Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Hans-Georg Weigand
Keine Bearbeitungszusammenfassung
Main>Jan Wörler
(16 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
'''[[Potenzfunktionen|Start]] - [[Einführung|Einführung]] - [[1. Stufe|1. Stufe]] - [[2. Stufe|2. Stufe]] - [[3. Stufe|3. Stufe]] - [[4. Stufe|4. Stufe]] - [[5. Stufe|5. Stufe]]'''</div>
'''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - [[Potenzfunktionen 2. Stufe|2. Stufe]] - 3. Stufe - [[Potenzfunktionen 4. Stufe|4. Stufe]] - [[Potenzfunktionen 5. Stufe|5. Stufe]]'''</div>
 
Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}.<br />
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\textstyle \frac{1}{n}\leq 1</math>.


== Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN ==
== Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN ==


Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}.<br />
=== Graphen kennenlernen ===
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\textstyle \frac{1}{n}\leq 1</math>.
 
{| cellspacing="10"
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=1|ARBEIT=
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.  
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
#* Definitionsbereich
#* Symmetrie
#* Monotonie
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
:{{Lösung versteckt|
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
:Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.
}}
}}<br>
|| <ggb_applet height="450" width="550" showMenuBar="false" showResetIcon="true"
filename="Woerler_001b.ggb" />
|}
 
 
 


=== Vergleich mit Funktionen aus Stufe 2 ===
=== Vergleich mit Funktionen aus Stufe 2 ===
Zeile 24: Zeile 48:
}}
}}
}}<br>
}}<br>
|| <ggb_applet height="300" width="550" showMenuBar="false" showResetIcon="true"  
|| <ggb_applet height="450" width="550" showMenuBar="false" showResetIcon="true"  
filename="7_x1n_w2.ggb" />
filename="Woerler_001.ggb" />
|}
|}


<!--neue Datei {{ggb|7_x1n_w2.ggb|datei}}-->
neue Datei {{ggb|Woerler_001.ggb|datei}}


== Potenzen und Wurzeln ==
== Potenzen und Wurzeln ==


Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt ''Wurzelfunktion''.
Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2, x \in</math>IR<sup>+</sup> heißt ''n-te Wurzelfunktion''.
 
Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt:
:<math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math>
 
 
Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:
:<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math>


Wegen:  <math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math> gilt: Potenzfunktionen mit <math>f(x)=x^{\frac{1}{n}}</math> sind n-te Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math>.


Im Falle <math>n=2</math> nennt man die Wurzel "''Quadratwurzel''" und man schreibt:
Im Falle <math>n=2</math> nennt man die Wurzel "''Quadratwurzel''" und man schreibt:
Zeile 53: Zeile 71:


[[Bild:diagonale.png|right|165px]]  
[[Bild:diagonale.png|right|165px]]  
Eine positive Zahl <math>x>0</math> hat zwei Quadratwurzeln, eine positive und eine negative. So ist etwa
* <math>16 = \begin{cases} \quad 4\cdot \quad 4 &= \, \quad 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \quad \Rightarrow \quad \sqrt{16} = \pm 4</math>.
In manchen Fällen (etwa wenn es um die von Längen oder Flächeninhalten geht) ist nur die postive Lösung sinnvoll.


[[Bild:diagonale3.png|right|170px]]
[[Bild:diagonale3.png|right|170px]]
Beispielsweise ergibt sich die Länge <math>d</math> der Diagonale in einem Quadrat der Seitenlänge <math>a=1</math> über den Satz des Pythagoras (<math>a^2 + a^2 = d^2</math>) zu:
Beispielsweise ergibt sich die Länge <math>d</math> der '''Diagonale in einem Quadrat''' der Seitenlänge <math>a=1</math> über den Satz des Pythagoras (<math>a^2 + a^2 = d^2</math>) zu:
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =d^2 \quad \Rightarrow \quad d = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =d^2 \quad \Rightarrow \quad d = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
Die mathematisch richtige Lösung <font style="vertical-align:18%;"><math>\textstyle d=-\sqrt{2}</math></font> ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.
Die mathematisch richtige Lösung <font style="vertical-align:18%;"><math>\textstyle d=-\sqrt{2}</math></font> ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.
Zeile 67: Zeile 79:




Auch die Länge der Raumdiagonale <math>D</math> im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>d^2 + s^2 = D^2</math>) zu:
Auch die Länge der '''Raumdiagonale <math>D</math> im Einheitswürfel ('''das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>d^2 + s^2 = D^2</math>) zu:
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = D^2 \quad \Rightarrow \quad D = \pm \sqrt{3} \pm 3^{\frac 1 2}.</math>
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = D^2 \quad \Rightarrow \quad D = \pm \sqrt{3} \pm 3^{\frac 1 2}.</math>
Auch hier wird man nur die physikalisch sinnvolle Lösung <math>\textstyle D = \sqrt{3}</math> angeben.
Auch hier wird man nur die physikalisch sinnvolle Lösung <math>\textstyle D = \sqrt{3}</math> angeben.
Zeile 79: Zeile 91:
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>


== APLETT ==
== Einfluss von Parametern ==


<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"  
{| cellspacing="10"
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=1|ARBEIT=
Im nebenstehenden Applet kannst Du die Parameter <math>a</math> und <math>c</math> mit den Schiebereglern verändern.<br />
# Wie beeinflusst der Parameter a die Lage des Graphen?
# Wie beeinflusst der Parameter c die Lage des Graphen?
#
</pre>
:{{Lösung versteckt|
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
:Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.
}}
}}<br>
|| <ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"  
filename="8_ax1nc_w.ggb" />
filename="8_ax1nc_w.ggb" />
|}


<!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}-->
<!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}-->


== Definitionsbereich der Wurzelfunktionen ==
== *Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen ==
==== Einschränkung auf IR<sup>+</sup> ====
==== Einschränkung auf IR<sup>+</sup> ====


Zeile 99: Zeile 126:


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
:<math>f(x) = \sqrt[n]{x}</math>  mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math>
:<math>f(x) = \sqrt[n]{x}</math>  mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}^+</math>


==== Wurzelfunktion auf ganz IR ====
==== Wurzelfunktion auf ganz IR ====
Zeile 106: Zeile 133:
:<math>g(x):=\begin{cases}\sqrt[n]{x}, &x\geq 0 \\ -\sqrt[n]{-x}, &x<0\end{cases}</math>.  
:<math>g(x):=\begin{cases}\sqrt[n]{x}, &x\geq 0 \\ -\sqrt[n]{-x}, &x<0\end{cases}</math>.  
Dann gilt: ID<sub>g</sub> = IR.
Dann gilt: ID<sub>g</sub> = IR.
== kurz nachgedacht ==
* asd asd 
* asd asd asd
* aasdd
*

Version vom 11. Februar 2009, 13:11 Uhr

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Graphen kennenlernen

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.



Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

neue Datei Geogebra.svg datei

Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit IR+ heißt n-te Wurzelfunktion.

Wegen: gilt: Potenzfunktionen mit sind n-te Wurzelfunktionen .

Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:


Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .


Beispiel: Quadratwurzeln

Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:

Die mathematisch richtige Lösung ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.


Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Auch hier wird man nur die physikalisch sinnvolle Lösung angeben.

Beispiel: Kubikwurzel

Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:

Einfluss von Parametern

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:


Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.