Die Zeit des ZUM-Wikis geht zu Ende!

01.09.2021: Das ZUM-Wiki kann nur noch gelesen werden.
Ende 2021: Das ZUM-Wiki wird gelöscht.

Mehr Infos hier.

Einstieg in die Differentialrechnung

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
Mathematik-digital Pfeil-3d.png
Lernpfad

Im bisherigen Mathematikunterricht wurden bereits vielfach Funktionen und deren Wertetabellen und Graphen betrachtet. Allerdings wurde das Änderungsverhalten von Funktionen bisher nur eingeschränkt untersucht, obwohl es eine essentielle Eigenschaft von Funktionen ist. Am Ende des 17. Jahrhunderts gingen Gottfried Wilhelm Leibniz und Isaac Newton der mathematischen Bestimmung des Änderungsverhaltens von Funktionen genauer nach und entwickelten Ideen, auf deren Grundlage die Differentialrechnung entwickelt wurde. Die Differentialrechnung war ein wichtiger Baustein in der Weiterentwicklung der Mathematik und der Naturwissenschaften und ist heute eine unverzichtbare Methode in der Mathematik. Im folgenden Lernpfad lernen Sie die Ideen von Leibniz und Newton kennen.

Nuvola Icon Kate.png Zur Dokumentation Ihres Lernprozesses sollen Sie die Aufgaben des Lernpfades in einer Mappe oder einem Heft nachvollziehbar aufschreiben. Ihre Aufzeichnungen werden am Ende der Reihe eingesammelt.



Inhaltsverzeichnis

Einstiegsaufgabe 1 - Blumenvase

Unterschiedliche Gefäßformen lassen sich durch ihren Füllgraphen beschreiben. Dieser ergibt sich, wenn in ein Gefäß eine Flüssigkeit mit gleichmäßigem Zufluss einfließt. Die entstehende Zuordnung Zeit(t) -> Höhe(h) kann in ein Koordinatensystem übertragen werden und stellt die Zunahme des Wasserspiegels in Abhängigkeit von der Zeit dar.


Nuvola apps edu science.png   Experiment

Skizzieren Sie zunächst einen möglichen Verlauf des Füllgraphen für die Gefäße in ein Koordinatensystem. Vergleichen Sie Ihre Ergebnisse mit einer anderen Zweiergruppe und begründen Ihre Skizze.

Mit dem folgenden Experiment können Sie Ihre Vermutung aus der ersten Aufgabe überprüfen. Dazu sollen Sie gleichmäßig Wasser in ein Gefäß füllen. Mit einer Stoppuhr wird die Zeit gemessen, wie lange der Wasserspiegel braucht um auf 0.5 cm, 1 cm, 1.5 cm, 2cm usw. zu steigen. Die Messdaten für die Zeit übertragen Sie danach vom Arbeitsblatt in die untenstehende GeoGebra-Tabelle.


GeoGebra-Tabelle erstellen

Wenn alle Messdaten in der Tabelle eingetragen sind, können Sie sich die dazugehörigen Punkte im Koordinatensystem anzeigen lassen. Markieren Sie als erstes alle Messwerte (Zeit und Höhe). Durch einen Rechtsklick über den markierten Werten kann im erscheinenden Kontextmenü Erzeuge - Liste von Punkten ausgewählt werden, sodass die zu den Messwerten gehörigen Punkte im Koordinatensystem erscheinen.



Stift.gif   Aufgabe 1

a) Vergleichen Sie die Versuchsdaten mit ihren Skizzen und beschreiben den Verlauf des Füllgraphen. Inwiefern kann man die Form des Gefäßes am Füllgraphen ablesen?

b) Um weitere Erkenntnisse über den Füllvorgang zu erhalten soll nun die Geschwindigkeit des Anstiegs des Wasserspiegels untersucht werden. Ist es möglich, diese Geschwindigkeit zum Zeitpunkt t = 3s zu ermitteln? Begründen Sie ihre Antwort kurz.



Einstiegsaufgabe 2 - Barringer-Krater

Die Idee zu dieser Aufgabe entstammt dem Schulbuch Lambacher-Schweizer, Analysis Leistungskurs Gesamtband, Ausgabe A, Klett Verlag, Stuttgart 2001, ISBN 3127321805.

Barrington-Krater

In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater. Der Krater hat einen Durchmesser von bis zu 1200 Meter und eine Tiefe von 180 Meter. An einer sehr flachen Stelle kann der Teilquerschnitt des Kraters bis zum Rand durch die Funktion k(x)=0,002x^2 für 0 \leq x \leq 300 beschrieben werden.

