Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
Main>Hans-Georg Weigand
Keine Bearbeitungszusammenfassung
(4 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:
== Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN ==
== Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN ==


Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN<sub>0</sub> =/= IN.<br />
Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}.<br />
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\textstyle \frac{1}{n}\leq 1</math>.
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\textstyle \frac{1}{n}\leq 1</math>.


Zeile 62: Zeile 62:
[[Bild:diagonale3.png|right|170px]]
[[Bild:diagonale3.png|right|170px]]
Beispielsweise ergibt sich die Länge <math>d</math> der Diagonale in einem Quadrat der Seitenlänge <math>a=1</math> über den Satz des Pythagoras (<math>a^2 + a^2 = d^2</math>) zu:
Beispielsweise ergibt sich die Länge <math>d</math> der Diagonale in einem Quadrat der Seitenlänge <math>a=1</math> über den Satz des Pythagoras (<math>a^2 + a^2 = d^2</math>) zu:
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =d^2 \quad \Rightarrow \quad d = \pm \sqrt{2}.</math>
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =d^2 \quad \Rightarrow \quad d = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
Die mathematisch richtige Lösung <font style="vertical-align:18%;"><math>\textstyle d=-\sqrt{2}</math></font> ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.
Die mathematisch richtige Lösung <font style="vertical-align:18%;"><math>\textstyle d=-\sqrt{2}</math></font> ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.


Zeile 68: Zeile 68:


Auch die Länge der Raumdiagonale <math>D</math> im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>d^2 + s^2 = D^2</math>) zu:
Auch die Länge der Raumdiagonale <math>D</math> im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>d^2 + s^2 = D^2</math>) zu:
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = D^2 \quad \Rightarrow \quad D = \pm \sqrt{3}.</math>
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = D^2 \quad \Rightarrow \quad D = \pm \sqrt{3} \pm 3^{\frac 1 2}.</math>
Auch hier wird man nur die physikalisch sinnvolle Lösung <math>\textstyle D = \sqrt{3}</math> angeben.
Auch hier wird man nur die physikalisch sinnvolle Lösung <math>\textstyle D = \sqrt{3}</math> angeben.


=== Beispiel: Kubikwurzel ===
=== Beispiel: Kubikwurzel ===
<!--
[[Bild:diagonale3.png|right|200px]] Die 3.-Wurzel <math>\sqrt[3]{x}</math> einer Zahl <math>x</math> wird auch als ihre ''Kubikwurzel'' bezeichnet. Der Name leitet sich vom Würfel (lat. "''cubus''") ab: Die Raumdiagonale <math>D</math> im Einheitswürfel (das ist ein Würfel mit Kantenlänge <math>a=1</math>) berechnet sich - ähnlich wie im Falle der Flächendiagonale - über den Satz des Pythagoras (hier: <math>d^2+1^2 = D^2</math>) zu:
<math>\sqrt{2}^2+1^2 = 2+1 = 3 \quad \Rightarrow \quad D = \pm \sqrt{3}.</math>-->


Das Volumen <math>V</math> eines Würfels (lat.: "''cubus''") der Kantenlänge <math>s=5</math> ergibt sich über:<br />
Das Volumen <math>V</math> eines Würfels (lat.: "''cubus''") der Kantenlänge <math>s=5</math> ergibt sich über:<br />
<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math>
:<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math>


Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen <math>V=27</math> durch ziehen der 3.-Wurzel:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen <math>V=27</math> durch ziehen der 3.-Wurzel:
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>


 
== APLETT ==
* <font style="vertical-align:18%;"><math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math></font>, aber auch
 


<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"  
<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"  

Version vom 3. Februar 2009, 20:29 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:


Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:


Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:


Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .


Beispiel: Quadratwurzeln


Eine positive Zahl hat zwei Quadratwurzeln, eine positive und eine negative. So ist etwa

  • .

In manchen Fällen (etwa wenn es um die von Längen oder Flächeninhalten geht) ist nur die postive Lösung sinnvoll.


Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:

Die mathematisch richtige Lösung ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.


Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Auch hier wird man nur die physikalisch sinnvolle Lösung angeben.

Beispiel: Kubikwurzel

Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:

APLETT

Die Datei [INVALID] wurde nicht gefunden.


Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:


Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.

kurz nachgedacht

  • asd asd
  • asd asd asd
  • aasdd