL3B3sOf8njDwbMNyzOMtnS0yVanf8hgkl6aZqw1kJlB8Wy4KYO6xEkUfIHY8nZNGN8GeHlZpYZfqMAjm3r/Z2orNB2TwvxIsx4Ck3+vPF9RHJZAWxD8WfjlOTzMj814/si4kXe2DY8AL9m06fWKEn9+8in4gql4r7FBskU8UbOua4EGGl+Z3p63P/TksAzyJWHCffly+sOi29ZZUOcN0H6HAXNDtutbUck1ysIT4tUSSjEFy1NiyFaju33oCrZuIrRJFVK9ULii9awuRd8qhpzLtUBEqSQQ5FUXYoF1qJvUY10EGGwp8Y3T4QkWYnsVB7pvSz3iwFa1P/WsWxIHrpl/EcHERjLd0g9NUjedxpSPY9lYrqycv0UsuZ29stw984sI2ExpllyF7RuBoy/r4pTazjNcR/vFsLX1ieo3M3GXStRdJQVrP3XYhkRudrqzBcteuTfVlRsuXuNheCsTuFBalxAkn2n4d5uk5hag3GnPPyLuUqm9PSgeRUM71cHMCbheF/ZPVUTV0XJSY0uWM3x+dZ80WBhX06uT8jhk4LsyypYdIHRmderfqFj1MY+TbmcyK7G2xIU4u+o4rL7fADCZnlDlmhKpF4+x6TbX8z8YyF/jHp5xSCZ8NHD8/FjMftDFNiIZDtHDlxiJe1bbktA1O3Pj8YWllwo5tVhOYp1Ojz72pt7OUWFbVdx54LFlLyttpSkCTq52e4klKHVuCcl4M2SRTVbY8BH5m+L5daSC17iDrTP8tlh66UWhfVCo5UpFyNphqVHGLYao9MGhpZEBp++j175dcyxJvrRp/fXn8fn3XWzpj3ORKKSo1Zr005SGGnibsJudz3ShyUuYXVOwDFfTd46sd1bSsbgPXWjK4+fVBaykB+FPOvKN4eOyatl3LcaN5tZdOQRpadmvZ+fKKd3Ps13lTHSEdUazu1b3iqsnKUhxGeRq2/nNlpgf/hAMVUaXRZU84keR0IjBNTcuug1130Yit7li0G/1+9WevsB3C9NsmUR1K4cMP5a0zLArKgpkBbeAZyouwmD3/d7Z3pHvvI8IF7+a5Ce/zCJoDCflRAHgfneEskOIuTmSz/OY4IawFjhjoDrHbGY3J2+0Is1ysC7ihVu2IcEBr2ouBII+I3U1POjfejv3KmTpV6nvxEsKeXICVRR7dC+M/tYd1MCjOUv1tdbtOUyjN/ceBurGDGwwfn6DQWeoDQrF+XPXp0M2+0j3RdOFvCZ/Jx4E9OLBbftrWUKLzjWCvdUMT78U5gk00ylMJIrs7wXVBSaGQJztj4+HMZUnnlzctWXQUiVWdpm0tCZBFej/V1YlzDVubcdj28hcPZ/9PRqubt+KmRqudwVJfNzruzRM2ZBJrmNz8WRbZpNmguIaKqfAHtwtpZWCjb7qikvdtkoNURj+WlfCvtD6m8zJSAjkwIwNCFodN4HPFsHD2+iem6/SV6GXl8FKJmk2BdR+pnZ9UHLHt4tnpNR4nG/vbRIqtc6AUqIGhfSrh2vTkDO6E0wFBeC/GJ3FjxorNd90Uh7870qih2/jeWdDksUtgFGXtp90FOxERkR6PZYfRnUgr3vo6bwR7CwhRoi3DNdxIhUtmqrgDgP9N8dk2xDo74b0yJopWzhEgwnxW4AdrEKVHGsfHTZTuj1xX5e/PG9NPUbCfaBNsfU4TLFttq58KNtYSRiskNC5WlQmUvJTeXBdXfaEL+AcP6e1E6lg6GmCL6JuUenahzkcPMVx0//DAx4T4C56IoM3XTeq1D971ZgsEG5FHyrqWBetkY+kE8/w3gpeFhLT4cyWYsv5aMs2K6XugfZ8s+G4TkxwruUrFylfAEST/EX32Jh9tILKRxTt8qHSVhc4kyAyFSI9pqFxqnTDlMr3pLa8myAcXbxED1giJrMMVftKeNF7ki/oBdylxUIPBsSAN/MoNk9GX2w0iMbykhIRlJz4zIZv4HIDpx7x/zjkW3B6ZNDQMMffcI1gnNkPI01DL+MtXSgU78wnvFmG0Y2M8OYjssh7gH15OqXkm9XzuNhu6WQkxGCgs1Hb0EMWZokGygi8+JMkPWH16zMTGruH9W5NzIwSvLyMcKEGrzibROFmkYSYWbFbV2aUbOvC2GXKurVohk7aoeMmeXnixCRH+CH480bdVctmiK+uym2C/PQIDRfklVYGF/Cn6G9bbMjx4o68RuqMjfvV1xYU5Zi8iJqFZW4xN6hCnK7DnOTOBA0PYZwNWH4HO5j8KgRMAvReUPuHMHXPY/HNg2dpJ0lJw5cMK0PmaMnd/+LJ6xCFJbEpOLna6Zmynfe69NcI0K6kGY2aLo7UhAXonXx/er8Ykjya0Og0gBA5/jmXt4pj6rOvijY4n+tXMO+R28LJDeKVncJ9Sjoqr3iJ6gz2Z0U31ex5hz/xkB4vS6H5kPeMCRVFn2D0WAV1867KIgjQAtt9HBCk0jNB/q7AVAt/hxhH36Z9I7sAsM21hByfb7fbeuVBECNgzjZcdxvM/g1NbiFXFBRP5+lzNc01OgAFW1ksRiMuPbyEnymOAfYa9vjMSRULuwgZfNNlz0vqTsLg0iEzyRO3W9TL6Fwmzn3eVXxprPnWX0J6o8Uel2FFLnT4TrhUX6LwNRX2dCxXFbXsQUFzVokao7U8FYLAj+MoTBGVga/LljuRnXzug3Ptfb/QlmtZ1/DdeFDCewWNwBpU/EYahgyegKOcJ1zG/lmaZNlEr18N6ar+RPjrNxytaC9W0V32FphWDVBlOwhtG+YM9F+41aUTojy5jd8B7s1UeT3g4//rkT8SMrv8hSX7/SQYaVSo4ZNbF7+HCdm1QgnyDu9jvhY5xBm6MKlQ0CeqIxnNY/iaDkO8jmX44f2elCX1koFpjyU1B0NdG12KxGU2O9e2QwfNcqxnO68EaET+XiC3KoAZnrgb/7WPrMkcJqZt3IlIrhX3UpGlFl9N9Gt+hbxkREX6d2rXMtthYp0/9/om/UocgK60HDK5ABjfJBy8sIzDz2de50ezFQiuvVUlQgzVHw78Hv66/13tqY4Yg7B92FaPXCM1Ztiqz6zPn+PyYR04MqTvzFTG7j87fEiy/ligqzqp0Fey3Q3hR9I758Rj1ozLC1J626jgTFAXqW4WJJnk4T+IP/UJT5K6iXd+/Ir3tdaZNK1Ys+15/sB8O+B8glDbzk6ojOO+Wl+p5M4XxPFVcJ9x97jAzPIpAsiTpxv9G7e+pPmpugiii0xBUbPk6uxPO2xg1FiXTu8jeMkxy6vZHFmuEdpZfySVLTxqdXfVIRbix06D7ei8cPuIlgszGoq8KVBoteWOEM/cSoHewscJN8pttHbHWUFRdfKWwIpdGWLYL0ig1Aj51TKZlq8r/r4PGkgLQf+uM9f/7Qev/9gH7CkkYwC7+PyJ2VgixvG0m8ofNWpCUKoDDj8hd/k9CjqYhYNfl/st/luCs+WKNj/keVAFKEhC+zE0sTxacQN3+N1BLBwipmq/PKhQAANAZAABQSwMEFAAIAAgApKk/QAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAKSpP0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuPGEX22v2IKDykpESHMBTdHsosipd1NrS2Xtdk4t0qB5IiEBQI0AErUlj/HX+CHfID9Y+mZAUCQA2pJSevVRmCVhFvPpU93n+kZEMTRV4tphK55moVJfGxg0zIQj4fJKIzHx8Y8v+x4xldffn405smYD9IAXSbpNMiPDSYkw9GxcTm8HI6wBYJswDrMc0jHp8TrYHLpuEPPCRzbNxBaZOEXcfJNMOXZLBjyi+GET4PXyTDIZcOTPJ99cXh4c3Njlk2ZSTo+HI8H5iIbGQi6GWfHRrHzBVS3UuiGSnFiWfjw+69fq+o7YZzlQTzkBhIqzMMvP//s6CaMR8kNuglH+QQUtggz0ISH4wko5VLPQIdCagaIzPgwD695BmVrh1LpfDozpFgQi+ufqT0UVfoYaBRehyOeHhuWSX3btlwPE9tASRryOC+ksGpNK41XijMPM2bTjcWPDstuHF2H/Eb1R+zJroJ6eZJEg0DUhX76CRGLWOhAbLDaENg4jrpkqXMWVRuiNkxtbCXDVHGmRJmSYUqGUQNdh1k4iDiglM4B+jC+TMHs4ClBlMFxlt9GXHanOFHT+wBUysJ3XBgG/EvZ6tiwXXqAiX/gWNYBExcOV3UktUaLSndolR7QqlXPX7YKXTgQf8RubhU7D9O1apX5tKYr8w4ItQ9saNluavUhjS6btGxd0U3w0rvwVX1YtqmOV3y5wNauW1Qot1FHh+3QoI7sti0eHZbxclSECMomQrbANefTTAQN9ZHtC9/HyIYAcVxwdRthHzYuQRASCNuI2XCIPeSIrYuoCxcYoshDQg5TJCPE9uAfc2VlDrKhMnHWhcBEGBpiyKYIy8BiCMIJyeCEQCUUJGwb2VBINI+JqII6iDlwRD3EoI8iLl0MghQKwjE0TxDFiIrC2EXEQY6oDzMR744nug5VEuRYyMGiQghtCGsV0iDvISq0cQq4wng2z1cgGk5H5W6ezCpbgDSQ0pIzFUmtUOpnR1Ew4BEMMxfCkghdB5HwT9nQZRLnqDQiUefGaTCbhMPsguc5lMrQD8F18DrI+eIMpLOybSk7TOLs2zTJe0k0n8YZQsMksqo+JxGu7ZOq13BAaxdY/YJdu+DU9t3GdhO4guYZh/aTNCvFg9HolZBYBiogeR5HtycpD65mSbiqxtGhHLGO+HwYhaMwiN+Cs4pWBC6oHMBkIJfjl+3RsiNJOrq4zcCD0eIfPE0AR8ZMYLLqQ8Cqt+oSo7bpEOaXH8ESw0DEnm2ZVu2DIS5vi0vMN/3ah7i2appfVxYKFnyp7DiV2cLy4FV2kkTLU1L/XjDL56nMPaATqdCqG48jLn1E8jwM7MOrQbK4UM5BVV1vbmdwZKkeDMYSdwTcQGxAZ1xsB2orZUTXKilLylhSwiq9LRxV17FPpITcDtRWSoH7qq4VquJSTWyVzYSZZDTLKOKmZCvh/CJNmMdh/ro8yMPhVaEqVgW+mU8HfOlCQqAfqqSmyNZmSRaKmOpCU4XYatP4d29aYAAJTJZ/L9IX25D7f6/tv5nwPJDHMNL5nuva8J/4nqf8fs3j9QgQtK26h+RuIlzjUI8N4cnbxAb1TApdsHzCmEch21jGhu0QoWrh9ISYPoGaPEwtFzObLOPBWokuiJUN4aDQbKOhNooUHjn453D67x3dcoOrr9R7DvX++su9aq57snT5wpOr/R09OZsB1Y+yCed5I5vLrFfzWCh02eNRdFEXdWuSpPT+ZfVq6CvRLsrQO+VwJcecu+TIUu7O+uhSDt8lxyo5x9bkvkuqaUylbQFLxiORTiQxQpOLYZpEkdT1urY/lK0cGx3QLRWO0Sl6EgW3yVzkGGD3M5jSzqPgpJZMitMvpO8W2SYcv1T1niyTXHH2bePZE2gs4+m3MC+LVipVar8E7fhKAVBTnURVthBFyc0FJExhEJ2OwjxZ9k5eegMZ65twVjEK/3EOV7+DTZjy0UoeoXnd0RVPoWdFygLsNE/mmcrAatnMCNqewqG6UAAXCAL6KwSSOjvi45SXYRjJebuiAHnVqjOudlpWdZYm01fx9Rtgt7UOHB2WvTzKhmk4EySKBpDmXy3VEzEYwCxhRV+RYwEmyjXyMBchfg7FQReOLvKUh8PJJIneZcNJMJzkPAJE5/lEAPyXIA7jAP0tzHMOlfAwhiYgxwTCEONQxKcw+0a55Nd4PuVpOKxo5q1cEQAd5oWazDYLTYWFUTL4Adx1fRgujvh1lfyC3AYuBsPPJpJtll4shsAaprLWr5MRXzMaKC/hAJ1mivBmnKuYz4vRAs2gOjnY1ExQqCxRnU6DeIRiOQn7Lrg1llOCAJLrPesAWfvQR0iu92y5r9SZ56VIpOosatIATaHOEpbI2Aq3rQGztgSs7rEZWqii6BbIWGzf1auqRrscpiVXMc8ySY0VnGLnZTga8biyA/8xVkUyNfCE01kUDsO8QioSBngV5zAMKWrTo/KK85kY4M/jN2kQZ2I9TsmUo9Zmo30rkoo1s0WalV7cbSWZmVRmeKHbaWXs3WCmMhN5sKG28Gzc5Nl1ExPT9W1pZKswMi67IZWVw259eqrOrvFZHXa+AMbNxJJqiUMXQnwxE3itwnj4Hny774uDZa5Sx1csoIzVZqA2D4+E3wOmoIBpsdfdbwJnnXODdc5VndyNR+/u0qDoko86KNimT4P1PjkmsR7Up7shSPT2qFOmSP8HA8+6SSBDOi9scr632EfHYvXtj2iB/oSwZ6FDuUdlBrsG3eU8lqS6nBlsxV7bYCQJrUKJ2I/OYo0w3WcU2jw8vIGEjGsDRFcN6efaOBH8B989Uoi+Ld0UpB8L7EcZ2D3TYphZlo9d7Nqu40lqwwW1dbDDTM/CjGJMXAsTm94BOK3GGnurcR+ctxr372afYeHpb8HNF+Dlt/Bnl61BoiuIQHf04kJVxwehgh2Rv1e+FIJDXkOPkzRDaGGJZl3LxZbjehh7js1cMSJtOP/OKuy5AP/tNJbEG0ri2uAGkZmGC9S1ioGvi8sdUuT4qEuhASJWt7qsvGjXMLor79ue6d8m0QOmGJ8SxR8bk8rvD9FeAE4/2CofmOj5gO0zMK9NPYYdzyaPmhucFL3c6yz2XuwfoMn+jundydNJ7zrL/E4H7cNke70Cvs4LGLHF/LGDdwWw9yQB7OAPliH3S5cDj4PYIPv3Qa3/dFDDJvXdD47a6RpqbF9kiwdoZ+ROnxJyGJIU26PVZyWDeXwQzzaAeLt3sg+To52xPPsEsPwQRLiadb+V6c1a0t1TSXdfS7rnd6fcKleqAJzfb3Vm88Tm3gAzE/tkdfXgQStptSXlIqcaBmnOszCIi3woh2O54KWctncPK/SVFXqaFa53ssL1k7FC56OboX8PM5wqM5xpZrjZyQw3DzEDhvnfo68pW+v0gj+CRU7vYZEzZZFTzSLvdrLIuydnkc6TMMnZ3fNCmG+NlyCdhNFILa1chtCCsprvjpzhaODjgHDMqe85zOGDS3cEFzAl+F/VvS9szuKx6kYYnwTDq3GazMH667cdan2M5X1yqW2Rvm8UweWyt8wXNoqRQuykYS67K1Uu/QHv6g8fZir7hi/yUsE//DhP8j+fpUmcBxH06SQCJ0LB/BKNwuZ7k6pEw2JmDtUaq208InY7x1LNqsVkCCKo/gUxGV+OKZbSqu/IuE49oXo/jGwFxuBYbSELDeBPHQynBWIN6acGGfvII/N64O/1QI/+PgQL3Q4QvALI+RKQvfO9YH+/hsqvv+yAy5NYql3zKMjFMcbUpa7l2pQSpjwK24TWv4hI/d1ciq4gOKgh6IMZgv37ORb9yCOb5linoMeZcCzyfli6q171+ref4zHfjoe6DZ7zu681v2fNblW7E6DcfEvtTp6+dr1V7V7+9t/Jlsr1nr5y/VXl3orvUvF4O/X6T1+90zU2h9ToMvrt5+G2Fjx9cireuVbfJeuL9Z/896Wg5HwRRmGQ3m7+Ts7dqJxoqPgtKkZPQwW3qBh9DZVP/yuHjwDLqe4sfusuQLi0JdwGwtVQcU372aPS01DBJnn2qPQ1VFrCFYSrO4tL2iAyuqwl3AbC1VBxTEb8Z49LT8MFm+zZo9LXUGkpV1Cu7iyO1YaRIF27Jd0G0m1AxSHtEN3TcMGm8+xR6WuotKQrSFd3FpuY1G3DqOu0pNtAui0qTZSroYJN79mj0tdQaSlXUK7uLMxtcTG6bkstDYSrocLaZSijp6FCWl8x+rqvtCEEhKvBghltg8joei3hNhCuhgozLR8/e1x6Gi6kvX1m9HVvaYMIKFeDBTNsUqdd/O/6Lek2kK6GCjXbNSijp8FC2vtnRl9DpeVcwbkaLJgtf7fnGQPTxVbLuQ2cq8NCTea0OV1PB4a0d9CMvg5Ly7uCd3VcMPVNv/pN3+cLTRfjlnmbmFeDhZoEt5ldTweGtDfSgHk1WFrmlcyr4SJT3jaSgHnbR9EamVeDhbawAO+2sDTybvs0WjPv6o+jsfZxNMG67fNojayrwQJpHW7nRz0dGNreVAPebR9Ka+Zd/ak0RkzstVOkLm4fTGtkXg0WYjrMffbA9HRgaHtrDZi3fTatmXn1h9MYNV2rvS3Qxe3TaY3Mq8HSPj8ueFeDhbb31oB328fTmnlXfz4NgHkOcbT6m8XVC/TWfrb4XP1ssXgVEQrIsbEn3tjAfOJT6jOPuLZ4NToxKXGIeMUvI9ixqP4aw5eq9e1ekPfyQT+l+aHe41ZXWv2Mpqb3o/zU/WH9XZzieMwT+ZLQL/8HUEsHCCPZwg7vDQAAeYQAAFBLAQIUABQACAAIAKOpP0Cpmq/PKhQAANAZAAAvAAAAAAAAAAAAAAAAAAAAAAA5N2Q2Y2RiOTFhMmUxZTM5ODY0NmViZjdkOTdkMTMyMVxzY2hhY2h0ZWwxLnBuZ1BLAQIUABQACAAIAKSpP0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAIcUAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgApKk/QCPZwg7vDQAAeYQAAAwAAAAAAAAAAAAAAAAA5RQAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADANsAAAAOIwAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
