Integralrechnung/Flächen bestimmen und Integralrechnung/Flächeninhaltsfunktion: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Integralrechnung(Unterschied zwischen Seiten)
Main>Dickesen
Keine Bearbeitungszusammenfassung
 
Main>Dickesen
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
==Flächeninhalte bestimmen mit Geogebra==
==Die Flächeninhaltsfunktion <math>F(x)</math>==
Als Übung sollst Du im Folgenden die Fläche unter vorgegebenen Graphen mit der Software Geogebra bestimmen. Falls Du keine Erfahrung mit Geogebra hast, wird Dir die Anleitung weiter unten auf dieser Seite weiterhelfen!
Zuletzt hast Du gesehen, dass die Berechnung des bestimmten Integrals von Hand sehr aufwendig und umständlich ist. Wünschenswert wäre es also, wenn es eine einfachere Lösung des Problems gäbe. <br>
Um eine einfachere und bessere Lösung zu finden, kannst Du unten wieder ein Geogebra-Applet benutzen. <br>
Neben dem Graphen der Funktion <math>f(x)=x^2</math> ist das bestimmte Integral dieser Funktion im Intervall <math>[a; b]</math> abgebildet. Über der oberen Intervallgrenze <math>b</math> ist der Wert des bestimmten Integrals als Zahl und '''Funktionswert''' abgebildet. <br>
{{Aufgaben-M|6|
# Verschiebe die obere Intervallgrenze mit der Maus. Der Funktionswert (also das bestimmte Integral) wird dabei ebenfalls ständig neu berechnet und eingezeichnet. Es entsteht der Graph einer neuen Funktion, der ''Flächeninhaltsfunktion'' <math>F(x)</math>.
# Versuche, die Funktionsvorschrift von <math>F(x)</math> zu bestimmen. Zum einfacheren Ablesen der Punkte auf dem Graphen sind deren Koordinaten <math>b</math> und <math>F</math> angegeben.
}}
<br>
<div align="center">
<ggb_applet height="350" width="400" useLocalJar="true" showResetIcon="true" filename="flaechen_fkt.ggb" />
</div>
<br>
<br>
{{Übung|
{{Lösung versteckt|{{Lösung|
# Bestimme den Flächeninhalt unter dem Graphen der Funktion <math>f(x)=x^2</math> im Intervall <math>[1;3]</math> mindestens auf die Einerstelle genau.
<math>F(x) = \frac{1}{3} \cdot x^3</math>. <br>
# Bestimme den Flächeninhalt zwischen dem Graphen der Funktion <math>g(x)=\sqrt{x}</math> (in Geogebra wird die Wurzelfunktion mit sqrt(x) bezeichnet) und der x-Achse im Intervall <math>[0;8]</math> mindestens auf die Einerstelle genau.
An der Gestalt der Flächeninhaltsfunktion erkennt man, dass es eine Funktion 3. Grades ist (vgl. Jahrgangsstufe 11). Z.B. am Punkt (3;9) kann man erkennen, dass der Vorfaktor <math>\frac{1}{3}</math> ist.
}}}}
<br>
{{Aufgaben-M|7|
Ermittle im unteren Applet den Zusammenhang zwischen dem Wert des bestimmten Integrals und den Funktionswerten der Flächeninhaltsfunktion an den Intervallgrenzen. Stelle dazu eine Formel bzw. eine Gleichung auf, mit der der Wert des bestimmten Integrals berechnet werden kann!
}}
}}
<br>
<br>
<div align="center">
<div align="center">
<ggb_applet height="30" width="150" type=button showMenuBar="true" showToolBar="true" showAlgebraInput="true" showResetIcon="true" filename="blank.ggb" />
<ggb_applet height="350" width="400" useLocalJar="true" showResetIcon="true" filename="integral_wert.ggb" />
</div>
</div>
<br>
<br>
{{Kastendesign1|
{{Lösung versteckt|{{Lösung|
BORDER = #97BF87|
Der Wert des bestimmten Integrals entspricht immer der Differenz der Funktionswerte der Flächeninhaltsfunktion an den Intervallgrenzen. <br>
BACKGROUND = #AADDAA|
<math>\int \limits_{a}^{b} f(x) \ \mathrm{d}x = F(b) - F(a)</math>
BREITE =100%|
}}}}
INHALT=# Starte die Software Geogebra, indem Du die Schaltfläche "Öffnen GeoGebra" betätigst. Geogebra startet dann in einem separaten Fenster.
<br>
# Gib in die Eingabezeile ganz unten im Geogebra-Fenster die Funktion ein, z.B. "f(x) = 5 * x^2" (auf Leerzeichen achten!).
Damit hast Du gezeigt, dass das bestimmte Integral einer Funktion <math>f(x)</math> in den Grenzen <math>a</math> und <math>b</math> mit Hilfe einer Flächeninhaltsfunktion <math>F(x)</math> und deren Funktionswerten an diesen Intervallgrenzen berechnet werden kann. Somit stellt sich jetzt nur noch die entscheidende