LP Krater.png


Stift.gif   Aufgabe 2

Im Krater befindet sich ein Fahrzeug, das eine Steigung von bis zu 115% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?


Arbeitsblätter zu den Einstiegsaufgaben



Von der mittleren zur momentanen Änderungsrate

Nuvola apps ktimer.png 45 Minuten 


In diesem Abschnitt soll die erste Einstiegsaufgabe, die Sie im Unterricht bearbeitet haben, vertieft werden. Sie üben, mittlere Änderungsraten zu bestimmen und damit momentane Änderungsraten anzunähern.



Blumenvase

VaseFuellvorgang.jpg

In der Einstiegsaufgabe haben Sie in Gefäßen gleichmäßig Wasser eingelassen und die Höhe des Wasserstandes gemessen. Betrachten wir nun die abgebildete Vase, in die ebenfalls gleichmäßig Wasser eingelassen wird. Die Tabelle stellt dar, wie sich die Wasserhöhe (hier gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert. Im Gegensatz zum Vorgehen zur Einstiegsaufgabe wurde nun alle drei Sekunden die Höhe des Wasserstandes gemessen.

Zeit (Sekunden) Höhe (cm)
0 0,51
3 1,33
6 2,74
9 4,91
12 8,00
15 12,17
18 17,58



Mittlere Änderungsrate

Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.

Bsp.
In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)

Stift.gif   Aufgabe 3

Berechnen Sie anhand der obigen Tabelle und mit dem Taschenrechner die mittlere Änderungsrate in den angegebenen Zeitabschnitten:
a) in den ersten drei Sekunden
b) zwischen Sekunde 3 und 6
c) zwischen Sekunde 12 und 15
d) zwischen Sekunde 3 und 12
e) in den ersten 18 Sekunden





Momentane Änderungsrate


Möchte man nun für einen Zeitpunkt (z.B. Sekunde 12) eine Änderungsrate bestimmen, so spricht man von der momentanen Änderungsrate. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in der folgenden Aufgabe.


Stift.gif   Aufgabe 4

Um näherungsweise die momentane Änderungsrate für den Zeitpunkt t0 = 12 Sekunden zu erhalten, bestimmen Sie mit Hilfe der Schieberegler des Applets und mit Hilfe des Taschenrechners die mittlere Änderungsrate im Zeitintervall von ...
a) ... t0 = 12 Sekunden und t1 = 13 Sekunden
b) ... t0 = 12 Sekunden und t1 = 12,5 Sekunden
c) ... t0= 12 Sekunden und t1= 12,1 Sekunden
d) ... t0 = 12 Sekunden und t1 = 12,05 Sekunden
e) Schätzen Sie aufgrund der Ergebnisse aus a) - d), welches Ergebnis für die momentane Änderungsrate bei Sekunde 12 Ihnen plausibel erscheint.



Wenn der Wasserstand als Funktion von der Zeit mit einer Funktionsvorschrift gegben ist, kann man die mittleren Änderungsraten auch rechnerisch bestimmen.

Stift.gif   Aufgabe 5

Die Höhe des Wasserstandes der bisher betrachteten Vase kann mit der Funktion w(t)=0,001(t+8)3 beschrieben werden. Hierbei gibt w(t) die Höhe des Wasserstandes in cm zu einem Zeitpunkt t (in Sekunden) an.
a) Bestimmen Sie den Näherungswert für die momentane Änderungsrate noch genauer, indem Sie mit Hilfe der Funktionsvorschrift die mittlere Änderungsrate im Zeitabschnitt von Sekunde 12 bis 12,001 bestimmen.
b) Beschreiben Sie, wie Sie vorgehen müssten, um einen möglichst exakten Wert für die momentane Änderungsrate bei Sekunde 12 zu erhalten.


Nuvola apps kwrite.png   Hausaufgaben:


Nuvola apps korganizer.png Teste Dein Wissen! 




Von der Sekanten- zur Tangentensteigung

Nuvola apps ktimer.png 45 Minuten 

In diesem Abschnitt soll die zweite Einstiegsaufgabe, die Sie im Unterricht bearbeitet haben, vertieft und verallgemeinert werden. Sie lernen und üben, Sekantensteigungen und Tangentensteigungen zu bestimmen.



Barringer-Krater

Um entscheiden zu können, ob das Raumfahrzeug aus dem Krater kommt, benötigen wir die Steigung des Kraters am Rand des Kraters.
Die durchschnittliche Steigung des Kraters zwischen zwei Punkten A\left( x_0 | k(x_0) \right) und B\left( x_1 | k(x_1) \right) kann mit  m=\frac{\Delta y}{\Delta x}=\frac{k(x_1)-k(x_0)}{x_1-x_0} berechnet werden. Dies enspricht der Steigung der Geraden, die durch die Punkte A und B geht.


