Vorlage:Farbe und Integralrechnung/Vorüberlegungen: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
(entfernt. Farben aus Farbschema waren falsch.)
Markierung: Ersetzt
 
Main>Dickesen
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
<includeonly>
{{Kasten_blau|Auf der ersten Seite hast Du gelernt, dass der zurückgelegte Weg in einem Diagramm, in dem die Geschwindigkeit gegen die Zeit aufgetragen ist, gleich dem Flächeninhalt zwischen dem Graphen und der x-Achse ist.}}
</includeonly>
<br><br>
<noinclude>
{{Frage|Aber wie kann man diesen Flächeninhalt denn nun genau bestimmen bzw. berechnen?}}
</noinclude>
<br>
<div align="center">
Dies ist die zentrale Frage des vorliegenden Lernpfades!
</div>
<br>
Um der Lösung näher zu kommen, fangen wir mit einfachen und sehr speziellen Graphen von Funktionen an und arbeiten uns ausgehend davon immer weiter hin zu schwierigeren und allgemeineren Graphen von Funktionen, damit wir am Ende eine Lösung für alle Eventualitäten in Händen halten!
<br>
{{Aufgaben-M|2|
Bestimme die Flächeninhalte zwischen den Graphen und der x-Achse innerhalb der angegebenen Grenzen in nachfolgenden Diagrammen. <br>
Beschreibe dabei immer Deine Vorgehensweise!
}}
<br>
a) Konstante Funktion: &nbsp; <math>f(x)=5</math> &nbsp; in den Grenzen <math>x_1=2</math> und <math>x_2=6</math>
<br><br>
[[Bild:const_fkt.png|zentriert|500px]]
<br>
{{Lösung versteckt|{{Lösung|Flächeninhalt: <math>A = 20.</math> <br>
Die Fläche ist rechteckig, also berechnet sich der Flächeninhalt nach der Formel <math>A = </math>  Breite <math>\cdot</math> Höhe. <br>
Die Breite ist dabei durch die Grenzen <math>x_1</math> und <math>x_2</math> festgelegt, misst also
<math>x_2 - x_1 = 6 - 2 = 4.</math> <br>
Die Höhe ist durch den (konstanten) Funktionswert <math>f(x)=5</math> festgelegt. <br>
Also: <math>A=4 \cdot 5 = 20.</math>
}}}}
<br>
b) Lineare, nicht-konstante Funktion: &nbsp; <math>f(x)= 0,5 x + 1</math> &nbsp; in den Grenzen <math>x_1=2</math> und <math>x_2=6</math>
<br><br>
[[Bild:lin_fkt.png|zentriert|500px]]
<br>
{{Lösung versteckt|{{Lösung|Flächeninhalt: <math>A = 12.</math> <br>
Die Fläche lässt sich aufteilen in einen rechteckigen Teil ( Höhe <math> = y_1 = 2,</math> Breite <math> = x_2-x_1 = 4</math> ) mit <math>A=8</math> <br>
und einen dreieckigen Teil ( Höhe <math> = y_2-y_1 = 2,</math> Grundseite <math> = x_2-x_1 = 4</math> ) mit <math>A=4</math>. <br>
Also: <math>A = A_{\mathrm{Rechteck}} + A_{\mathrm{Dreieck}} = 8 + 4 = 12.</math>
<br>
{{Merke-M|
Allgemein berechnet sich eine solche aus Rechtecks- und Dreiecksfläche zusammengesetzte Fläche natürlich nach der Formel <math>A = a \cdot b + \frac{1}{2} \cdot h \cdot b</math>, wenn <math>a</math> die Höhe des Rechtecks, <math>h</math> die Höhe des Dreiecks und <math>b</math> die Breite des Dreiecks bzw. Rechtecks sind. <br>
Diese Summe aus den beiden Einzelflächen kann nun interpretiert werden als der Mittelwert der  unteren Rechtecksfläche (Rechteck ABCD) und der oberen Rechtecksfläche (Rechteck BCEF)! <br>
Seine Fläche entspricht dem Rechteck BCGH.
[[Bild:Flaeche_mittelwert.png|zentriert|350px]]
}}
}}}}
<br>
c) Ausgehend von den Aufgabenteilen a) und b) sollst Du hier nur eine Möglichkeit beschreiben, wie man die schraffierte Fläche zumindest näherungsweise bestimmen könnte. Dazu soll eine
Funktion dritten Grades als Beispiel für eine Funktion im Allgemeinen dienen: <math>f(x) = \frac{1}{100} \cdot x^3 + \frac{1}{50} \cdot x^2 - \frac{7}{10} \cdot x + 5</math> <br>
<br><br>
[[Bild:flaeche_allgemein.png|zentriert|500px]]
<br><br><br>
<div align="center">
[[Benutzer:Dickesen/Integral|<<Zurück<<]] &nbsp; &nbsp; [[Benutzer:Dickesen|Home]] &nbsp; &nbsp; [[Benutzer:Dickesen/Integral3|>>Weiter>>]]
</div>

Version vom 16. Oktober 2009, 13:27 Uhr

Vorlage:Kasten blau

Frage
Aber wie kann man diesen Flächeninhalt denn nun genau bestimmen bzw. berechnen?



Dies ist die zentrale Frage des vorliegenden Lernpfades!


Um der Lösung näher zu kommen, fangen wir mit einfachen und sehr speziellen Graphen von Funktionen an und arbeiten uns ausgehend davon immer weiter hin zu schwierigeren und allgemeineren Graphen von Funktionen, damit wir am Ende eine Lösung für alle Eventualitäten in Händen halten!
Vorlage:Aufgaben-M
a) Konstante Funktion:     in den Grenzen und

Const fkt.png



b) Lineare, nicht-konstante Funktion:     in den Grenzen und

Lin fkt.png



c) Ausgehend von den Aufgabenteilen a) und b) sollst Du hier nur eine Möglichkeit beschreiben, wie man die schraffierte Fläche zumindest näherungsweise bestimmen könnte. Dazu soll eine Funktion dritten Grades als Beispiel für eine Funktion im Allgemeinen dienen:


Flaeche allgemein.png