Bewege den roten Punkt, um die Größe der Schachtel zu verändern. <ggb_applet width="1280" height="639"  version="4.0" ggbBase64="UEsDBBQACAAIAEqzP0AAAAAAAAAAAAAAAAAvAAAAOTdkNmNkYjkxYTJlMWUzOTg2NDZlYmY3ZDk3ZDEzMjFcc2NoYWNodGVsMS5wbmfVWWlYklu7fkFySE2L1Nzk0N6ptd1qgzszFShTt1lamWmZSpmaqeE8I5h9mpZZWpqRodtME+csJzRNc06chxBxHnJEQBQEDvXtc77z4/vqXNc513XO4ccNF2u9D/d7r/t53mctYs9amklv/WkrAADS5n+cPA8AIsKPoFFxsPAt7WiaLwAoppifPH4h+PMi9eozvOkb3LnCNslnrODfR07LT+iQqxOSgkVP/u5gozv+nNBidwI3mmV/ghYBAgzb9YgAIIsEALA4gARAgLiqMDAEUMUBAEQWwAHgfzF4G8SUBkY7hHNUcd/AEfJwvzEwaklgbUcKr9vxT+BfxeqXUEVoSQJ5m5IrwkFZ5Dc4DLoetx2wW/FD/OO7fwbfZ/7PifyY0l8RIA+/C98T6B/KfB9+oDNo73fhByslrvp9+H4EJCDxXfiBW8B/fBd+4LfvLPn/wLr/ePH/HHJC1GDvcfgThfMK6zNN9NsRm6VXQ5wf6dWB0XfX61xijSXB4p/eDEcGML2dQq6nXUrulkspRdm+SI1z/LAZfQmVqVHjblF2s9tXOT83WatkIcxBKJs2PLpf5fzhFL151V7/cCfPibXdn6ocP6zcCp8yLbyyP3V5aIR/a+hnc6tr3haAT+F2BpE2ZdKG917tuFRy2/kad7bFq7HooiLwE3WWZfS0RMJDwc9tu/275pLlAKEj7ObzSgbFLeboN24pSsrcVZDKuO7W+TETydXJDsosI3lksxs4WeFvw84s/VpsVDZlLou8MgLHo/tHQapTefB3JCcFPc6yjt1g4706ycZzJTKMFOktSl7pyfHK2MTFmG2EN1x4YmlxeoZtCGlJnvKzaAREVu8eodaetdL1yirSvQ1mcMjp4LbegN+PlqKqNK8x0wmhteQQiQmZ0PLYXL3QEVYj/Ze0kWuY5b7azx4hMG2uowISfDe2zGMznrOao8eOIMe/HZ0nIK6St9lpHRR9zPHCkwaebuw4HzTRHf9C99cdYSrPw0Suq9hPy2hqoetdaPNCL/ks5T8L8jkGhYrEJK+Dy/Z2Nh8vDkAahj15cEWgrsR9gz/K7HxklkuZleMuEJsMi7NcNWZObdPUiq35+5J8mZ9hZRLg8za7z4l1DPnF5H5I8h9wlHUqSLSsRjU9pcYTj4TalCxro8fErpY0Vl9L6Fk9cmWtWluYv0osxriqAyLPkC9Vd+5ealLAlHlonVLG9WusREzITF2SxhXTI6Ge1BeX88MkDddQT7ickXsy8PNtFO8hdqXQhJs3K+c215Keh9ZG9rjPxch1EIj2UemudTfhGfiVOA/2dCy13FWuwbJwpn+uY0fh4xqKDqLcxT6w9e933hUUWbJhmKWivk9QcKo+6OqzhNixLW1Vdu89Aw8erEkSw8nPEdLMVOzQrKbk2MUu5l+0H9YRvtQ9HhC7Pdbkydnom+15Hh7ngp0p9gRyls+XM9UWFhpbVMSsdO73hHVNHzIbsCcXu4wX+Y41l0kcADUkrboxWn5Fr9AO338YtAPDBqUX1DWOpxSx1ltoR1tVrpo74Dd6LKzRfQyLG8AfQn03egJ8Suj+zuiNDIO4M8pnTqGleL38uX3pqynegXoFg7OsMh0BR6q46UsVt67xmJ07OC8UuQN00oefRx/5req9AzuEmQpFGX2qXth4dS0zRuVNmO+UfJM8FCWUwKifesuyK1yvuBUIXQI6bZy2XkZlF9gV2XgsK/81RZFf8dHgjd8akVPLmuS/rtk/zuNqCGAoalX3mQda6rXCWp6IiMaqE4qXoobReqCL8GMrORJFJljnMXXjtm/j3YigYOfkTRLbBcRcAKV/pke6SQPS/I7gtiV/vPM9oSx7ccqvWfUNn9rwb2sDVPoxwYLHop31HLcDuGNrOZTd9qdxEqqg6+tmAl2xznqN2lMx4r5OH2bMPPS3J/f5t1kGEP6KwiTjz2CnlC60wZtXmKD0VqUDLLXwiKIXMhEp8SEBC7Z6x949BaBI8Gxk8ubg9YuCSS3voYxNPq+HbZ1l+24qJevKG6yl3Nm+mixsgaK1CZCBPaRQ/iVTKoEAaBqeca25U0jBfpQoYmy5UIyl5mC/0XqJZVo1Mh48/0kFAXr3YfTzWKb65g2HCVMV3l7/LnhgdkXANx3nVAgCd8dz6rVfLB+761z1ACksERhRyNdohgGm7APkqdDPZEZ/GaLd8P4FpfYzuL6PLt0WgyFPXTRqp6E5CzEPUowm8F+5/yFY54exoXiASJGEOn7gGzOHN0JvZlqpnZ235Woj3p0uyPUUFWYXx23p6JMQRRtWS2Yl3qIsf26D9+eNXSXMl/2HQUequshY+RwGQzuIAzzkbxcq4jC8yCfbYoBKT2BWWr12h3ze9AV9zGphaF81DMMZjvDds9SLyKpq3UprFJK4W6C5bKLdq40HNBVfBtMkinJ9mruJHNhpnAMFqV4rJTQuk2yjcDPV7FFu4YtUgAjTPABKPtZ4js2o4ZgJxFX7I2h44DAokAhShaLmiC+npy+q137VUzjAfhEU+GKx5OsIkWlVB3TyjZd0hvKFpGiEsT7BKyjqVuQ+HKRTRAx3c1t4phmOWPArRmQhTaPWchick41tPcJpv2/lnTHiB86bkkdyzACfAVD6/SFmdX27je0TGxXgEOgIqWmn1Enl6jvxU1UzELt+2O8l0kvMuQ8vtLr1X8UB44mg9I1z6QoxA/dEca0RYfVo1GYlH4ZyixBZqIGi9i/31IYRJ8e/dIRVfc1qL5HZBvxqg9x0rAc9ur4ZzJuQvxtAKzCg/7KiRwDw6PQJE82q8kpfYX6oC4lTdh1dSwudSVC2l6FtDEgRU1gJEkWVfHOMBIH80AiK8nL7cFjav3TrLV0RV/BpoZagC96/dcArHA7lObIpDPXaZL50EVUMf8wkv6KrCTaLUhu+Idr+zUNWF+BMPGYn6ZpddQF2UzzcQTBZc8eKS20nRkTFK1+WZKeC