Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Drei-Würfel-Problem und Integralrechnung/Vorüberlegungen: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Main>Dickesen
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
== Das „Drei-Würfel-Problem“ ==
{{Kasten_blau|Auf der ersten Seite hast Du gelernt, dass der zurückgelegte Weg in einem Diagramm, in dem die Geschwindigkeit gegen die Zeit aufgetragen ist, gleich dem Flächeninhalt zwischen dem Graphen und der x-Achse ist.}}  
 
<br><br>
Das „Drei-Würfel-Problem“ stammt von {{wpde|Chevalier_de_Mere|Chevalier de Méré}} (1607 - 1684), einem französischen Edelmann im Zeitalter des Barocks. Er  behauptete, dass die Augensummen 11 und 12 beim dreifachen Würfelwurf gleichwahrscheinlich sind.
{{Frage|Aber wie kann man diesen Flächeninhalt denn nun genau bestimmen bzw. berechnen?}}
 
<br>
[[Datei:Augensumme11.JPG|rechts|300px]]
<div align="center">
 
Dies ist die zentrale Frage des vorliegenden Lernpfades!
Für die Augensumme 11 gibt es nämlich sechs verschiedene Möglichkeiten:
 
<math>\left\{ 1,4,6 \right\}, \left\{ 1,5,5 \right\}, \left\{ 2,3,6 \right\}, \left\{ 2,4,5 \right\}, \left\{ 3,3,5 \right\}, \left\{ 3,4,4 \right\}</math>
 
Für die Augensumme 12 gibt es ebenfalls sechs verschiedene Möglichkeiten:
 
<math>\left\{ 1,5,6 \right\}, \left\{ 2,4,6 \right\}, \left\{ 2,5,5 \right\}, \left\{ 3,3,6 \right\}, \left\{ 3,4,5 \right\}, \left\{ 4,4,4 \right\}</math>  
 
 
In der Spielpraxis beobachtete er jedoch die Augensumme 11 häufiger als die Augensumme 12. Das stimmte mit seinen theoretischen Überlegungen, dass es für beide Augensummen gleich viele Möglichkeiten gäbe, aber nicht überein.
 
 
{{Box|Aufgabe 3.1|Welchen Fehler hatte ''Chevalier de Méré'' wohl gemacht? Kannst du den Irrtum aufklären?
 
Versuche die Aufgabe zuerst ohne Hilfen zu lösen!
 
Vielleicht kann dir diese Urnensimulation weiterhelfen:
 
[http://www.mathematik.uni-dortmund.de/didaktik/_personelles/papers/stoc_pro/Urne/JavaUrne.html Urnensimulation öffnen]
 
<div class="grid">
<div class="width-1-2">
{{Lösung versteckt|1=
:*Mit Hilfe einer Urnensimulation kannst du unter anderem auch diesen dreifachen Würfelwurf simulieren.
: Brauchst du einen Tipp? 6 Kugeln in der Urne; dreimaliges Ziehen mit Zurücklegen.
: Funktioniert die Java-Simulation bei dir nicht, baue dir doch einfach eine „Socken-Urne“: sechs unterscheidbare Gegenstände in einer Socke!
 
:*Führe dies <u>mit</u> und <u>ohne</u> Beachtung der Reihenfolge durch. Was fällt dir auf?
 
:*Denke nochmal an „Gustavs Glücksspiel“. Wenn er dir das Spiel mit zwei gleichartigen Würfeln angeboten hätte, hätten sich die Wahrscheinlichkeiten deshalb geändert?
 
:*Das Glücksspiel von Gustav war ein Laplace-Experiment. Ist das „Drei-Würfel-Problem“ von ''Chevalier de Méré'' auch eines?
 
:*Stell dir vor, die Würfel von ''de Méré'' wären unterscheidbar. Was ist nun für die Ergebnismenge wichtig?
 
