Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale Änderungsrate

Aus ZUM-Unterrichten
Die druckbare Version wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.
Info

In diesem Abschnitt werden Sie sich die Grundvorstellung der Ableitung als momentane Änderungsrate selbst erarbeiten. Für die Bearbeitung sollten Sie mit den Begriffen mittlere Änderungsrate und Differenzenquotient vertraut sein. Falls Ihnen die Hilfestellungen zu den Aufgaben nicht genügen, steht Ihnen auf der Seite Vorwissen eine ausführlichere Zusammenfassung der benötigten Begriffe zur Verfügung.

Porsche 918 Spyder


Der Porsche 918 Spyder

Die folgende Tabelle zeigt den Beschleunigungsvorgang des Rennautos Porsche 918 Spyder in den ersten 9 Sekunden. Die Weg - Zeit - Kurve lässt sich in diesem Intervall annähernd durch die Funktion beschreiben.

Zeit (Sekunden) Strecke (Meter)
0 0
1 4,7
2 19,6
3 45,9
4 84,8
5 137,5
6 205,2
7 289,1
8 390,4
9 510,3

Mittlere Änderungsrate

Aufgabe 1.1

Überlegen Sie zunächst welcher physikalischen Größe eine mittlere Änderungsrate in diesem Zusammenhang zuzuordnen ist und wie man diese berechnet.

Die mittlere Änderungsrate gibt in diesem Zusammenhang die durchschnittliche Änderung des Weges pro Zeiteinheit an. Weitere Hilfe.
Die mittlere Änderungsrate gibt in diesem Zusammenhang die Durchschnittsgeschwindigkeit an und kann mit Hilfe des Differenzenquotienten berechnet werden.
Aufgabe 1.2 (ca. 15-20 min)

Bestimmen Sie mit welcher Durchschnittsgeschwindigkeit der Porsche in den folgenden Zeitintervallen gefahren ist.

a) zwischen Sekunde 1 und 2
b) zwischen Sekunde 2 und 3
c) zwischen Sekunde 3 und 4
Überprüfe deine Ergebnisse in diesem Applet mit Hilfe des geometrischen Zusammenhangs der mittleren Änderungsrate und der Sekantensteigung.



Momentane Änderungsrate

Aufgabe 3

Bestimmen Sie nun näherungsweise wie schnell der Porsche nach 3 Sekunden gefahren ist. Wählen Sie hierzu ein beliebiges Zeitintervall in dem die dritte Sekunde enthalten ist und verkleinern Sie dieses.
a) Verkleinern Sie das Intervall in folgender Tabelle mindestens 5 mal und halten Sie die Tabelle schriftlich fest.
zur Tabelle

GeoGebra

b) Führe die Verkleinerung des Zeitintervalls nun erneut in diesem Applet durch.
Beschreibe die Veränderung der Sekante und des Werts der Sekante bei dieser Verkleinerung und halte dies schriftlich fest.
c) Was sind die Eigenschaften dieser neu entstandenen Geraden?

Durch die beliebig gute Näherung von T1 und T2 zur Sekunde 3, lässt sich die neu entstandene Gerade als Gerade interpretieren, die nur noch den Berührpunkt am Graphen von hat. Diese Gerade nennt man Tangente.

Tangente
Die Gerade, die den Graphen von am Punkt berührt und die gleiche Steigung wie der Graph von in diesem Punkt hat, nennt man die Tangente von am Punkt .

d) Als was lässt sich in diesem Kontext die Steigung dieser Geraden interpretieren?

Die Steigung dieser Geraden lässt sich nun als die momentane Geschwindigkeit (momentane Änderungsrate) interpretieren.



Aufgabe 4

Nennen Sie die Vorgehensweise um einen möglichst exakten Wert für die momentane Änderungsrate zu erhalten. Zeigen Sie diese Vorgehensweise, indem Sie möglicht genau bestimmen wie schnell der Porsche nach 4 Sekunden fährt.

Nähert sich einer Zahl oder einem beliebig nahe, so schreibt man dies kurz mit:

Differentialquotient

Der Differenzenquotient kommt der momentanen Änderungsrate, also der Steigung im Punkt beliebig nahe, je näher gegen strebt.

Dieser Grenzwert des Differenzenquotienten ist der Differentialquotient .
Der Differentialquotient wird auch als Ableitung oder lokale Änderungsrate der Funktion an der Stelle bezeichnet.