7BfMRlkJwHgIaGcozcn7Qh/iiWQgRpCHV1x0+1AHOSWZ7mG18S1xdyDVmnIWNGYRufIjIZ8hdtQUTrIRLc8ImhhcRqZAHn7LOUjnW9BOQ5m3TghbqmAI6CxsxR/TMhgrWjC10umu+sekw6iuJjQc23sG+5b02I+9bF+CVR5Itk2T6FFPTamur5erivsqZWi3yNQCFx5aumz05gl/5SYvfb2Fq6AX32870kOBDLJi33HsbGfkDwqFDHYE5J7HHLPyMkEIRgIiBi9v9hpI62IUSb7UZ4CmfUMYpPMaFPU1FyQdBb0joj6jXcSmvFDTfQWVIj2HeNahxmgoSqstuPRu0NO1rwEhD/ekPwty5UDsQkrS2glQso3RvpqKTeJpnJzgRQssvEqbZOZlODl8r7Xqw2zVRf338n8vTOI5k/mX/AApxJfeupccPVtioaFeCmL17EC4rkHAL3B3sOf8njDwbMNyzOMtnS0yVanf8hgkl6aZqw1kJlB8Wy4KYO6xEkUfIHY8nZNGN8GeHlZpYZfqMAjm3r/Z2orNB2TwvxIsx4Ck3+vPF9RHJZAWxD8WfjlOTzMj814/si4kXe2DY8AL9m06fWKEn9+8in4gql4r7FBskU8UbOua4EGGl+Z3p63P/TksAzyJWHCffly+sOi29ZZUOcN0H6HAXNDtutbUck1ysIT4tUSSjEFy1NiyFaju33oCrZuIrRJFVK9ULii9awuRd8qhpzLtUBEqSQQ5FUXYoF1qJvUY10EGGwp8Y3T4QkWYnsVB7pvSz3iwFa1P/WsWxIHrpl/EcHERjLd0g9NUjedxpSPY9lYrqycv0UsuZ29stw984sI2ExpllyF7RuBoy/r4pTazjNcR/vFsLX1ieo3M3GXStRdJQVrP3XYhkRudrqzBcteuTfVlRsuXuNheCsTuFBalxAkn2n4d5uk5hag3GnPPyLuUqm9PSgeRUM71cHMCbheF/ZPVUTV0XJSY0uWM3x+dZ80WBhX06uT8jhk4LsyypYdIHRmderfqFj1MY+TbmcyK7G2xIU4u+o4rL7fADCZnlDlmhKpF4+x6TbX8z8YyF/jHp5xSCZ8NHD8/FjMftDFNiIZDtHDlxiJe1bbktA1O3Pj8YWllwo5tVhOYp1Ojz72pt7OUWFbVdx54LFlLyttpSkCTq52e4klKHVuCcl4M2SRTVbY8BH5m+L5daSC17iDrTP8tlh66UWhfVCo5UpFyNphqVHGLYao9MGhpZEBp++j175dcyxJvrRp/fXn8fn3XWzpj3ORKKSo1Zr005SGGnibsJudz3ShyUuYXVOwDFfTd46sd1bSsbgPXWjK4+fVBaykB+FPOvKN4eOyatl3LcaN5tZdOQRpadmvZ+fKKd3Ps13lTHSEdUazu1b3iqsnKUhxGeRq2/nNlpgf/hAMVUaXRZU84keR0IjBNTcuug1130Yit7li0G/1+9WevsB3C9NsmUR1K4cMP5a0zLArKgpkBbeAZyouwmD3/d7Z3pHvvI8IF7+a5Ce/zCJoDCflRAHgfneEskOIuTmSz/OY4IawFjhjoDrHbGY3J2+0Is1ysC7ihVu2IcEBr2ouBII+I3U1POjfejv3KmTpV6nvxEsKeXICVRR7dC+M/tYd1MCjOUv1tdbtOUyjN/ceBurGDGwwfn6DQWeoDQrF+XPXp0M2+0j3RdOFvCZ/Jx4E9OLBbftrWUKLzjWCvdUMT78U5gk00ylMJIrs7wXVBSaGQJztj4+HMZUnnlzctWXQUiVWdpm0tCZBFej/V1YlzDVubcdj28hcPZ/9PRqubt+KmRqudwVJfNzruzRM2ZBJrmNz8WRbZpNmguIaKqfAHtwtpZWCjb7qikvdtkoNURj+WlfCvtD6m8zJSAjkwIwNCFodN4HPFsHD2+iem6/SV6GXl8FKJmk2BdR+pnZ9UHLHt4tnpNR4nG/vbRIqtc6AUqIGhfSrh2vTkDO6E0wFBeC/GJ3FjxorNd90Uh7870qih2/jeWdDksUtgFGXtp90FOxERkR6PZYfRnUgr3vo6bwR7CwhRoi3DNdxIhUtmqrgDgP9N8dk2xDo74b0yJopWzhEgwnxW4AdrEKVHGsfHTZTuj1xX5e/PG9NPUbCfaBNsfU4TLFttq58KNtYSRiskNC5WlQmUvJTeXBdXfaEL+AcP6e1E6lg6GmCL6JuUenahzkcPMVx0//DAx4T4C56IoM3XTeq1D971ZgsEG5FHyrqWBetkY+kE8/w3gpeFhLT4cyWYsv5aMs2K6XugfZ8s+G4TkxwruUrFylfAEST/EX32Jh9tILKRxTt8qHSVhc4kyAyFSI9pqFxqnTDlMr3pLa8myAcXbxED1giJrMMVftKeNF7ki/oBdylxUIPBsSAN/MoNk9GX2w0iMbykhIRlJz4zIZv4HIDpx7x/zjkW3B6ZNDQMMffcI1gnNkPI01DL+MtXSgU78wnvFmG0Y2M8OYjssh7gH15OqXkm9XzuNhu6WQkxGCgs1Hb0EMWZokGygi8+JMkPWH16zMTGruH9W5NzIwSvLyMcKEGrzibROFmkYSYWbFbV2aUbOvC2GXKurVohk7aoeMmeXnixCRH+CH480bdVctmiK+uym2C/PQIDRfklVYGF/Cn6G9bbMjx4o68RuqMjfvV1xYU5Zi8iJqFZW4xN6hCnK7DnOTOBA0PYZwNWH4HO5j8KgRMAvReUPuHMHXPY/HNg2dpJ0lJw5cMK0PmaMnd/+LJ6xCFJbEpOLna6Zmynfe69NcI0K6kGY2aLo7UhAXonXx/er8Ykjya0Og0gBA5/jmXt4pj6rOvijY4n+tXMO+R28LJDeKVncJ9Sjoqr3iJ6gz2Z0U31ex5hz/xkB4vS6H5kPeMCRVFn2D0WAV1867KIgjQAtt9HBCk0jNB/q7AVAt/hxhH36Z9I7sAsM21hByfb7fbeuVBECNgzjZcdxvM/g1NbiFXFBRP5+lzNc01OgAFW1ksRiMuPbyEnymOAfYa9vjMSRULuwgZfNNlz0vqTsLg0iEzyRO3W9TL6Fwmzn3eVXxprPnWX0J6o8Uel2FFLnT4TrhUX6LwNRX2dCxXFbXsQUFzVokao7U8FYLAj+MoTBGVga/LljuRnXzug3Ptfb/QlmtZ1/DdeFDCewWNwBpU/EYahgyegKOcJ1zG/lmaZNlEr18N6ar+RPjrNxytaC9W0V32FphWDVBlOwhtG+YM9F+41aUTojy5jd8B7s1UeT3g4//rkT8SMrv8hSX7/SQYaVSo4ZNbF7+HCdm1QgnyDu9jvhY5xBm6MKlQ0CeqIxnNY/iaDkO8jmX44f2elCX1koFpjyU1B0NdG12KxGU2O9e2QwfNcqxnO68EaET+XiC3KoAZnrgb/7WPrMkcJqZt3IlIrhX3UpGlFl9N9Gt+hbxkREX6d2rXMtthYp0/9/om/UocgK60HDK5ABjfJBy8sIzDz2de50ezFQiuvVUlQgzVHw78Hv66/13tqY4Yg7B92FaPXCM1Ztiqz6zPn+PyYR04MqTvzFTG7j87fEiy/ligqzqp0Fey3Q3hR9I758Rj1ozLC1J626jgTFAXqW4WJJnk4T+IP/UJT5K6iXd+/Ir3tdaZNK1Ys+15/sB8O+B8glDbzk6ojOO+Wl+p5M4XxPFVcJ9x97jAzPIpAsiTpxv9G7e+pPmpugiii0xBUbPk6uxPO2xg1FiXTu8jeMkxy6vZHFmuEdpZfySVLTxqdXfVIRbix06D7ei8cPuIlgszGoq8KVBoteWOEM/cSoHewscJN8pttHbHWUFRdfKWwIpdGWLYL0ig1Aj51TKZlq8r/r4PGkgLQf+uM9f/7Qev/9gH7CkkYwC7+PyJ2VgixvG0m8ofNWpCUKoDDj8hd/k9CjqYhYNfl/st/luCs+WKNj/keVAFKEhC+zE0sTxacQN3+N1BLBwipmq/PKhQAANAZAABQSwMEFAAIAAgASrM/QAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAEqzP0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuPGEX22v2IKDykpkUDMBTdHcooipd1NrVeu7Gbj3CoFgiMSFgjQAChRKn+Ov8AP+QD7x9IzA5AgB9SSuthyBFXtAiAG09Onu0/3DAjw6E/zSYyueJZHaXJsYNMyEE/CdBglo2NjVlwcesafvvz8aMTTER9kAbpIs0lQHBtMtIyGx8ZFeBEOsQUN2YAdMs8hhz4l3iEmF44bek7g2L6B0DyPvkjSd8GE59Mg5O/DMZ8Eb9MwKKTgcVFMv+h0rq+vzUqUmWajzmg0MOf50EAwzCQ/NsqdL6C7lYuuqWxOLAt3vvnqrer+MEryIkhCbiChwiz68vPPjq6jZJheo+toWIxBYeI7BhrzaDQGpVwXDjqi1RQQmfKwiK54DtfWDqXSxWRqyGZBIs5/pvZQvNDHQMPoKhry7NiwTGox16O+bTnYJbDjGijNIp4UZWNcCu1U3R1dRfxa9Sv2pEhmoCJN40EgukTff4+IRSx0IDZYbQhsHEedstRnFlUbojZMbWzVhqnLmWrKVBum2jBqoKsojwYxBxMHcQ4YRslFBvZbHOfFTczleMoPlurjA9Apj26hMfVgV4F+bNguPQDIDxzLOmCWpfSuKUkeJJUe0EoqITWpGKSJf8RuloprUotstqPQhaK+rYvcpCh2HiJzAa7nWTVwmXdAqH1gg0y7QSa9C101hqVMddwgEtt1kULSRoEO20HgZiU/JfGoU4XLURkhKB+LtiWuBZ/kImaoj2xfuD5GNsSH44Kn2wj7sHEJgohA2EbMhkPsIUdsXURdOMEQRR4S7TBFMkBsD/5jruzMQTZ0Jj51IS4RBkEM2RRhGVcMQTQhGZsQp4RCC9tGNlwkxGMiuqAOYg4cUQ8xGKMISxdDQwoXwjGIJ4hiRMXF2EXEQY7oDzMR7o4nhg5dEuRYyMGiQ4hsiGoV0dDeQ1RoU3FblExnxQpE4WRY7RbpdGELaA2ctKQ+xVErzPjZURwMeAzZ4r2wJEJXQSxiQgq6SJMCVUYk6rNRFkzHUZi/50UBV+Xo2+AqeBsUfH4GrfNKtmwbpkn+dZYWvTSeTZIcoTCNrcWY0xjX9sli1HBAaydY/YRdO+HU9t1GuSmcQbOcg/w0y6vmwXD4RrRYBiogeZ7ENycZDy6nabSqxlFHJp4jPgvjaBgFyUdwViFF4IKqPCTJo0pDDpBXOZA0G76/ycGD0fwfPEsBR8ZM4LHFHwGr3qhTjNqmQ5hf/QlmCgMRe7ZlWrU/DHF5U55ivunX/ohrK9H8amGhYM6Xyo4ymfSXB2/ykzRefiT17wXTYpbJEgIGkQmtusko5tJHJMtDfg4vB+n8vXIOqvr6cDOFI0uNYDCSuCPgBmIDOqNyO1Bb2UYMbdHKkm0s2cKqvC0aLs5jn8gWcjtQW9kK3FcNrVQVV2piqxIT5ZLRLKOMm4qthPOLbD9LouJtdVBE4WWpKlYXvJtNBnzpQqJBP1K1SVl0TdM8EjHVBVFls1XR+BcXLTCAMiYvvhFFjG3I/b/X9j+MeRHIY0g7vue6NvxPfM9Tfr/m8XoECNpWw0NyNxWu0dFiQya5bWKDEpPCECyfMOZRqDWWseFYUtXS6QkxfWJ7UJpQy8XMJrWAsFbCC4JlQzwoONtwqKWR0iUH/wwn/97RLzf4+kq/59DvTz/eq+e6K0tHKF15sb+jK1/yLOFxmSvAK2bpLFepr5ZGhjyMJnC4khMDYfi/ggLq0yEfZbxSP5bzHgW9PGvVXV37WHZ1lqWTN8nVB/CqtQEcdapRHuVhFk2F86IB1FeXfOmfoHsA5dmwfp1IbgBdKMowgLcQ0J7D5aALR++LjEfheJzGt3k4DsJxwWPIibNinIJP/TlIoiRAf4uKgkMnPEpABCR3MJQggJhPYNaDCunXyWzCsyhcmPejnFGBDrNSTWKbpabCqigdfAtlxzr/lUf8aoEwtNsQAyiIp2Np5TKo4+BGcE8NU9nrV+mwHAKukAblJRyg01Q52pRz5alFGaVoCt3JIK+ZoFRZojqZBMkQJbL6/UtwYyxrsQCqmj3rAFn7MEaoavZsua/UmRVVk1j1WfakAZpBnxUssbEVblsDZm0JWN1jczRXl6IbKEHE9rbe1YJlCqgHL2Him0sqXMApdl5HwyFPFnbg3yXqklwFfDSZxlEYFQukYmGAN0kB4c+l/+pRecn5VBDrefIhC5JcrGeoNhVbbDba14LM18wWa1Z6dbeVZEZYmOGVbqcVzttgpioDPNhQW3g2bvLsuomJibEtjWyVRsbVMKSyIqmtcKD6dI3P6rDz+TQDfxDDKnHoQojPpwKvVRg7n8C3+6k4WOaIOr5i5jpSm4HaPDwSfgmYghKm+V53vwmcdc4NNM6Vg9yNR+8e0qAcko8OUbDNmAbrY3JMz3vQmO6GINXlUYf+/ySedZMgyOalTc735vvoWCx7/B7N0R8QtizUkXtEOdsqdBezRJLqsiLbir22wUgS2gIlYj86izXCdJ8stDk9fICCjGsJoqtS+rmWJ4L/4LszhRjb0k2h9WOB/SiJ3RVzLSiWPdd2PGITV1IbLqntEGNm2g5xGJTSDFMX34E3XaQae6u0D767SPt3k09YOvpH8PI5OPkN/LMraVDnCh7Q/bw8sejjSZhgR+DvVS5F4I9XMOI0yxGaW0KsCxNey3E9jD3HZq5ISBs+v7VKc87BfQ8br8QbrsS13AaBmUVz1LXKvNfF1Q4pS3zUpSCAiFWFLqtO2jWM7ir7tif6j2n8gBnGb4nhj43xwu87aC8Apx9sVQ6M1wHCposhuqnjWtjH1LKdR60NTsph7h3O917tH6Dx/o7l3cnzKe8Ol/VdA2pPU+71SvwOX0HKFhPIQ7wrgr1nieAhfrISuV/5HLgcRAfZvw9q/eeDGiBku0+O2ukaamxflIsHaGfkTp8Vcp6Hib1SuDw+dGcboLvZO9mHOdHOCJ49UwStp2G91Rr7o6xm1krsniqx+1qJPbu7wFal0QK32f3WYjZPY+6NKzWxu3IXgq6sGzxoDa22mFyWU2GQFTyPgqQshQo4lktdym9797BIX1mkp1nkaieLXD0bixw+K5P072GSU2WSM80k1zuZ5PohJsE2ffyVZZiaEI9i16HE9yzP8RmzfwWbnN7DJmfKJqeaTW53ssnts7PJ8zDJ2d0TRJh4jZYgnUTxUC2xXEQgQVnNd4dOOBz4OCAcc+p7DnP44MIdwglMCf7X4h4YNqfJSA0jSk6C8HKUpTOw/vrth9oYE3mfUmpbVvEbm+Bq+RsKiNq3NTa2J2X7k4bZ7a4MunQMvKtjPM3k9gOfF5WCv/tulhZ/PMvSpAhiGNNJDN6EgtkFGkbNNyvVFQ2rmwV0a6zKeETsdg6qmlXLyRH1WP2rOjLQHNPCtbTkrtRcn4aRrcAYHKst1KcB/FMH4aRErKEw1SBjv3LCXmeAvR7o0d+HqKHbAYJXADlfArJ3vhfs79dQ+enHHXB5Fmu3ax6FTRtjTF3qWq5NKWHKo7BNaP0rYdTf3qW6q/C9/fmHZMS3C7huA0S/+DLrJ1arVrU7AW4pttTu5Plr11vV7vXP/x1vqVzv+SvXX1Xuo/hCKU+2U6///NU7XaMtqAEu4p9/CLe14OmzU/HOZeouWV+n/s1/UwiunM2jOAqym83fRrkblRMNFb9FxehpqOAWFaOvocLaEAIe1J3Fb90FCJe2hNtAuBoqrmm/eFR6GirYJC8elb6GSku4gnB1Z3FJG0RGl7WE20C4GiqOyYj/4nHpabhgk714VPoaKi3lCsrVncWx2jASpGu3pNtAug2oOKRN0T0NF2w6Lx6VvoZKS7qCdHVnsYlJ3TaMuk5Lug2k26LSRLkaKtj0XjwqfQ2VlnIF5erOwtwWF6PrttTSQLgaKqxdhjJ6Giqk9RWjr/tKG0JAuBosmNE2iIyu1xJuA+FqqDDT8vGLx6Wn4ULa22dGX/eWNoiAcjVYMMMmddrF/67fkm4D6WqoULNdgzJ6GiykvX9m9DVUWs4VnKvBgtnyjTUvGJgutlrObeBcHRZqMqet6Xo6MKS9g2b0dVha3hW8q+OCqW/65Df+qrZHYV7cMm8T82qwUJPgtrLr6cCQ9kYaMK8GS8u8knk1XGTJ20YSMG/7KFoj82qw0BYW4N0WlkbebZ9Ga+Zd/XE01j6OJli3fR6tkXU1WKCsw+38qKcDQ9ubasC77UNpzbyrP5XGiIm9dorUxe2DaY3Mq8FCTIe5Lx6Yng4MbW+tAfO2z6Y1M6/+cBqjpmu1twW6uH06rZF5NVja58cF72qw0PbeGvBu+3haM+/qz6cBMC8hjlbf0rv46bi1F/Weqxf1ih/hQQE5NvZgOkBty3UtbLke9i3mHCDfMz2HeC4lxCGUMar/gt9rJX6734Z7/aCXRj7F+97fBe/kOyLl9lZtZZNHe1m+eFkmXXmZ3aD2Dk4bdVCwf79Xk9Jf+SXJ2qtJT0GPM/FqUrIOS6f+C5zieMRT+dOgX/4PUEsHCFa4jKkpDQAAr4EAAFBLAQIUABQACAAIAEqzP0Cpmq/PKhQAANAZAAAvAAAAAAAAAAAAAAAAAAAAAAA5N2Q2Y2RiOTFhMmUxZTM5ODY0NmViZjdkOTdkMTMyMVxzY2hhY2h0ZWwxLnBuZ1BLAQIUABQACAAIAEqzP0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAIcUAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgASrM/QFa4jKkpDQAAr4EAAAwAAAAAAAAAAAAAAAAA5RQAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADANsAAABIIgAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
  
