Erweiterung der Zahlengeraden: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
Zeile 15: Zeile 15:
 
{{Aufgabe|{{protokollieren}}
 
{{Aufgabe|{{protokollieren}}
 
Lest euch das Merkekästchen durch und beschreibt den Aufbau der Zahlengeraden. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.}}
 
Lest euch das Merkekästchen durch und beschreibt den Aufbau der Zahlengeraden. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.}}
<br>
 
 
{{Merke|
 
{{Merke|
 
Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.<br>
 
Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.<br>
 
[[Datei:Zahlengerade2.JPG|600px|links]]}}
 
[[Datei:Zahlengerade2.JPG|600px|links]]}}
<br>
+
<popup name="Lösungsvorschlag">
 +
Links von der Null findet man die negativen Zahlen, rechts von der Null die positiven Zahlen. Die geschweiften Klammern haben jeweils drei Punkte, weil es unendlich viele positive und unendlich viele negative Zahlen gibt. Die gestrichelte Linie unter der 0 bedeutet, dass die 0 weder positiv noch negativ ist.</popup>
 +
<br><br>
 
{{Übung|Bearbeitet die folgenden Aufgaben.}}
 
{{Übung|Bearbeitet die folgenden Aufgaben.}}
<br>
 
 
<br>
 
<br>
 
<b>1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.</b>
 
<b>1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.</b>
 
<iframe src="https://learningapps.org/watch?v=pyc1b4ahn18" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=pyc1b4ahn18" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<br><br>
 
<br><br>
<b>2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen.</b>
+
<b>2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen.</b> Die linke Aufgabe ist etwas leichter als die rechte Aufgabe.
 
<br>
 
<br>
 
{|cellpadding="8" width=100%
 
{|cellpadding="8" width=100%
Zeile 33: Zeile 33:
 
<iframe src="https://learningapps.org/watch?v=pn6cw32dn18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
<iframe src="https://learningapps.org/watch?v=pn6cw32dn18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
 
|valign=top width=50%|
 
|valign=top width=50%|
Welche Zahl liegt genau in der Mitte der angegebenen Zahlen?<br><br>
+
Welche Zahl liegt genau in der Mitte der angegebenen Zahlen? (Die Sternchen-Aufgaben sind schwerer als die anderen.)<br><br>
 
a) 7 und 16<br>
 
a) 7 und 16<br>
 
b) -8 und 0<br>
 
b) -8 und 0<br>
Zeile 45: Zeile 45:
 
<br>
 
<br>
 
<popup name="Lösung">
 
<popup name="Lösung">
a)13, b)-4, c)4, d)1, e)74, f)-8
+
a) 13, b) -4, c) 4, d) 1, e) 74, f) -8
 
</popup>
 
</popup>
 
|}
 
|}
Zeile 63: Zeile 63:
 
{{Aufgabe|{{protokollieren}}
 
{{Aufgabe|{{protokollieren}}
 
Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.}}
 
Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.}}
{|width=100%
+
{{Merke|Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen <b>entgegengesetzte Zahlen</b>. Der Abstand einer Zahl zur 0 heißt <b>Betrag</b> und wird mit Betragsstrichen gekennzeichnet, z.B. |-4|=4; |+4|=4.}}
|-
+
|width=5%|
+
  
|width=95%|
 
{{Merke|Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen <b>entgegengesetzte Zahlen</b>. Der Abstand einer Zahl zur 0 heißt <b>Betrag</b> und wird mit Betragsstrichen gekennzeichnet, z.B. |-4|=4; |+4|=4.}}
 
 
<popup name="Weitere Erklärungen zum Betrag">
 
<popup name="Weitere Erklärungen zum Betrag">
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Demzufolge ist der Betrag immer positiv, hat also immer ein "+" als Vorzeichen.</popup>
+
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Der Betrag ist immer positiv, hat also immer ein "+" als Vorzeichen, weil man ja nicht z.B. -9 Schritte gehen kann.</popup>
|}
+
 
<br>
 
<br>
  

Version vom 5. April 2018, 10:49 Uhr


Fragezeichen.gif   Frage

Was ist der Unterschied zwischen der 4 unter der Null und der 4 über der Null?


Stift.gif   Aufgabe

Nuvola apps kwrite.png Protokollieren 

Lest euch das Merkekästchen durch und beschreibt den Aufbau der Zahlengeraden. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.

Maehnrot.jpg
Merke:

Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.

Zahlengerade2.JPG



Hand.gif   Übung

Bearbeitet die folgenden Aufgaben.


1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.

2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen. Die linke Aufgabe ist etwas leichter als die rechte Aufgabe.

Welche Zahl liegt genau in der Mitte der angegebenen Zahlen? (Die Sternchen-Aufgaben sind schwerer als die anderen.)

a) 7 und 16
b) -8 und 0
c) -4 und 12
d) -3 und 5
*e) -100 und -48
**f) -28 und 12



Entgegengesetzte Zahlen und Betrag


Stift.gif   Aufgabe
Mitte zwischen zwei Zahlen.JPG

Nuvola apps ksirc.png Kommunizieren  Nuvola apps kwrite.png Protokollieren 
Welche Zahlen könnt ihr für die Fragezeichen einsetzen? Löst und begründet eure Antwort auf dem Protokoll.


Stift.gif   Aufgabe

Nuvola apps kwrite.png Protokollieren 

Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.

Maehnrot.jpg
Merke:

Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen entgegengesetzte Zahlen. Der Abstand einer Zahl zur 0 heißt Betrag und wird mit Betragsstrichen gekennzeichnet, z.B.



Vorlage:Aufgabe float
Pfeil Weiter.JPG

Ein analoges Thermometer