:[[Datei:Augensumme11bunt.JPG|200px]]&nbsp;[[Datei:Augensumme11bunt2.JPG|200px]]
|2=Tipp anzeigen|3=Tipp ausblenden}}
</div>
</div>
<div class="width-1-2">
<br>
{{Lösung versteckt|1=
Um der Lösung näher zu kommen, fangen wir mit einfachen und sehr speziellen Graphen von Funktionen an und arbeiten uns ausgehend davon immer weiter hin zu schwierigeren und allgemeineren Graphen von Funktionen, damit wir am Ende eine Lösung für alle Eventualitäten in Händen halten!
:*Die angegebenen '''Ergebnisse''' von ''Chevalier de Méré'' sind <u>nicht</u> gleichwahrscheinlich! Also kann er gar nicht die Laplace-Wahrscheinlichkeiten der '''Ereignisse''' „Augensumme 11“ und „Augensumme 12“ mit der Behauptung der Gleichwahrscheinlichkeit berechnen.
<br>
 
{{Aufgaben-M|2|
:*Die Wahrscheinlichkeiten bei Gustavs Glücksspiel hätten sich nicht geändert, nur weil die Würfel gleichfarbig gewesen wären. Denke daran, dass zum Beispiel eine farbenblinde Person die andersfarbigen Würfel gar nicht unterscheiden könnte.
Bestimme die Flächeninhalte zwischen den Graphen und der x-Achse innerhalb der angegebenen Grenzen in nachfolgenden Diagrammen. <br>
 
Beschreibe dabei immer Deine Vorgehensweise!
:*Hätte sich denn die Wahrscheinlichkeit in Aufgabe 1.8 einen Pasch zu würfeln geändert wenn die Würfel gleichfarbig gewesen wären? Natürlich nicht...
}}
}}
|3=Arbeitsmethode}}
<br>
a) Konstante Funktion: &nbsp; <math>f(x)=5</math> &nbsp; in den Grenzen <math>x_1=2</math> und <math>x_2=6</math>
<br><br>
[[Bild:const_fkt.png|zentriert|500px]]
<br>
{{Lösung versteckt|{{Lösung|Flächeninhalt: <math>A = 20.</math> <br>
Die Fläche ist rechteckig, also berechnet sich der Flächeninhalt nach der Formel <math>A = </math>  Breite <math>\cdot</math> Höhe. <br>
Die Breite ist dabei durch die Grenzen <math>x_1</math> und <math>x_2</math> festgelegt, misst also
<math>x_2 - x_1 = 6 - 2 = 4.</math> <br>
Die Höhe ist durch den (konstanten) Funktionswert <math>f(x)=5</math> festgelegt. <br>
Also: <math>A=4 \cdot 5 = 20.</math>
}}}}
<br>
b) Lineare, nicht-konstante Funktion: &nbsp; <math>f(x)= 0,5 x + 1</math> &nbsp; in den Grenzen <math>x_1=2</math> und <math>x_2=6</math>
<br><br>
[[Bild:lin_fkt.png|zentriert|500px]]
<br>
{{Lösung versteckt|{{Lösung|Flächeninhalt: <math>A = 12.</math> <br>
Die Fläche lässt sich aufteilen in einen rechteckigen Teil ( Höhe <math> = y_1 = 2,</math> Breite <math> = x_2-x_1 = 4</math> ) mit <math>A=8</math> <br>
und einen dreieckigen Teil ( Höhe <math> = y_2-y_1 = 2,</math> Grundseite <math> = x_2-x_1 = 4</math> ) mit <math>A=4</math>. <br>
Also: <math>A = A_{\mathrm{Rechteck}} + A_{\mathrm{Dreieck}} = 8 + 4 = 12.</math>
<br>
{{Merke-M|
Allgemein berechnet sich eine solche aus Rechtecks- und Dreiecksfläche zusammengesetzte Fläche natürlich nach der Formel <math>A = a \cdot b + \frac{1}{2} \cdot h \cdot b</math>, wenn <math>a</math> die Höhe des Rechtecks, <math>h</math> die Höhe des Dreiecks und <math>b</math> die Breite des Dreiecks bzw. Rechtecks sind. <br>
Diese Summe aus den beiden Einzelflächen kann nun interpretiert werden als der Mittelwert der  unteren Rechtecksfläche (Rechteck ABCD) und der oberen Rechtecksfläche (Rechteck BCEF)! <br>
Seine Fläche entspricht dem Rechteck BCGH.
[[Bild:Flaeche_mittelwert.png|zentriert|350px]]
}}
}}}}
<br>