 
==Weiterführende Problemstellung==
 
==Weiterführende Problemstellung==

Version vom 31. Januar 2012, 22:27 Uhr

Inhaltsverzeichnis

Problemstellung

Der Goldfisch in Wermelskirchen möchte wiedereröffnen. Da es sich um einen Raucher-Club handeln soll, hat der neue Inhaber sich überlegt, Streichholzschachteln als Werbung zu nutzen. Den Großteil seines Geldes hat er bereits in die Sanierung gesteckt, deshalb will er die Streichholzschachteln von seinen Mitarbeitern basteln lassen und zwar mit möglichst wenig Materialverbrauch. In einem Großmarkt hat der Besitzer dementsprechend Pappe und Streichhölzer (4,5cm lang) gekauft.

Einer der Mitarbeiter kam gestern mit folgender Bastelanleitung zu mir:

(Siehe Aufgabenblatt)

Er fragte mich, wie er aus der Pappe möglichst viele Streichholzschachteln basteln könnte. Als Vorgabe hat er gesagt bekommen, dass das Volumen 45cm³ haben muss.

Könnt ihr ihm helfen, herauszufinden, welche Maße die Streichholzschachtel haben muss?

(Die Klebekanten [siehe gestrichelte Linien] werden für die Berechnung nicht weiter berücksichtigt.)

Falls du nicht weiterkommst: Hier findest du Hilfen

Hauptbedingung

 O=15a+20b+4ab

Nebenbedingung

 45=5ab

Zielfunktion

 O(a)=15a+180/a+36

Ableitung

 O'(a)=15+180/a^2

Notwendige Bedingung

 0=15+180/a^2

 a=3,46cm


Hinreichende Bedingung

 O''(3,46)>0 --> Tiefpunkt

Seitenlänge b und Oberfläche O

 b=2,6cm

 O=139,9cm^2

Randextrema

Sowohl fuer a gegen 0 als auch fuer a gegen unendlich, geht O(a) 
gegen unendlich --> 3,46 ist ein globales Minimum

Visualisiserung zur Überprüfung der Ergebnisse

Bewege den roten Punkt, um die Größe der Schachtel zu verändern.

Weiterführende Problemstellung

Bastel eine "optimale" Streichholzschachtel.

Überlege: Warum sind Streichholzschachteln in der Realität nicht "optimal"?

Verfasser

Team.gif
Entstanden unter Mitwirkung von:

Janina Wittenstein