Lokale lineare Approximation und Benutzer:PascalHänle: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
KKeine Bearbeitungszusammenfassung
 
KKeine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Vorlage:Lernpfad-Navigation| [[Grundvorstellungen zum Ableitungsbegriff]]<br />[[Die Ableitung als lokale Änderungsrate]]}}|Navigation anzeigen|Navigation verbergen}}{{Box|Aufgabe 1|a) Zoomen Sie vermehrt an den Punkt A. Was stellen Sie fest? Beschreiben sie Ihre Beobachtung?
=Grundvorstellungen zum Ableitungsbegriff=
{{Lösung versteckt|<ggb_applet height="500" width="1000" showmenubar="true" showreseticon="true" id="e9jhefpy" />
{{Box|Lernpfad|Im folgenden Lernpfad werden Sie verschiedene Grundvorstellungen für die Ableitung kennen lernen. Ein Repertoire an verschiedenen Grundvorstellungen, oder auch Deutungsmöglichkeiten für die Ableitung, helfen Ihnen die Ableitung flexibel auf unbekannte Sachaufgaben anzuwenden. Sie werden die Ableitung als lokale Änderungsrate, die Ableitung als Steigung der Tangente, die Ableitung als lokale Approximation und die Ableitung als Verstärkungsfaktor kennen lernen.|Lernpfad
|Applet anzeigen|Applet verbergen}}<br /> b) Was erwarten Sie, wenn Sie an den Punkt B zoomen? Überprüfen Sie Ihre Vermutung mit dem Applet. Beschreiben Sie Ihre Vermutung und was Sie festgestellt haben.
{{Lösung versteckt|<ggb_applet height="500" width="1000" showmenubar="true" showreseticon="true" id="dyeqwu9b" />
|Applet anzeigen|Applet verbergen}} <br /> c) An welchen Stellen des Funktionsgraphen würde es beim hineinzoomen ebenfalls sie aussehen wie im Punkt B?|Arbeitsmethode
}}{{Vorlage:Lernpfad-Navigation|Wenn wir beim Hineinzoomen in einen Funktionsgraphen bemerken, dass dieser aussieht wie eine Gerade, nennen wir diese Funktion linear ,,lokal linear" an diesem Punkt.}}{{Box|Aufgabe 2|In dieser Aufgabe werden Sie Funktionen untersuchen in denen die lokale Linearität nicht auf Anhieb ersichtlich ist. Geben Sie im Applet die kritischen Punkte ein die Sie untersuchen möchten und überprüfen Sie die lokale Linearität durch Hineinzoomen. <br />
a) <math>f(x)= \sqrt{x^2}</math> <br />
b) <math>g(x)=100x^2</math><br />
c) <math>h(x)=|x^2-4|</math><br />|Arbeitsmethode
}}{{Vorlage:Lernpfad-Navigation|Wenn man beim Hineinzoomen in einem Punkt feststellt, dass die Funktion an dieser Stelle lokal linear ist, nennen wir die Funktion an dieser Stelle differenzierbar.}}{{Box|Aufgabe 3|Nun werden Sie mit Hilfe des Funktionenmikroskop die Steigung einer Funktion in einem bestimmten Punkt bestimmen. <br/>
a) Zoomen Sie vermehrt in den Punkt A hinein und schieben B durch Verkleinerung von h näher an A heran. Berechnen Sie die Steigung mit Hilfe des Differenzenquotienten. <br/> Tipp: Mit den Pfeiltasten lässt sich der Schieberegler feiner ändern.<br/>
b) Welche Probleme treten bei der Bestimmung der Steigung auf? Lassen sich diese Beheben?
c) Lassen Sie sich die Gerade durch den Punkt A und B anzeigen und beschreiben sie die Gerade.|Arbeitsmethode
}}{{Box|Tangente|Die Geraden, die durch den Punkt P(x0{{!}}f(x0)) verläuft und die gleiche Steigung wie der Graph von f an dieser Stelle hat, nennt man Tangente.|Merksatz
}}
}}


== Die Tangente als lokale lineare Approximation ==
<nowiki>{{Vorlage:Lernpfad-Navigation|</nowiki>[[Die Ableitung als lokale Änderungsrate]] <br /> [[Das Funktionsmikroskop]] <br /> [[Lokale lineare Approximation|Die Ableitung als lokale lineare Approximation]]<nowiki> }}</nowiki>
Wie du in den Aufgaben zuvor schon gesehen hast, lässt sich der Graph der Funktion in einer kleinen Umgebung sehr gut durch du Tangente nähern.{{Box|Aufgabe 4|<nowiki>Wir betrachten die Funktion f(x)=0,25x², die Tangente der Funktion am Punkt P (x0|f(x0)) mit x0 = 1,5und die Abweichung h von x0. </nowiki><br/>  
a) Für welche Werte von h lassen sich die Werte der Funktion durch die der Tangente gut annähern? Entscheide anhand der Graphik und interpretieren Sie die rote Strecke.<br/>
b) Bestimmen Sie die Gleichung der Tangente mit Hilfe des Differentialquotienten. <br/>
c) Bestimmen Sie durch Berechnung des Approximationsfehlers einen h-Wert für eine ,,gute" und ein h-Wert für eine ,,schlechte" Näherung durch die Tangente. <br/>|Arbeitsmethode
}}{{Box|Aufgabe 5|Bestimmen Sie durch Addition der farbigen Strecken die allgemeine Gleichung zur Berechnung der Werte für f(x0+h). Nutzen Sie als Hilfe das folgende Applet. <br/>|Arbeitsmethode
}}{{Box|Aufgabe 6|<nowiki>Lassen Sie nun den Approximationsfehler für kleine h außer Acht und betrachten die Näherungsfunktion f(x_0+h)=f(x_0 )+f´(x_0 )·h Stellen Sie die Gleichung nach f´(x) um. Was fällt Ihnen auf?</nowiki>|Arbeitsmethode
}}{{Box|Aufgabe 7||Arbeitsmethode
}}

Version vom 25. Juni 2019, 10:11 Uhr

Grundvorstellungen zum Ableitungsbegriff

Lernpfad
Im folgenden Lernpfad werden Sie verschiedene Grundvorstellungen für die Ableitung kennen lernen. Ein Repertoire an verschiedenen Grundvorstellungen, oder auch Deutungsmöglichkeiten für die Ableitung, helfen Ihnen die Ableitung flexibel auf unbekannte Sachaufgaben anzuwenden. Sie werden die Ableitung als lokale Änderungsrate, die Ableitung als Steigung der Tangente, die Ableitung als lokale Approximation und die Ableitung als Verstärkungsfaktor kennen lernen.

{{Vorlage:Lernpfad-Navigation|Die Ableitung als lokale Änderungsrate
Das Funktionsmikroskop
Die Ableitung als lokale lineare Approximation }}