Eine solche Gerade, die den Graphen einer Funktion k(x) in zwei Punkten A\left( x_0 | k(x_0) \right) und B\left( x_1 | k(x_1) \right) schneidet, nennt man Sekante.

 m=\frac{\Delta y}{\Delta x}=\frac{k(x_1)-k(x_0)}{x_1-x_0} ist dann die Sekantensteigung.



Stift.gif   Aufgabe 6

Überlegen Sie, wo in der Zeichnung folgende Größen zu finden sind: x_1-x_0 und k(x_1)-k(x_0)

Achtung: Nicht auf den Monitor malen;-)


Stift.gif   Aufgabe 7

Berechnen Sie die durchschnittliche Steigung des Kraters zwischen den Punkten A(300|180) und B(400|320), wenn man sich das Kraterprofil über den Wert x0 hinaus fortgesetzt denkt.




Information
Eine Sekante schneidet den Graphen in zwei Punkten. Wenn nun der Punkt B immer weiter dem Punkt A angenähert wird und bei diesem Prozess letztendlich der Punkt B mit dem Punkt A zusammenfällt, so berührt die Gerade (lokal) den Graphen nur noch in einem Punkt, dem sogenannten Berührpunkt. Diese Gerade nennt man nun nicht mehr Sekante (da es keine zwei Schnittpunkte mehr gibt), sondern Tangente an den Graphen der Funktion k im Punkt A. Die Steigung der Tangenten gibt die Steigung des Graphen der Funktion im Berührpunkt an.


In der Graphik der Lösung der Aufgabe 6 kann man den Punkt B bewegen, indem man mit der Maus auf ihn zeigt und bei gedrückter linker Maustaste die Maus bewegt.

Stift.gif   Aufgabe 8

Vollziehen Sie den beschriebenen Übergang von der Sekante zur Tangente im obigen Applet nach.

Berechnen Sie die Steigungen verschiedener Sekanten mit Hilfe der Werte, die Sie für \Delta x und \Delta y aus dem Applet entnehmen können.

Was können Sie nun über die Steigung im Punkt A sagen?


Um zu entscheiden, ob das Fahrzeug aus dem Krater heraus kommt, muss ein genauer Wert für die Steigung der Tangenten an den Graphen im Punkt A betrachtet werden. Wenn die Steigung des Kraters im Punkt A(300|180) kleiner als 1,15 ist, kann das Raumfahrzeug den Krater verlassen.


Die weiteren Betrachtungen führen wir nun etwas allgemeiner auch für andere Funktionen durch, bevor wir die Steigung im Punkt A des Kraters tatsächlich berechnen.



Verallgemeinerung

Die Überlegungen, die wir für die Kraterfunktion angestellt haben, kann man auch für andere Funktionen durchführen.

Stift.gif   Aufgabe 9

Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit  f(x)=x^2 gezeichnet.
a) Zeichnen Sie die Sekante durch die Punkte A(1|f(1)) und B(2|f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.
b) Zeichnen Sie ebenso die Sekante durch die Punkte A(1|f(1)) und C(1,5|f(1,5)) und bestimmen Sie aus der Zeichnung ihre Steigung.
c) Zeichnen Sie (näherungsweise) die Tangente an den Graphen im Punkt A(1|1) ein und bestimmen Sie ihre Steigung aus der Zeichnung.

Verweis zu Wiederholungsmaterialien.




Stift.gif   Aufgabe 10

Wir betrachten weiterhin die Funktion f mit f(x)=x^2.
a) Bestimmen Sie rechnerisch für die Werte x_0=1 und x_1=2 mit Hilfe der Formel m=\frac{f(x_1)-f(x_0)}{x_1-x_0} die Steigung der Sekante durch die Punkte A(1|f(1)) und B(2|f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.
b) Näheren Sie nun die Steigung der Tangenten im Punkt A(1|1) an den Graphen besser an, indem Sie für x1 einen Wert wählen, der näher an x0 liegt. Vergleichen Sie mit Ihrem Ergebnis aus der vorherigen Aufgabe.
c) Überlegen Sie, wie man einen möglichst genauen Wert für die Steigung der Tangenten erhalten kann.



Nuvola apps kwrite.png   Hausaufgaben


Stift.gif   Aufgabe

Nuvola apps kcmdrkonqi.png Übungen für Fortgeschrittene 

a) Bestimmen Sie wie in der vorherigen Aufgabe einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit f(x)=x^2 im Punkt A(3| 9).
b) Bestimmen Sie wie in der vorherigen Aufgabe einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit f(x)=3 x^2+2 im Punkt A(2| f(2)).