# Definiere nun die Intervallgrenzen <math>a</math> und <math>b</math> sowie die Anzahl <math>n</math> der Intervallunterteilungen, indem Du nacheinander "a=1", "b=3" und "n=3" in die Eingabezeile eingibst und jedesmal mit der Eingabetaste bestätigst.
{{Frage|
# Teile Geogebra mit, dass Du die Ober- bzw. Untersumme berechnet und angezeigt bekommen möchtest, indem Du wieder nacheinander in der Eingabezeile folgendes eingibst:
Wie bestimmt man im Allgemeinen eine Flächeninhaltsfunktion?
## O = Obersumme[f,a,b,n]
## U = Untersumme[f,a,b,n]
# Klicke mit der Maus links oben auf den Pfeil-Cursor und danach im Algebra-Fenster links auf <math>n</math>. Zum Ändern des Wertes von <math>n</math> kannst Du jetzt die Pfeiltasten auf der Tastatur benutzen oder den Wert von <math>n</math> erneut direkt eingeben. Kleiner TIPP: Klicke mit der rechten Maustaste auf <math>n</math> im Algebra-Fenster, wähle "Eigenschaften" und stelle dann unter der Registerkarte "Schieberegler" die Schrittweite auf "1". So erhältst Du nur ganze Zahlen von <math>n</math>.
# Wenn Du eine neue Funktion untersuchen möchtest, dann gib sie einfach wieder wie unter Punkt 2 beschrieben in die Eingabzeile ein. Die Intervallgrenzen werden ebenso geändert.|
BILD=Nuvola_apps_bookcase.png|
ÜBERSCHRIFT=Kurzanleitung zur Nutzung von Geogebra|
}}
}}
<br><br><br>
<br><br><br>
<div align="center">
<div align="center">
[[Benutzer:Dickesen/Integral3|<<Zurück<<]] &nbsp; &nbsp; [[Benutzer:Dickesen|Home]] &nbsp; &nbsp; [[Benutzer:Dickesen/Integral5|>>Weiter>>]]
[[Benutzer:Dickesen/Integral5|<<Zurück<<]] &nbsp; &nbsp; [[Benutzer:Dickesen|Home]] &nbsp; &nbsp; [[Benutzer:Dickesen/Integral6a|>>Weiter>>]]
</div>
</div>
<br>
{{Kastendesign1|
BORDER = cornflowerblue|
BACKGROUND = cornflowerblue|
BREITE =100%|
INHALT=
[[Benutzer:Dickesen|Home]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral|Einführendes Beispiel]] &nbsp; &#124;  &nbsp;[[Benutzer:Dickesen/Integral2|Vorüberlegungen]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral3|Ober- und Untersumme]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral4|Flächen bestimmen]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral5|Bestimmtes Integral]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral6a|Bestimmung der Flächeninhaltsfunktion]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral7|Stammfunktion]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral8|Aufgaben]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral9|Hauptsatz]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral10|Integrationsregeln]] &nbsp; &#124; &nbsp;
[[Benutzer:Dickesen/Integral11|Aufgaben II]]
|
BILD=Erioll_world.png‎|24px|
ÜBERSCHRIFT=<div align="center">Navigation</div>|
}}

Version vom 21. November 2009, 09:15 Uhr

Die Flächeninhaltsfunktion

Zuletzt hast Du gesehen, dass die Berechnung des bestimmten Integrals von Hand sehr aufwendig und umständlich ist. Wünschenswert wäre es also, wenn es eine einfachere Lösung des Problems gäbe.
Um eine einfachere und bessere Lösung zu finden, kannst Du unten wieder ein Geogebra-Applet benutzen.
Neben dem Graphen der Funktion ist das bestimmte Integral dieser Funktion im Intervall abgebildet. Über der oberen Intervallgrenze ist der Wert des bestimmten Integrals als Zahl und Funktionswert abgebildet.
Vorlage:Aufgaben-M

GeoGebra



Vorlage:Aufgaben-M

GeoGebra



Damit hast Du gezeigt, dass das bestimmte Integral einer Funktion in den Grenzen und mit Hilfe einer Flächeninhaltsfunktion und deren Funktionswerten an diesen Intervallgrenzen berechnet werden kann. Somit stellt sich jetzt nur noch die entscheidende

Frage

Wie bestimmt man im Allgemeinen eine Flächeninhaltsfunktion?






Vorlage:Kastendesign1