Benutzer:MatheSchmidt: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Links)
(Links)
Zeile 31: Zeile 31:
 
Die folgende Linksammlung enthält Verweise auf fertige oder geplante Lernpfade:
 
Die folgende Linksammlung enthält Verweise auf fertige oder geplante Lernpfade:
 
*[[Benutzer:MatheSchmidt/Bremsweg|Bremsweg]]
 
*[[Benutzer:MatheSchmidt/Bremsweg|Bremsweg]]
*[[Benutzer:MatheSchmidt/Lernen|Lernen durch Lärmen]]
+
*[[http://wiki.zum.de/Hilfe:Textgestaltung|Hilfe zur Textgestaltung]]
  
 
<ggb_applet height="50" width="150" type="button" filename="bremsweg01.ggb" />
 
<ggb_applet height="50" width="150" type="button" filename="bremsweg01.ggb" />

Version vom 3. Juli 2008, 06:49 Uhr

Kurzinfo

Inhaltsverzeichnis

Zur Person:

Schmidti.gif
Reinhard Schmidt

Tätigkeit: Lehrer
Schule: Hollenberg-Gymnasium Waldbröl
Bundesland: Nordrhein-Westfalen
Fächer: Mathematik, Philosophie
Internet:
hirnwindungen.de
Das Wunderland der Geometrie und
matheschmidt.de
Arbeitsschwerpunkte: Mathematik-Olympiade, Zusammenarbeit von Schule und Hochschule, mathematik-digital.de

 

"Mathe zählt, weil Mathematik das Werkzeug ist, mit dem man sich die Welt zu eigen macht."

Links

Die folgende Linksammlung enthält Verweise auf fertige oder geplante Lernpfade:


Beschreibung
Es fehlt noch eine Beschreibung des Inhalts der Datei (Was zeigt die Datei?). Bitte diese Information noch nachtragen.
Quelle
Es fehlt noch die Quelle für die Datei (Woher hat der Uploader die Datei?). Bitte diese Information noch nachtragen.
Urheber bzw.
Nutzungsrechtinhaber
Es fehlt noch der Urheber bzw. der Nutzungsrechteinhaber für die Datei (Wer hat die Datei ursprünglich erstellt?). Bitte diese Information noch nachtragen.

Satz von Euler

Wenn a und m teilerfremde natürliche Zahlen sind, dann ist ohne jeden Zweifel a^{\varphi(m)}\equiv 1 \; \rm{mod} \; m.

Beweis. Es gibt genau \varphi(m) zu m teilerfremde Zahlen, die kleiner als m sind. Diese wollen wir mit r_1,r_2,...,r_{\varphi(m)} bezeichnen. Trivialerweise sind dann auch ar_1,ar_2,...,ar_{\varphi(m)} teilerfremd zu m; überdies sind die Zahlen ar_1,ar_2,...,ar_{\varphi(m)} paarweise inkongruent. Daher ist r_1\cdot r_2\cdot ...\cdot r_{\varphi(m)}\equiv ar_1\cdot ar_2\cdot ...\cdot ar_{\varphi(m)} \; \rm{mod} \; m, also r_1\cdot r_2\cdot ...\cdot r_{\varphi(m)}\equiv a^{\varphi(m)}\cdot r_1\cdot r_2\cdot ...\cdot r_{\varphi(m)} \; \rm{mod} \; m, also 1\equiv a^{\varphi(m)}1 \; \rm{mod} \; m, qed.

Quiz

1. Ist die folgende Aussage wahr?

7^6 \equiv 1 \; \rm{mod} \; 9
23^{10} \equiv 1 \; \rm{mod} \; 11
4^6 \equiv 1 \; \rm{mod} \; 8

Punkte: 0 / 0