Nuvola apps korganizer.png Teste Dein Wissen! 




Der Differenzenquotient

Stift.gif   Aufgabe 11

Erläutern Sie die Vorgehensweise im Abschnitt "Von der mittleren zur momentanen Änderungsrate" und im Abschnitt "Von der Sekanten- zur Tangentensteigung". Vergleichen Sie dabei die Vorgehensweisen und arbeiten Sie Gemeinsamkeiten heraus.


Farm-Fresh plenumPlenumsphase



Der Differentialquotient

Nuvola apps ktimer.png 15 min 


Maehnrot.jpg
Merke:

Der Differentialquotient f'(x0 ) ist definiert als Grenzwert eines Differenzenquotienten:

Differentialquotient  f'(x_0) = \lim_{x_1\to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}

Der Differentialquotient f'(x0) wird auch als Ableitung der Funktion f an der Stelle x0 bezeichnet.


Der Differentialquotient f'(x0 )

  • beschreibt die momentane Änderungsrate der Funktion f an der Stelle x0 und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen x0 und x1 den Wert x1 immer mehr dem Wert x0 annnährt,
  • beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x0|f(x0)) und entsteht, wenn man im Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten A(x0|f(x0)) und B(x1|f(x1)) den Punkt B(x1|f(x1)) immer mehr dem Punkt A(x0|f(x0)) annähert.


Im Applet können Sie den Übergang vom Differenzenquotienten zum Differentialquotienten nachvollziehen.

Nuvola apps kwrite.png   Übertragen Sie die Definition des Differentialquotienten zusammen mit einer geeigneten Skizze in Ihr Heft.


Stift.gif   Aufgabe 12

Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.




Die Ableitungsfunktion

Nuvola apps ktimer.png 20 Minuten 


Man kann nun zu jedem x-Wert den Differentialquotienten f'(x) bestimmen.

Ordnet man jedem x -Wert den zugehörigen Wert der Ableitung f'(x) zu, so erhält man eine neue Funktion, die Ableitungsfunktion f' .


Stift.gif   Aufgabe 13

a) Zeichnen Sie den Graphen der Funktion f mit f(x)=x2. Zeichnen Sie an mehreren Stellen die Tangenten an den Graphen der Funktion und bestimmen Sie deren Steigungen. Zeichnen Sie nun in einem neuen Koordinatensystem den Graphen der Ableitungsfunktion. Stellen Sie eine Vermutung für die Funktionsvorschrift der Ableitungsfunktion auf.
b) Zeichnen Sie den Graphen der Funktion f mit f(x)=x3. Zeichnen Sie an mehreren Stellen die Tangenten an den Graphen der Funktion und bestimmen Sie deren Steigungen. Zeichnen Sie nun in einem neuen Koordinatensystem den Graphen der Ableitungsfunktion. Stellen Sie eine Vermutung für die Funktionsvorschrift der Ableitungsfunktion auf.
c) Vergleichen Sie Ihre Ergebnisse mit einer anderen Gruppe.


Nuvola apps kwrite.png   Hausaufgaben: Übung 1 auf Seite 132, Übung 3 a und b auf Seite 132

Nuvola apps kcmdrkonqi.png   Übungen für Fortgeschrittene: Übung 2 auf Seite 132


Nuvola apps korganizer.png Teste Dein Wissen! 




Die h-Schreibweise

Nuvola apps ktimer.png 90 Minuten 


Da sich dadurch einige Rechungen später einfacher gestalten lassen, betrachten wir in diesem Abschnitt noch eine andere Schreibweise für den Differenzenquotienten und den Differentialquotienten.



Die h-Schreibweise des Differenzenquotienten und des Differentialquotietnen

Anstatt beim Übergang vom Differenzenquotienten zum Differentialquotienten x1 immer mehr x0 anzunähern, kann man auch die Differenz h=\Delta x=x_1-x_0 klein werden lassen. Es ist dann  x_1=x_0+h.


Stift.gif   Aufgabe 14

a) Überlegen Sie, wo in der folgenden Zeichnung die Größen h, x_0+h, f(x_0+h), f(x_0+h)-f(x_0) zu finden sind.
b) Geben Sie eine Formel für die Sekantensteigung für eine Funktion f an, wenn die Sekante durch den Punkt A(x0| f(x0)) und den Punkt B(x0+h| f(x0+h)) gehen soll.
c) Welches rechnerische Problem ergibt sich, wenn man in dieser Formel einfach h= 0 setzen würde.