c) Funktion dritten Grades als Beispiel für eine Funktion im Allgemeinen: <math>f(x) = \frac{1}{100} \cdot x^3 + \frac{1}{50} \cdot x^2 - \frac{7}{10} \cdot x + 5</math> <br>
Ausgehend von den Aufgabenteilen a) und b) sollst Du hier eine Möglichkeit beschreiben, wie man die schraffierte Fläche zumindest näherungsweise bestimmen könnte.
<br><br>
[[Bild:flaeche_allgemein.png|zentriert|500px]]
<br><br><br>
<div align="center">
[[Benutzer:Dickesen/Integral|<<Zurück<<]] &nbsp; &nbsp; [[Benutzer:Dickesen|Home]] &nbsp; &nbsp; [[Benutzer:Dickesen/Integral3|>>Weiter>>]]
</div>
</div>
</div>
{{Box|1=Aufgabe 3.2|2=
Gib nun die Ergebnismenge für den dreifachen Würfelwurf so an, dass die Laplace-Annahme gerechtfertigt ist.
{{Lösung versteckt|1=
:<math>\Omega = \{(1,1,1),(1,1,2),(1,1,3),(1,1,4),(1,1,5),(1,1,6),(1,2,1),...,(6,6,4),(6,6,5),(6,6,6)\} </math>
:<math>\vert \Omega \vert = 6 \cdot 6 \cdot 6 = 6^3 = 216</math>
}}
|3=Arbeitsmethode}}
{{Box|1= Aufgabe 3.3|2=
Berechne nun die Wahrscheinlichkeiten für die Ereignisse '''E<sub>1</sub>: „Augensumme 11“''' und '''E<sub>2</sub>: „Augensumme 12“''' beim dreifachen Würfelwurf.
{{Lösung versteckt|1=
:*Für Ergebnisse mit drei verschiedenen Augenzahlen müssen wir nicht nur eines beachten, sondern sechs verschiedene (Zählprinzip).
::Beispiel:<math>\{1,4,6\}\ \rightarrow \{(1,4,6),(1,6,4),(4,1,6),(4,6,1),(6,1,4),(6,4,1)\}</math>
:*Für Ergebnisse mit zwei verschiedenen Augenzahlen müssen wir drei verschiedene Ergebnisse beachten.
:*Für Ergebnisse wie <math>\{3,3,3\}</math>&nbsp;gibt es nur ein Ergebnis.
:<math>\Rightarrow \quad \left|E_1\right|= 6\ +\ 6\ +\ 6\ +\ 3\ +\ 3\ +\ 3=27 \quad \Rightarrow \quad p(E_1)= \frac{27}{216}=12{,}5\ %</math>
:<math>\Rightarrow \quad \left|E_2\right|= 6\ +\ 6\ +\ 6\ +\ 3\ +\ 3\ +\ 1=25 \quad \Rightarrow \quad p(E_2)= \frac{25}{216}\approx11{,}6\ %</math>
:Da der Unterschied nicht sehr groß ist, muss ''Chevalier de Méré'' sehr oft gewürfelt haben, damit ihm das Problem aufgefallen ist!!
}}
|3=Arbeitsmethode}}
{{Weiter|../Efron|Würfeln von Efron}}
[[File:Efron_dice.png|center|175px]]
----
{{Lernpfad Laplace-Wahrscheinlichkeit wiederholen und vertiefen}}
{{SORTIERUNG:Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Drei-Würfel-Problem}}
[[Kategorie:Laplace-Experiment]]
[[Kategorie:Stochastik]]
[[Kategorie:Lernpfad]]
[[Kategorie:Mathematik]]
[[Kategorie:Mathematik-digital]]
[[Kategorie:Sekundarstufe 1]]
[[Kategorie:ZUM2Edutags]]

Version vom 16. Oktober 2009, 13:26 Uhr

Vorlage:Kasten blau

Frage
Aber wie kann man diesen Flächeninhalt denn nun genau bestimmen bzw. berechnen?



Dies ist die zentrale Frage des vorliegenden Lernpfades!


Um der Lösung näher zu kommen, fangen wir mit einfachen und sehr speziellen Graphen von Funktionen an und arbeiten uns ausgehend davon immer weiter hin zu schwierigeren und allgemeineren Graphen von Funktionen, damit wir am Ende eine Lösung für alle Eventualitäten in Händen halten!
Vorlage:Aufgaben-M
a) Konstante Funktion:     in den Grenzen und

Const fkt.png



b) Lineare, nicht-konstante Funktion:     in den Grenzen und

Lin fkt.png



c) Funktion dritten Grades als Beispiel für eine Funktion im Allgemeinen:
Ausgehend von den Aufgabenteilen a) und b) sollst Du hier eine Möglichkeit beschreiben, wie man die schraffierte Fläche zumindest näherungsweise bestimmen könnte.

Flaeche allgemein.png