Stift.gif   Aufgabe 15

Gegeben ist wieder die Funktion f mit  f(x)=x^2.

Berechnen Sie für h = 0,1 (h= 0,01 und h = 0,001) die Steigung der Sekanten für x_0= 1 und x_1= 1+h . (Verwenden Sie die Tabellenfunktion Ihres Taschenrechners; Schreiben Sie dazu h=0,1^n mit n gleich 0, 1, 2, 3,...)

Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1|1). Vergleichen Sie mit den Ergebnissen aus den Aufgaben ?.



Stift.gif   Aufgabe 16

Ersetzen Sie in der Definition des Differentialquotienten den Wert x1 durch x0+h.



Die Berechnung von Ableitungen

Mit Hilfe dieser h-Schreibweise des Differentialquotienten kann man die Ableitung f'(x0) einer Funktion f an einer Stelle x0 berechnen.

Stift.gif   Aufgabe 17

Bearbeiten Sie nun folgende Aufgaben. Schreiben Sie die Rechnungen auch in Ihr Heft.




Farm-Fresh plenum Beispielaufgabe:
Betrachtet wird die Funktion k(x)=0,002x^2 (die in der Einstiegsaufgabe die Höhes des Kraters beschreibt).

  • Die Ableitung an der Stelle x=100 wird wie folgt berechnet:
  • Ganz analog lässt sich die Ableitung auch für eine beliebige Stelle x=x0 bestimmen:


Stift.gif   Aufgabe 18
  1. Bestimmen Sie mit Hilfe des Applets, wie weit das Fahrzeug im Barringer-Krater kommt.
  2. Berechnen Sie mit Hilfe der Ableitungsfunktion aus der vorherigen Aufgabe, wie weit das Fahrzeug kommt.


Nuvola apps kcmdrkonqi.png   'Übung für Fortgeschrittene: Bestimmen Sie wie in der Beispielaufgabe die Ableitung für die die Funktion w(t)=0,001(t+8)^3 (die in der Einstiegsaufgabe die Wasserhöhe in der Vase beschreibt) zum Zeitpunkt t=5s und für einen bliebigen Zeitpunkt t=t0.


Stift.gif   Aufgabe 19
  1. Variieren Sie die Stelle x0 im Applet und beschreiben Sie die Bedeutung der sich ergebenden Ortslinie.
  2. Treffen Sie sich mit einem weiteren Lernteam und vergleichen Sie Ihre Lösungen.



Maehnrot.jpg
Merke:

Die Berechnung des Grenzwertes des Differenzenquotienten für eine bestimmte Stelle x0 ergibt die Ableitung an dieser Stelle. Wird diese Berechnung für eine allgemeine Stelle x durchgeführt, so erhält man die Funktion f´(x), die jeder Stelle x die Ableitung an der Stelle zuordnet – die sogenannte Ableitungsfunktion.
Mithilfe der Ableitungsfunktion lässt sich die Steigung des Graphen an jeder beliebigen Stelle bzw. die Änderungsrate zu jedem beliebigen Zeitpunkt schnell berechnen.


Nuvola apps korganizer.png Teste Dein Wissen! 




Üben und Vertiefen

Nuvola apps ktimer.png 30 Minuten 


Stift.gif   Aufgabe 20

Nuvola apps kcmdrkonqi.png   Aufgaben zum Trainieren
Bearbeiten Sie folgenden Aufgaben zunächst in Einzelarbeit. Vergleichen Sie dann die Ergebnisse mit Ihrem Teampartner.

  • Seite 45 Aufgabe 1 (Lambacher-Schweizer: Mathematik für Gymnasien, Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4)
  • Seite 45 Aufgabe 2 (Lambacher-Schweizer: Mathematik für Gymnasien, Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4 )


Stift.gif   Aufgabe 21

Nuvola apps kcmdrkonqi.png   Anwendungsaufgabe

  • Seite 45 Aufgabe 3 (Lambacher Schweizer: Mathematik für Gymnasien, Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4 )


Stift.gif   Aufgabe 22

Nuvola apps xmag.png   Nuvola apps ktip.png  Betrachten Sie noch einmal die beiden Einstiegsaufgaben und bearbeiten Sie schriftlich folgende Fragen:

  • Was waren die Problemstellungen?
  • Was waren die ersten Lösungsansätze?
  • Wie sieht die mathematische Lösung aus?



Nuvola apps korganizer.png   Schätzen Sie Ihren aktuellen Lernstand anhand des ausliegenden Selbsteinschätzungsbogen ein.




Team.gif
Entstanden unter Mitwirkung von: