Anwendungsbezogene Extremwertaufgaben und Ganzrationale Funktionen: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>Hofmeier
Keine Bearbeitungszusammenfassung
 
Main>MarinaMueller
KKeine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
{{Lernpfad-M|Üben, Anwenden und Veranschaulichung von Extremwertaufgaben an anwendungsbezogenen Beispielen.
{| width=100% style="border: 0; background-color: #ffffff" cellpadding="0" cellspacing="3"
*'''Zeitbedarf:''' eine Unterrichtsstunde/mehrere Unterrichtsstunden
| style="width: {{{BREITE}}}; vertical-align: top; border:1px solid cornflowerblue; background-color: #FFFFFF" |
*'''Material:''' Stift und Papier, Konzentration
<div style="background-color: cornflowerblue; font-size:1px; height:8px; border-bottom:1px solid cornflowerblue;"></div>
}}
<div style="float:right; margin:8px; margin-top:5px">[[Image:Nuvola_apps_edu_miscellaneous.png|48px]]</div>
 
<div style="font: 10pt Verdana; font-weight:bold; padding:5px; border-bottom:1px solid #AAAAAA;">
{{Kurzinfo-1|M-digital}}
Herzlich willkommen zum Lernpfad zu ganzrationalen Funktionen!</div>
 
<div style="font-size:9pt; padding:5px">
= Extremwertaufgaben in der Anwendung =
In unserer aktuellen Unterrichtseinheit geht es um Transformationen von verschiedenen Funktionen, d. h. also, ihr sollt herausarbeiten, mithilfe welcher Operationen bzw. Veränderungen in der Funktionsgleichung unterschiedliche Funktionsarten im Koordinatensystem verschoben, gestreckt bzw. gestaucht und gespiegelt werden können.  
==Einführung==
In diesem Lernpfad sollst du dich nun speziell mit den ganzrationalen Funktionen auseinandersetzen. 
[[Bild:einführungsgrafik4.png|left]]  
Als Extremwert einer Funktion wird derjenige Wert bezeichnet, der innerhalb eines gewissen Bereichs größer ('''Maximum''') bzw. kleiner ('''Minimum''') als alle anderen Werte in diesem Bereich ist. Hierbei wird noch zwischen einem '''lokalen''' und einem '''globalen''' Extremwert unterschieden. Global ist der Extremwert dann, wenn er der größte bzw. kleinste Wert im '''gesamten''' Definitionsberich ist, im anderen Fall ist es ein lokaler Extremwert.
 


'''Formal ist er folgendermaßen definiert:'''
<div style="font: 10pt Verdana; font-weight:bold; padding:5px; border-bottom:1px solid #AAAAAA;">Kompetenzen</div>
{|valign=top cellpadding=0 cellspacing=2 width=100%
|align=left valign=top width=50%|
Du kennst bereits:
* verschiedene Begriffe / Eigenschaften im Zusammenhang mit Funktionen allgemein (Definitions- und Wertemenge, Symmetrie, ...),
* lineare Funktionen allgemein und abschnittsweise definierte (lineare) Funktionen sowie
* Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x- und auf der y-Achse, Streckung bzw. Stauchung in Richtung der x- und y-Achse sowie Spiegelungen an der x- und y-Achse).
|align=left valign=top width=50%|
Nach Bearbeitung dieses Pfades:
* kennst du die ganzrationalen Funktionen als weitere Funktionenklasse.
* kannst du wichtige Eigenschaften der ganzrationalen Funktionen erläutern.
* weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
* weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse strecken bzw. stauchen sowie an der x- und y-Achse spiegeln kannst.
|}


Es sei <math> U \subseteq\mathbb R </math> eine Teilmenge der Reellen Zahlen (z.B. ein Intervall) und <math> f\colon U\to\mathbb R </math> eine Funktion.
{|border="0" width="100%"
|align = "right"|&nbsp;
|align = "left" width="1000"|Und nun  ....
<br>  
|align = "left" width="1600"|'''Viel Spaß beim Bearbeiten!!'''
|}


</div>
|}


f hat an der Stelle <math> x_0\in U </math>
<br>


* ein lokales Minimum, wenn es ein Intervall <math> I = (a,b) </math> gibt, das <math>  x_0 </math> enthält, so dass <math> f(x_0)\leq f(x) </math> für alle <math> x\in I\cap U </math> gilt;
== '''Infos vor Beginn''' ==
'''1) Lerntagebuch''': <br>
Während der gesamten Unterrichtseinheit sollst du ein '''Lerntagebuch''' führen: Das Tagebuch dient einerseits als "normales" Heft und andererseits als Reflexionsinstrument. Das heißt, du sollst nicht nur die gegebenen Arbeitsaufträge im Lerntagebuch bearbeiten, sondern dir darüber hinaus auch (schriftlich) Gedanken über deine Lernfortschritte und die Eignung des Arbeitsmaterials machen. Das Tagebuch wird nicht bewertet, es dient ausschließlich dazu, dir selbst klar zu  machen, wie groß dein Lernfortschritt ist und wo vielleicht noch Probleme liegen.
<br>  


* ein globales Minimum, wenn <math> f(x_0)\leq f(x) </math> für alle <math> x\in U </math> gilt;
Folgende Bestandteile sollte das Tagebuch haben:
<br>
1)  Standortbestimmung: Was weiß ich bereits über Funktionstransformationen im Allgemeinen? Weiß ich bereits etwas über die zu bearbeitenden Funktionsarten?
<br>
2)  Ein Eintrag nach jeder Stunde während der gesamten Unterrichtseinheit - mögliche Fragen, an denen du dich dabei orientieren kannst, sind:
* Was habe ich gelernt? Was habe ich gut verstanden, welche Fragen sind noch offen? Welche Schwierigkeiten sind bei der Lösung aufgetreten?
* An welchen Stellen habe ich etwas für mich Neues gelernt? Hatte ich Aha-Erlebnisse?
* Bin ich mit meiner Arbeit zufrieden? Habe ich mein Arbeitsziel in dieser Stunde erreicht? Wenn nicht, woran lag es?
* Wie habe ich mich in dieser Stunde im Unterricht oder in der Gruppenarbeit beteiligt? Welche Note würde ich mir geben?
3) Abschlusskommentar zu jeder Phase der Unterrichtseinheit:
<br>
4) Allgemeine Beurteilung der Einheit: Waren Aufbau und Material sinnvoll (speziell die Lernpfade)?
<br>
5)  Abschlussprodukt: Funktionenbild mit Erläuterung
 
<br>


* ein lokales Maximum, wenn es ein Intervall <math> I = (a,b) </math> gibt, das <math> x_0 </math> enthält, so dass  <math> f(x_0)\geq f(x) </math> für alle <math> x\in I\cap U </math> gilt;
'''2) Allgemeine Hinweise''': <br>
* Bearbeite den Lernpfad mit einem Partner oder einer Partnerin - so könnt ihr gemeinsam über die Aufgaben sprechen und schneller zu sinnvollen Ergebnissen gelangen.
* Nutze die versteckten Hinweise erst, wenn du allein bzw. ihr zu zweit bei der Aufgabe nicht mehr weiter kommt - versucht es zuerst ohne Hilfe!
* Für die versteckten Lösungen gilt: Schau sie dir erst an, wenn du die Aufgabe gelöst hast - sie dienen nur der Kontrolle!
* Übernimm alle wichtigen Definitionen, Merksätze, Erläuterungen in dein Lerntagebuch - im Regelfall wirst du allerdings an der betreffenden Stelle explizit dazu aufgefordert.
*    ...
<br>
<br>


* ein globales Maximum, wenn <math> f(x_0)\geq f(x) </math> für alle <math> x\in U </math> gilt.
== '''Definition der ganzrationalen Funktionen''' ==
Eine kleine Aufgabe zum Einstieg: <br>
{{Arbeiten|NUMMER=1|ARBEIT=Du hast ein quadratisches Stück Karton mit der Seitenlänge 16 cm und möchtest eine Kiste (ohne Deckel) basteln. Dazu schneidest du an jeder Ecke des Kartons ein Quadrat der Seitenlänge x aus, so dass du die übriggebliebenen Seiten nur noch hochzuklappen brauchst - die Höhe der Kiste ist demzufolge definiert als x. Stelle eine Funktion für das Volumen auf (in Abhängigkeit von der Höhe x), das heißt, bestimme V(x). Fertige zuvor eine Skizze an.}}
{{Lösung versteckt|1=<math>V(x) = (16 - 2x)^2x = 4x^3 - 64x^2 + 256x</math>}}
<br>


Die Funktion, die du gerade aufgestellt hast, ist eine sogenannte '''ganzrationale Funktion''' - sie setzt sich zusammen aus den einzelnen Summanden <math>4x^3</math>, <math>52x^2</math> und <math>256x</math>, den Potenzfunktionen. Der höchste Exponent gibt den '''Grad der Funktion''' an, d. h. es handelt sich hier um eine ganzrationale Funktion dritten Grades. Die Vorfaktoren der einzelnen Summanden werden entsprechend den zugehörigen Exponenten von x mit <math>a_3</math> - <math>a_1</math> bezeichnet (<math>a_3 = 4</math>, <math>a_2 = 52</math>, <math>a_1 = 256</math>) - sie heißen '''Koeffizienten'''.
<br>


==Wozu überhaupt Extremwerte? ==
Nun in allgemeiner Form:
Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. So kann durch die Bestimmung des Extremwertes herausgefunden werden, welche Verpackungsform das geringste Material verbraucht, unter welchen Parametern eine Strecke in kürzester Zeit zurückgelegt werden kann usw.
{{Definition|1=Ein Term der Form <math>a_nx^n + a_{n - 1}x^{n - 1} + ... + a_2x^2 + a_1x + a_0</math> mit <math>n \in N</math>; <math>a_0</math>, <math>a_1</math>, <math>a_2</math>, ..., <math>a_{n - 1}</math>, <math>a_n \in R</math> und <math>a_n \neq 0</math> heißt '''Polynom'''. Die Zahlen <math>a_0</math>, <math>a_1</math>, <math>a_2</math>, <math>a_3</math>, ..., <math>a_{n - 1}</math>, <math>a_n</math> nennt man '''Koeffizienten''' des Polynoms. Als Grad des Polynoms wird der höchste Exponent n von x bezeichnet, dessen zugehöriger Koeffizient <math>a_n</math> nicht Null ist.<br>
== Allgemeines Lösungsverfahren ==
Eine Funktion f, deren Funktionswert f(x) als Polynom geschrieben werden kann, heißt '''ganzrationale Funktion'''. <br>
Der Grad des Polynoms heißt auch Grad der ganzrationale Funktion. Die Definitionsmenge einer ganzrationalen Funktion ist die Menge der reellen Zahlen, also R.}}
<br>


Ein Extremwert einer Funktion tritt immer dort auf, wo die 1. Ableitung dieser Funktion eine Nullstelle hat und die zweite 2. Ableitung keine Nullstelle besitzt (Alternativ können hier statt der 2. Ableitung auch die Vorzeichen der ersten Ableitung betrachtet werden. Bei Vorzeichenwechsel liegt dann ein Extremwert vor).  
Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam zum Üben:
<br>
<quiz>
{ Gegeben ist die Funktion <math>f(x) = 0.5x^4 + 3x^3 + 7x^2 - 1.3x - 18</math>.
| type="{}" }
1) Der { Grad } der Polynoms ist { 4 }, da 4 der höchste vorkommende Exponent ist. <br>
2) Die { Koeffizienten } lauten wie folgt: <math>a_4</math> = { 0.5 }, <math>a_3</math> = { 3 }, <math>a_2</math> = { 7 }, <math>a_1</math> = { -1.3 }, <math>a_0</math> = { -18 }. Der Index des jeweiligen a entspricht immer den { Exponenten } des zugehörigen x. Achte auf die { Vorzeichen }! Laut Definition kommen für die Koeffizienten alle { reellen } Zahlen in Frage, wundere dich also nicht, wenn in der Funktion z. B. eine Wurzel auftaucht.<br>
3) Da für x alle möglichen Zahlen eingesetzt werden können, ist also hier entsprechend der Definition D = { R }.
</quiz>


Ist allerdings wie bei praktischen Problemen keine explizite Funktion vorgegeben, sondern nur das Problem formuliert, muss zunächst eine passende Funktion, die Zielfunktion, aufgestellt werden. Hierbei hilft es, sich an folgendes Schema zu halten:
Mit den folgenden Übungen kannst du überprüfen, ob du alles verstanden hast: <br>
{{Arbeiten|NUMMER=2|ARBEIT=Bestimme Grad und Koeffizienten der folgenden ganzrationalen Funktionen in deinem Lerntagebuch: <br>
1) <math>f(x) = \frac{1}{2}x^7 - 3x^5 + \sqrt{2}x^3 - x + 13</math> <br>
2) <math>g(x) = 7</math>  <br>
3) <math>h(x) = \frac{x}{2}</math> <br> 
4) <math>i(x) = 0,12345x^6 - 9,87654x </math> <br> 
5) <math>j(x) = x^4 + x^3 - x^2 - x</math>}}


'''1. Stelle das Problem in einer Skizze dar'''
{{Lösung versteckt|1=
 
1) Grad: 7, Koeffizienten: <math>a_7 = \frac{1}{2}, a_5 = -3, a_3 = \sqrt{2}, a_1 = -1, a_0 = 13</math>  <br>
Eine Skizze hilft, sich die Problemstellung deutlich zu machen. Kennzeichne in der Skizze die bekannten und unbekannten Größen. Überlege dir, welche Größen in der Skizze du noch nicht weißt und ob du diese durch die anderen Größen ermitteln kannst.
2) Grad: 0, Koeffizienten: <math>a_0 = 13</math> <br>
 
3) Grad: 1, Koeffizienten: <math>a_1 = \frac{x}{2}</math>  <br>  
'''2. Stelle die Zielfunkion auf'''
4) Grad: 6, Koeffizienten: <math>a_6 = 0,12345</math>, <math>a_1 = 9,87654</math>  <br>
 
5) Grad: 4, Koeffizienten: <math>a_4 = 1</math>, <math>a_3 = 1</math>, <math>a_2 = -1</math>, <math>a_1 = -1</math>  <br>
Versuche nun, deine Skizze in eine Funktion zu übertragen. Hierbei musst du die Größe, die du maximieren oder minimieren willst, durch die anderen vorhandenen Größen ausdrücken.
 
'''3. Nebenbedingung in Zielfunktion einsetzen'''
 
Unter Nebenbedingung versteht man einen für die Aufgabe notwendigen Zusammenhang, der nicht direkt aus der Aufgabenstellung hervorgeht. Ist in der Zielfunktion also noch eine Größe, die du nicht kennst, versuche sie durch die anderen gegebenen Größen z.B. mit Hilfe eines geometrischen Zusammenhangs auszudrücken. Am Schluss darf deine Zielfunktion nur noch von einer Größe abhängen.
 
'''4. Extremwert der Zielfunktion bestimmen'''
 
Nun musst du nur noch den Extremwert der Zielfunktion herausfinden. Dies geschieht durch Nullstetzen der ersten Ableitung und durch die Betrachtung des Randes der Definitionsmenge. Betrachtest du die Nullstelle der ersten Ableitung, so musst du diesen Wert noch durch Einsetzen in die 2. Ableitung überprüfen. Ist die 2. Ableitung an dieser Stelle positiv, so handelt es sich um ein Minimum, ist sie negativ, um ein Maximum. Falls die 2. Ableitung ebenfalls eine Nullstelle hat, ist es kein Extremum.
 
== Der schräge Wurf ==
Als erstes Beispiel wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. Hierzu sind natürlich einige Vorüberlegungen zu treffen. Von was hängt die Wurfweite sonst noch ab? Erinnerst du dich an die entsprechenden physikalischen Formeln? Wenn du dich nicht erinnern kannst oder um deine Formeln zu überprüfen, klicke auf Lösung anzeigen! Aber: Vorher nachdenken!
 
{{Lösung versteckt mit Rand|Entscheidend ist die Zerlegung der Bewegung in eine x- und eine y-Komponente.
Der Ort des Objekts ergibt sich aus dem Anfangsort, der Geschwindikeit in die jeweilige Richtung mal die entsprechende Zeit und die Geschwindigkeitsänderungen (welche über die Beschleunigung ausgedrückt werden) mal die quadratische Zeit:
 
<math> x(t)=x_{0}+v_{0} \cdot t + \frac{1}{2} \cdot a_{0} \cdot t^2 </math>
 
Dies müssen wir nun in x- und y-Richtung ausdrücken. In x-Richtung bleibt die Geschwindigkeit (wenn wir die Reibung vernachlässigen) über die ganze Strecke konstant und wir starten am Anfangspunkt 0:
 
<math> x(t)=v_{x} \cdot t </math>
 
In y-Richtung starten wir ebenfalls am Anfangspunkt 0, allerdings nimmt die Geschwindigkeit mit der Erdbeschleunigung g ab:
 
<math> y(t)=v_{y} \cdot t - 1/2 \cdot g \cdot t^2 </math>
}}
}}
<br>


Entscheide: Handelt es sich um eine ganzrationale Funktion? Begründe in deinem Lerntagebuch. <br>
<quiz display="simple">


Versuche nun nach dem oben dargestellten Schema vorzugehen, dir also in einer Skizze die Situation zu verdeutlichen und die entsprechenden Größen einzuzeichnen! Wo befindet sich der Winkel <math>\alpha</math>?
{ <math>f(x) = \frac{x}{\sqrt{3}}</math>


{{Lösung versteckt|Skizze:
+ ja
- nein


<ggb_applet width="400" height="250" filename="schraeger_Wurf4.ggb" showResetIcon="true" />
{ <math>g(x) = 1</math>


}}
+ ja
- nein


{ <math>h(x) = \frac {\sqrt{3}}{x}</math> }


Als feste Größe ist die Abwurfgeschwindigkeit <math>\vec v_{0}</math> anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel <math>\alpha</math>. Kannst du die noch unbekannten Größen mit Hilfe von <math>\vec v_{0}</math> und <math>\alpha</math> ausdrücken?
- ja
+ nein


{{Lösung versteckt mit Rand|Um unsere Gleichungen für x(t) und y(t) aufzustellen benötigen wir die noch unbekannten Größen <math> v_{x} </math> und <math> v_{y} </math> die sich aus der Skizze ablesen lassen:
{ 4) <math>i(x) = \frac {1}{x + 1} </math> }


<math> v_{x}=v_{0} \cdot cos(\alpha) </math> und
- ja
+ nein 


<math> v_{y}=v_{0} \cdot sin(\alpha) </math>
{ <math>j(x) = x^2</math>


}}
+ ja
- nein


Nun kannst du die beiden Ortsgleichungen aufschreiben und zu einer Funktionsgleichung umformen. Die Zielfunktion ist dabei die Funktion der Größe, die du maximieren willst. In unserem Fall möchten wir zunächst das Maximum der Wurfweite in Abhängigkeit des Abwurfwinkels bestimmen. Unsere Zielfunktion ist also die Ortsfunktion in x-Richtung. Versuche diese Funktion mit Hilfe der bisherigen Gleichungen aufzustellen.
</quiz>
<br>


{{Arbeiten|NUMMER=3|ARBEIT=Nun weißt du genau, was eine ganzrationale Funktion ist. Übernimm die Definition in dein Lerntagebuch (sofern noch nicht geschehen) und erläutere sie an einem selbstgewählten Beispiel für eine Funktion dritten Grades. Zeichne auch den zugehörigen Graphen in dein Lerntagebuch - stelle dazu eine geeignete Wertetabelle auf.}}


{{Lösung versteckt mit Rand|Durch das Zusammensetzen der obigen Funktion von <math> x(t) </math> und <math> v_{x}(t) </math> ergibt sich folgender Zusammenhang:
== '''Wichtige Eigenschaften ganzrationaler Funktionen''' ==
{{Arbeiten|NUMMER=4|ARBEIT=Ordne die Funktionsgleichungen den jeweiligen Bildern zu. Begründe in deinem Lerntagebuch.}}


<math> x(t)=v_{x} \cdot t = v_{0} \cdot cos(\alpha) \cdot t = x(t,\alpha) </math>
<div class="lueckentext-quiz">
{|
|-
| [[Bild:-2x_-_1.jpg|200px]] || [[Bild:-10x^3_+_2x.jpg|200px]] || [[Bild:2x^3_+_3x.jpg|200px]] || [[Bild:2x^4_-x^2_+_3.jpg|200px]] || [[Bild:5x^3_-_2x^2_-_3.jpg|200px]]
|-


}}
| <strong>  -2x-1 </strong>  || <strong> -10x<sup>3</sup>+2x </strong> || <strong>  2x<sup>3</sup>+3x </strong> || <strong> 2x<sup>4</sup>-x<sup>2</sup>+3 </strong> || <strong> 5x<sup>3</sup>-2x<sup>2</sup>-3 </strong>
|}
</div>


Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels <math> \alpha </math>. Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.
<div class="lueckentext-quiz">
Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.
{|
|-
|| [[Bild:x^2-x.jpg|200px]] || [[Bild:x1^3.jpg|200px]] || [[Bild:x1^4.jpg|200px]] || [[Bild:X^4-3x^2_-_2x_-_2.jpg|200px]] || [[Bild:x^5_+_3x^2.jpg|200px]]
|-


Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:
| <strong> x<sup>2</sup>-x </strong> ||  <strong> x<sup>3</sup> </strong> || <strong>  x<sup>4</sup> </strong> || <strong> x<sup>4</sup>-3x<sup>2</sup>-2x-2 </strong> || <strong> x<sup>5</sup>+3x<sup>2</sup> </strong>
|}


{{Lösung versteckt mit Rand|Störend ist bei uns noch die Variable t. Wir interessieren uns ja nur für den Zeitpunkt, an dem der Ball/Stein oder ähnliches wieder auf dem Boden aufkommt. Dies ist genau der Zeitpunkt, bei dem unsere zweite Ortsfunktion y(t) (also die Höhe) wieder 0 ist. Als Funktion:
</div>


<math> y(x)=v_{y}(t) \cdot t - \frac{1}{2} \cdot g \cdot t^2 = v_{0}(t) \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 =0 </math>
<div class="lueckentext-quiz">


um t zu elimieren, müssen wir diese Gleichung nach t auflösen. Etwas anders sortiert lässt sich die Gleichung auch schreiben als
{|
|-
|| [[Bild:X^6_+_x^2.jpg|200px]] || [[Bild:-x^3.jpg|200px]] || [[Bild:-x^4_+_3x^2.jpg|200px]] || [[Bild:-x^4.jpg|200px]]
|-
| <strong> x<sup>6</sup>+x<sup>2</sup> </strong> || <strong>  -x<sup>3</sup> </strong>  || <strong> -x<sup>4</sup>+3x<sup>2</sup> </strong> || <strong>  -x<sup>4</sup> </strong>
|}


<math> 0 = \underbrace{- \frac{1}{2} \cdot g}_{a} \cdot t^2 + \underbrace{v_{0}(t) \cdot sin(\alpha)}_{b} \cdot t = a \cdot t^2 + b \cdot t = 0</math>
</div>


Dies ist eine einfache quadratische Gleichung, die sich mit der Mitternachtsformel lösen lässt:


<math> t_{1/2}=\frac{-v_{0} \cdot sin(\alpha)\pm \sqrt{v_{0}^2 \cdot sin(\alpha)^2+4 \cdot \frac{1}{2}\cdot 0}}{-g} </math>


Im Folgenden sollst du die gerade geordneten Funktionen noch einmal genauer untersuchen hinsichtlich möglicher Symmetrien sowie ihrem Verhalten für sehr große und sehr kleine x (Verhalten im Unendlichen):
<br>
<br>


<math> \qquad =\frac{-v_{0} \cdot sin(\alpha) \pm v_{0} \cdot sin(\alpha)}{-g} </math>
=== Symmetrie ===
{{Arbeiten|NUMMER=5|ARBEIT=Bei welcher der Funktionen kannst du eine Symmetrie erkennen (Punktsymmetrie zum Ursprung oder Achsensymmetrie zur y-Achse)? Gruppiere die Funktionen bzw. die Funktionsgleichungen entsprechend in drei Gruppen (Punktsymmetrie, Achsensymmetrie, keine Symmetrie). Formuliere einen Merksatz, woran man eine mögliche Symmetrie an der Funktionsgleichung erkennen kann.}}


{{versteckt|Untersuche speziell die Exponenten. Was fällt dir bei punktsymmetrischen Funktionen an den Exponenten auf, was bei achsensymmetrischen?}}


<math> \Rightarrow t_{1} = 0 \qquad und \qquad t_{2} = \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g} </math>
{{Lösung versteckt|
{{Merke|Der Graph einer ganzrationalen Funktion f verläuft genau dann
* achsensymmetrisch zur y-Achse, wenn f(x) nur Potenzen mit geraden Exponenten enthält.
* punktsymmetrisch zum Ursprung, wenn f(x) nur Potenzen mit ungeraden Exponenten enthält.}}
}}  
<br>


Wir erinnern uns, dass <math> t_{1} </math> und <math> t_{2} </math> jeweils die Zeiten sind, an denen die Höhe des Wurfobjekts 0 ist. Dies ist logischerweise zur Zeit 0 der Fall, was unserer Lösung <math> t_{1} </math> entspricht. Die für uns interessante Lösung ist allerdings <math> t_{2} </math>, also die Zeit, wenn das Wurfobjekt nach dem Wurf wieder am Boden ist.
=== Verhalten im Unendlichen / Verlauf des Graphen ===
{{Arbeiten|NUMMER=6|ARBEIT=Wie verhalten sich die verschiedenen Graphen <br>
* für sehr große x-Werte?
* für sehr kleine x-Werte? <br>
Gruppiere die Funktionen begründet entsprechend ihres Verhaltens und formuliere in deinem Lerntagebuch einen Merksatz, woran man das Verhalten der Funktion für sehr große bzw. sehr kleine x-Werte ablesen kann.}}


}}
{{versteckt|Betrachte die einzelnen Summanden. Wenn du sehr große bzw. sehr kleine x-Werte einsetzt, welcher Summand bestimmt dann das Ergebnis hauptsächlich?}}  


Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch für die Aufgabe wesentliche Größen ausdrücken. Dies musst du nun in die Zielfunktion einsetzen.
{{Lösung versteckt|
{{Merke|1=Das Verhalten einer ganzrationalen Funktion f für sehr große x wird von dem Summanden mit der höchsten Potenz von x, d. h. dem Summanden mit dem höchsten Exponenten, bestimmt. Der Graph zur Funktion verhält sich also wie der Graph zur Funktion y = <math>a_nx^n</math>, wobei n der Grad von f ist.}}
}}


{{Lösung versteckt mit Rand|Mit der Information über t können wir t nun in unserer Ortsfunktion <math> x(t,\alpha) </math> elimieren.


<math> x(t_{2},\alpha)= v_{0} \cdot cos(\alpha) \cdot t_{2} = v_{0} \cdot cos(\alpha) \cdot \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g}= \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha)=x(\alpha) </math>
 
Somit hängt unsere Wurfweite wie gewollt nur noch vom Abwurfwinkel <math> \alpha </math> ab. In der Skizze kannst du zusätzlich die Abwurfgeschwindigkeit <math> v_{0} </math> variieren, die wir in der Berechnung zunächst einmal als fest voraussetzen.
 
Skizze:
 
<ggb_applet width="400" height="250" filename="wurfweite2.ggb" showResetIcon="true" />
 
}}
 
Du hast nun die Zielfunktion aufgestellt und die störende Variable durch deine Nebenbedingung eliminiert. Nun hast du eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von <math> x(\alpha)</math>.
 
Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von <math> \alpha </math> abhängt, musst du jetzt natürlich nach <math> \alpha </math> ableiten. Versuche, die Nullstelle zu bestimmen.
 
{{Lösung versteckt mit Rand|Die Funktion
 
<math> x(\alpha) = \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha) </math> soll maximiert werden.


Erste Ableitung:
{{Arbeiten|NUMMER=7|ARBEIT=Betrachte die folgenden Graphen:<br>


<math> x'(\alpha)= \frac{2 \cdot v_{0}^2}{g} (-sin(\alpha) \cdot sin(\alpha)+cos(\alpha)cos(\alpha))\qquad \qquad (Produktregel) </math>  
# <math>f(x) = x^3</math>
# <math>f(x) = 3x^3</math>
# <math>f(x) = 3x^3 + 2x^2</math>
# <math>f(x) = 3x^3 + 2x^2 +5x</math>
# <math>f(x) = 3x^3 + 2x^2 + 5x - 2</math>


<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (cos(\alpha)^2 - sin(\alpha)^2) </math>
<gallery perrow="5">


<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (1-2sin(\alpha)^2) \stackrel{!}{=} 0 \qquad \qquad (sin(x)^2+cos(x)^2=1)</math> 
Datei:X^3.jpg
Datei:3x^3.jpg
Datei:3x^3+2x^2.jpg
Datei:3x^3+2x^2+5x.jpg
Datei:3x^3+2x^2+5x-2.jpg


<math> \Leftrightarrow 2 \cdot sin(\alpha)^2 = 1 \qquad \Leftrightarrow sin(\alpha) = \pm \frac{1}{\sqrt{2}} </math>
</gallery>
-------
# <math>f(x) = x^4</math>
# <math>f(x) = 2x^4</math>
# <math>f(x) = 2x^4 - 2x^3</math>
# <math>f(x) = 2x^4 - 2x^3 + 2x^2</math>
# <math>f(x) = 2x^4 - 2x^3 + 2x^2 + 3x</math>
# <math>f(x) = 2x^4 - 2x^3 + 2x^2 + 3x -3</math>


<math> \Leftrightarrow \qquad \alpha = \pm 45^\circ </math>
<gallery perrow="5">


Die negative Lösung entspräche dem Abwurf in 45° nach unten in den Boden, also eine nichtpraktische Lösung.
Datei:X^4.jpg
Datei:2x^4-2x^3.jpg
Datei:2x^4-2x^3+2x^2.jpg
Datei:2x^4-2x^3+2x^2+3x.jpg
Datei:2x^4-2x^3+2x^2+3x-3.jpg


<math> \Rightarrow \qquad \alpha = 45^\circ </math>
</gallery>
 
Zur Überprüfung, ob es sich tatsächlich um ein Maximum handelt, sollten wir noch die 2. Ableitung überprüfen:
 
<math> x''(\alpha) = - \frac{8 \cdot sin(\alpha) \cdot cos(\alpha)}{g} < 0 \qquad \qquad \alpha \approx 45^\circ </math>
 
Somit handelt es sich tatsächlich um ein Maximum und die Wurfweite wird bei <math> \alpha = 45^\circ </math> maximal.


Beschreibe jeweils den Verlauf der 5 bzw. 6 Graphen. Wie beeinflussen die weiteren Summanden den Verlauf des Graphen zu <math>x^3 / 3x^3</math> bzw. <math>x^4 / 2x^4</math>, d. h. ändert sich das Gesamtbild?}}<br>
{{Lösung versteckt|
{{Merke| 1=Der Graph zur Funktion verhält sich so wie der Graph zur Funktion y = <math>a_nx^n</math>, wobei n der Grad von f ist. Alle weiteren Summanden beeinflussen den Verlauf nur geringfügig.}}
}}
}}
<br>
   
   
Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.
Mithilfe der folgenden Übung kannst du [http://www.brinkmann-du.de/mathe/rbtest/1mct_n/mct_n_002.htm Verlauf und Symmetrie von ganzrationalen Funktionen untersuchen] und so überprüfen, ob du alles verstanden hast.
 
<br>
Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei <math> \alpha=0^\circ </math>, also den Wurf senkrecht nach oben, sein Maximum haben wird.
<br>
Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.


{{Lösung versteckt mit Rand|Wir müssen die Ableitung der Funktion y(t) wieder gleich 0 setzen, um die Extremwerte der Funktion herauszufinden und diese Werte dann mithilfe der 2. Ableitung überprüfen:
== '''Transformationen''' ==
Die ganzrationalen Funktionen, die du in diesem Lernpfad kennen gelernt hast, weisen bestimmte Transformationen auf, d. h. die Funktionsgleichung gibt an, inwiefern der Graph gestreckt oder gestaucht, in Richtung der x- oder y-Achse verschoben oder an der x-Achse gespiegelt ist.
<br>


<math> y(t)= v_{0} \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 </math>
Mit zwei Arten von ganzrationalen Funktionen hast du dich in den vergangenen Wochen im Unterricht bereits näher beschäftigt, und zwar mit den linearen und den quadratischen Funktionen. Dabei handelt es sich um nichts anderes als um ganzrationale Funktionen ersten und zweiten Grades. Eine lineare Funktion wird entsprechend der Definition als Polynom folgendermaßen geschrieben: <math>f(x) = a_1x + a_0</math> - der zugehörige Graph heißt - wie du weißt - Gerade. Die dementsprechende Schreibweise der quadratischen Funktionen sieht folgendermaßen aus: <math>g(x) = a_2x^2 + a_1x + a_0</math> (Normalform) - der zugehörige Graph heißt Parabel. <br>


<math> y'(t)= v_{0} \cdot sin(\alpha) - \frac{1}{2} \cdot g \cdot 2 \cdot t \stackrel{!}{=} 0</math>
{{Arbeiten|NUMMER=8|ARBEIT=Skizziere und beschreibe das Aussehen von
* Geraden und
* Parabeln
in deinem Lerntagebuch. Erläutere jeweils den Einfluss der Koeffizienten auf die Graphen, sofern dieser eindeutig zu erkennen ist. Falls du Hilfe brauchst, nutze das versteckte Applet.}}  
{{versteckt|<ggb height="" width="" showMenuBar="false" showResetIcon="true" filename=" .ggb" />}}
<br>


<math> \Rightarrow t_{max} = \frac{ v_{0} \cdot sin(\alpha)}{g} </math>
Im Folgenden sollst du dich genauer mit Verschiebungen, Streckungen / Stauchungen und Spiegelungen von ganzrationalen Funktionen (speziell dritten und vierten Grades) beschäftigen. Los geht es mit den einfachsten ganzrationalen Funktionen - den Geraden. Mit verschiedenen Aspekten im Zusammenhang mit linearen Funktionen hast du dich im Unterricht zwar schon beschäftigt, aber noch nicht mit Transformationen von Geraden im Koordinatensystem. Das sollst du nun nachholen: <br>


Einsetzen in y(t):
{{Arbeiten|NUMMER=9|ARBEIT=Gegeben ist eine lineare Funktion mit f(x) = \frac{1}{2}x + \frac{1}{2}. Die folgenden Bilder zeigen dir verschiedene Transformationen dieser Gerade. Bestimme jeweils eine Funktionsgleichung der neuen Gerade und erläutere kurz in deinem Lerntagebuch, durch welche Veränderung in der Funktionsgleichung du die neue Gleichung entwickeln kannst. <br>
[[Bild:  ]]
<br>
Stelle anschließend allgemein zusammen, durch welche Veränderung in der Funktionsgleichung f(x) = a<sub>1</sub>x + a<sub>0</sub> du die jeweilige Transformation, d. h.
* eine Streckung in Richtung der y-Achse um den Faktor a ,
* eine Spiegelung des Funktionsgraphen an der x-Achse,
* eine Verschiebung in Richtung der y-Achse um e
* eine Verschiebung in Richtung der x-Achse um d
darstellen kannst. Du kannst deine Vermutungen mit verschiedenen Beispielen in [http://www.geogebra.org GeoGebra] überprüfen.
Kannst du in einer Gleichung zusammenfassen: Streckung in Richtung der y-Achse um a, Verschiebung in Richtung der y-Achse um e, Verschiebung in Richtung der x-Achse um d? Formuliere einen Satz, der Auskunft darüber gibt, wie du eine lineare Funktion an der x-Achse spiegeln kannst.}}
{{Lösung versteckt| f(x) = a[a<sub>1</sub>x - d) + (a<sub>0</sub> + e). Eine Spiegelung an der x-Achse kann erreicht werden durch die Wahl eines negativen Streckfaktors a.]}}
<br>


<math> y(t_{max})= v_{0} \cdot sin(\alpha) \frac{v_{0} \cdot sin(\alpha)}{g} - \frac{1}{2} \cdot g \frac{v_{0}^2 \cdot sin(\alpha)^2}{g^2} </math>
Eine Transformationsart, die bislang noch nicht betrachtet wurde, ist die '''Streckung / Stauchung in Richtung der x-Achse'''. 
{{Arbeiten|NUMMER=10|ARBEIT=Eine Streckung bzw. Stauchung in Richtung der x-Achse kann erreicht werden durch Bilden von f(bx) mit einem gegebenen Wert für b, d. h. überall dort, wo in der Funktionsgleichung ein x steht, wird bx eingesetzt und aufgelöst. Untersuche, für welche Werte von b sich die drei Möglichkeiten ergeben: Streckung, Stauchung, keine Veränderung. Nimm die Funktion f(x) und experimentiere mit [http://www.geogebra.org GeoGebra]. Beschreibe deine Versuche und Ergebnisse kurz in deinem Lerntagebuch.}}<br>
{{Lösung versteckt|Folgende Fälle lassen sich unterscheiden:
* -1 < b < 1: Streckung in Richtung der x-Achse; dazu kommt für negative Werte die Spiegelung an der y-Achse <br>
* b = 1: keine Veränderung, im negativen Fall nur Spiegelung an der y-Achse
* b < -1 bzw. b > 1: Stauchung in Richtung der x-Achse; dazu kommt für negative Fälle die Spiegelung an der y-Achse}} <br>
Automatisch hast du jetzt also auch schon die '''Spiegelung an der y-Achse''' als weitere Transformationsart mit bearbeitet.


<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{g} - \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>
{{Arbeiten|NUMMER=11|ARBEIT=Untersuche den Graphen zu f(x) = \frac{1}{2}x + \frac{1}{2}. Bilde g(x) = f(bx) mit b = 4 und zeichne beide Geraden in dein Lerntagebuch. Untersuche, ob du einen anderen Weg findest, um mithilfe von bereits bekannten Transformationen ausgehend von f(x) zu g(x) zu gelangen. Erläutere in deinen Lerntagebuch. Wenn du möchtest, kannst du zur zeichnerischen Überprüfung [http://www.geogebra.org GeoGebra] nutzen.<br>
Formuliere abschließend: Ist es notwendig, im Zusammenhang mit linearen Funktionen die Streckung in Richtung der x-Achse gesondert zu betrachten?}} <br>
{{Lösung versteckt|Es ist möglich, zu g(x) zu gelangen, indem man f(x) mit dem Faktor 4 in Richtung der y-Achse streckt und um +\frac{1}{2} auf der y-Achse verschiebt. Demzufolge ist es bei linearen Funktionen nicht notwendig, die Streckung / Stauchung in Richtung der x-Achse gesondert zu betrachten. Um eine Spiegelung an der y-Achse hervorzurufen, gibt es allerdings keine andere Möglichkeit.}} <br>


<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>
{{Arbeiten|NUMMER=12|ARBEIT=Mit den quadratischen Funktionen und möglichen Transformationen haben wir uns im Unterricht bereits ausführlich beschäftigt, allerdings haben wir dabei hauptsächlich die Scheitelpunktform betrachtet. Nun sollst du dich mit der Normalform auseinandersetzen und überprüfen, inwiefern du an dieser Schreibweise der Funktionsgleichung Transformationen ablesen kannst.<br>
Zuvor erstmal eine kurze Wiederholung: Wie hängen Scheitelpunktform und Normalform einer quadratischen Funktion zusammen? Wähle eine Beispielfunktion in Scheitelpunktform. Gib anschließend die zugehörige Normalform an. Wie gehst du vor, um die Normalform zu erhalten? Überprüfe dein Ergebnis, indem du beide Funktionen zeichnest - hast du richtig gerechnet? [http://www.geogebra.org GeoGebra].<br>
Überführe die Normalform anschließend rechnerisch zurück in die Scheitelpunktform.            .....        Na, geschafft? Falls nicht, kleiner Tipp: Quadratische Ergänzung!!!.
<br>
<br>
<br>
Du siehst also, Scheitelpunktform und Normalform sind nur zwei verschiedene Darstellungsformen für ein und dieselbe Funktionsgleichung. Beide Varianten können beliebig ineinander überführt werden.}} <br> <br>


Einsetzen von <math> \alpha_{max}=45^\circ </math>
Die Möglichkeit, die Normalform in die Scheitelpunktform zu überführen, ist allerdings nur bei quadratischen Funktionen so einfach möglich. Ganzrationale Funktionen mit n > 2 werden im Regelfall in Polynomschreibweise angegeben und lassen sich nicht in eine Art "Scheitelpunktform" überführen, an der alle Transformationsarten ablesbar sind. <br>
Auch für diese Fälle gibt es eine solche Funktionsgleichung, aber die Auseinandersetzung damit ist nicht die Aufgabe eurer Gruppe, sondern die der Gruppe "Potenzfunktionen". Ihr sollt euch mit der etwas schwierigeren Polynomschreibweise auseinandersetzen.
<br>
Du hast ja bereits herausgefunden, wie die verschiedenen Transformationen sich bei linearen Funktionen (also den einfachsten der ganzrationalen Funktionen) in die Funktionsgleichung einbauen lassen; im Folgenden sollst du versuchen, dein Wissen bezüglich der einzelnen Transformationsarten auf ganzrationale Funktionen zweiten, dritten und vierten Grades zu übertragen.
<br>
<br>


<math> y(t_{max})= \frac{v_{0}^2}{4g} </math>
Beginnen wir mit der '''Streckung bzw. Stauchung in Richtung der y-Achse''':
<br>


Zuletzt noch die Überprüfun der 2. Ableitung:
{{Arbeiten|NUMMER=13|ARBEIT=Du siehst auf dem folgenden Bild zwei Funktionsgraphen: f(x) ist die Ausgangsfunktion mit der angezeigten Funktionsgleichung - g(x) ist demgegenüber in Richtung der y-Achse gestreckt. Bestimme die Funktionsgleichung zu g(x). <br>
<ggb height="" width="" showMenuBar="false" showResetIcon="true" filename=" .ggb" />
<br>
* Bestimme zuerst den Faktor a, mit dem du f(x) strecken oder stauchen musst, um g(x) zu erhalten.
* Durch welche mathematische Operation kannst du nun zur Funktionsgleichung von g(x) kommen?
* Welche Punkte des Graphen verändern sich durch eine Streckung in Richtung der y-Achse, welche nicht?
* Stauche f(x) um den Faktor a= <math>\frac {1}{2}<math>. Wie lautet die Funktionsgleichung zur neuen Funktion h(x)? Überprüfe mit dem GeoGebra-Link unten. <br>
* Überprüfe mithilfe des Links, ob deine Erkenntnisse sich auch auf Funktionen dritten und vierten Grades übertragen lassen. Welche Fälle für a lassen sich unterscheiden? Wähle für jeden Fall zwei entsprechende Beispiele und überprüfe - notiere in deinem Lerntagebuch. Was ändert sich im Fall a < 0?
* Formuliere einen Merksatz, der erklärt, wie du eine beliebige ganzrationale Funktion mit einem Faktor strecken oder stauchen kannst (Wie muss der Faktor jeweils aussehen?). Welche Punkte des Graphen werden durch eine Streckung / Stauchung nicht verändert? <br>
Falls du nicht weiter weißt, nutze den versteckten Hinweis. Falls du zeichnerisch ausprobieren möchtest, kannst du das hier tun: [http://www.geogebra.org GeoGebra].}} <br>


<math> y''(t_{max})= -g < 0 </math>
{{versteckt|Zur Bestimmung des Streckfaktors wähle dir einen Wert, also z. B. x = 1. Lies die zugehörigen Funktionswerte für beide Funktionen an den Graphen ab - in welcher Beziehung stehen die beiden Funktionswerte zueinander? Überprüfe mithilfe weiterer Werte und überlege dir, wie du diesen Streckfaktor mit der Funktionsgleichung von f in Verbindung setzen kannst.}} <br>


Somit handelt es sich um ein Maximum und wir haben die Flughöhe für beliebige Anfangsgeschwindigkeiten bestimmt.
{{Lösung versteckt|
{{Merke|1=Eine Streckung bzw. Stauchung einer ganzrationalen Funktion wird erreicht durch die Multiplikation der '''gesamten''' Funktion mit dem Streckfaktor a. Für a lassen sich drei verschiedene Fälle unterscheiden: <br>
* -1 < a < 1: Es handelt sich um eine Stauchung; im Falle eines negativen Streckfaktors kommt eine Spiegelung an der x-Achse hinzu.
* a = 1: Die Funktionsgleichung ändert sich nicht, es handelt sich weder um eine Stauchung noch um eine Streckung.
* a > 1 bzw. a < -1: Es handelt sich um eine Streckung. Für negatives a ist es zusätzlich eine Spiegelung an der x-Achse. <br>
Durch eine Streckung oder Stauchung ändern sich alle Werte der Funktion mit Ausnahme der Nullstellen - Nullstellen bleiben von Streckungen (bzw. Stauchungen) in Richtung der y-Achse grundsätzlich unberührt.}}
}} <br>


}}
Mit Bearbeitung dieser Aufgabe hast du bereits implizit die '''Spiegelung an der x-Achse'' mit untersucht und damit bereits eine weitere Transformationsart "abgehakt". Bevor du dich der nächsten Transformationsart zuwendest, hier noch einige Übungen zu Streckungen und Stauchungen:
<br>


Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!






==Extremwertaufgabe mit Nebenbedingung: Acker neben Straße==


{{Aufgabe|
Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage


(a.) 1000m


(b.) 100m.


Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?}}




                  Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!
Weiter geht es mit den '''Verschiebungen in Richtung der beiden Achsen''': <br>
Der Abwechselung halber betrachten wir nun eine Funktion 3. Grades.


{{Arbeiten|NUMMER=14|ARBEIT= <br>
<ggb height="" width="" showMenuBar="" showResetIcon="" filename=" .ggb" />  <br>


Beschreibe anhand der folgenden Bilder kurz in deinem Lerntagebuch, wie der Graph zu g aus dem Graphen zu f hervorgeht. Gegeben sind die Funktionsgleichungen  <br>
* <math>f(x) = 3x^3 - 4x^2 + 1</math>
* <math>g(x) = 3(x - 3)^3 - 4(x - 3)^2 + 1 - 2 = 3x^3 - 31x^2 + 60x - 64</math>
Wo finden sich die Verschiebungen in der Funktionsgleichung wieder? Kannst du eine Gleichung der Form g(x) = ... aufstellen, in der du allgemein f(x) nutzt (anstatt 3x^3 - 4x^2 + 1) und die ausdrückt, dass f um 3 Einheiten in Richtung der x-Achse und um 2 Einheiten in Richtung der y-Achse verschoben ist?} <br>


[[Bild:AckerStraße.jpg]]
{{versteckt|Die Verschiebung des Graphen kann ausgedrückt werden durch g(x) = f(x - 3) - 2. Überall dort, wo in der Funktionsgleichung zu f(x) ein x steht, wird (x - 3) eingesetzt und abschließend an die gesamte Funktion ein -2 angehängt.}} <br>


{{Arbeiten|NUMMER=15|ARBEIT=Formuliere einen Merksatz, indem du erläuterst, wie sich eine Verschiebung um e in Richtung der y-Achse und eine Verschiebung um d in Richtung der x-Achse bei ganzrationalen Funktionen in der Funktionsgleichung darstellen lassen.}} <br>


Ansonsten löse die Aufgabe in folgenden Schritten:
{{Lösung versteckt|
{{Merke|Eine Verschiebung um d in Richtung der x-Achse lässt sich darstellen durch (x - d), das überall dort in die Funktionsgleichung eingesetzt wird, wo vorher ein x stand. Eine Verschiebung um e in Richtung der y-Achse lässt sich darstellen durch das Anhängen von e an die gesamte Gleichung. Formal kann diese Verschiebung des Graphen um (d / e) ausgedrückt werden durch g(x) = f(x - d) + e.}}
}} <br>


Nun ein konkretes Beispiel:
{{Arbeiten|NUMMER=16|ARBEIT=Gegeben ist eine Funktion <math>f(x) = x^4 + 2x^3 - x^2 + 2</math>. Der Graph soll verschoben werden um +2 in x-Achsenrichtung und +3 in y-Achsenrichtung. Bestimme die verschobene Funktion g(x). Benenne Grad und Koeffizienten von g und zeichne beide Graphen in dein Lerntagebuch.}} <br>


'''1. Stelle die Aufgabensituation in einer Skizze dar''':
{{versteckt|g(x) = f(x - 2) + 3}} <br>


Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.
{{Lösung versteckt|<math>g(x) = (x - 2)^4 + 2(x - 2)^3 - (x - 2)^2 + 2 + 3 = x^4 - 6x^3 + 11x^2 - 4x + 1</math>}}
<br>
<br>


{{Lösung versteckt mit Rand|[[Bild:Acker neben Straße.jpg]]
Kleine Übung zum Verschieben von ganzrationalen Funktionen:
}}


'''2. Zielfunktion für Teilaufgabe a)''' :


Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.


{{Lösung versteckt mit Rand|Der Weg des Fußgängers setzt sich aus 2 Teilstrecken zusammen, nämlich aus einem geraden Weg über den Acker von A nach X (X liegt auf der Straße) und dem Teilstück x von X nach C auf der Straße, wobei X die Entfernung x von C hat mit <math>0 \le x  \le 1000</math> . Der Weg von A nach X führt also über den Acker, der Weg von X nach C über die Straße.


* Sei y die Länge des Weges von A nach X.


* Die Länge des Weges von X nach B ist 1000 - x.
* Da der Fußgänger auf dem Acker nur halb so schnell voran kommt wie auf der Straße, müssen die dort zurückzulegenden Meter doppelt gezählt werden.
Die Überlegungen führen uns zu folgender '''Zielfunktion''':
<math>f(x)=2*y+ (1000-x)</math>
Diese ist zu minimieren.
}}
'''3. Nebenbedingung in Zielfunktion für Teilaufgabe a)''':
Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.
{{Lösung versteckt mit Rand|Die Länge des Weges von A nach X ist nach Pythagoras <math>y=\sqrt{400^2+x^2}</math> .
Mit dieser Nebenbedingung  <math>y=\sqrt{400^2+x^2}</math> ergibt sich durch Ersetzen von y in der [[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion|Zielfunktion]]:
                    ''' <math>f(x)=2*\sqrt{400^2+x^2}+ (1000-x)= min!</math>'''
}}
'''4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):'''
Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.
{{Lösung versteckt mit Rand|'''Teilaufgabe a)'''
* Um den Extremwert der Zielfunktion bzw. den schnellsten Weg, um von A nach B zu kommen, zu bestimmen, benötigen wir die erste Ableitung dieser Funktion, die wir gleich 0 setzen, also f'(x)=0:
<math>f'(x)=(2x/\sqrt{400^2+x^2})-1=0</math>
* Durch Auflösen dieser Bedingung nach x erhält man als Lösung
<math>x=\sqrt{\frac{400^2}{3}}\approx230.94</math>
* Um nachzuprüfen, ob an dieser Stelle ein lokales Minimum (schnellster Weg) vorliegt, berechnen wir die zweite Ableitung der Zielfunktion f<nowiki>''</nowiki>(x) und prüfen, ob durch Einsetzen von unserer Lösung x in f<nowiki>''</nowiki>(x) eine Zahl >0 vorliegt, also ob f<nowiki>''</nowiki>(x)>0:
Es gilt <math>f''(x)=[2*\sqrt{400^2+x^2}-2x^2/\sqrt{400^2+x^2}]/(400^2+x^2)</math>
und somit <math>f''(\sqrt{\frac{400^2}{3}})>0</math>
* Die Weglänge über die Straße, also die Entfernung von Punkt B zu X, beträgt also
<math>1000-\sqrt{\frac{400^2}{3}}\approx769.04</math>.
Die Weglänge über den Acker beträgt
<math>y=\sqrt{400^2+\sqrt{400^2/3} }\approx461.8</math>.
'''Teilaufgabe b)'''
* Wenn allerdings der Abstand zwischen B und C nur 100m beträgt, so lautet die zu minimierende Zielfunktion
<math>f(x)=2*\sqrt{400^2+x^2}+(100-x)</math>
* Die Ableitung hiervon ist die gleiche wie in Teilaufgabe a) schon betrachtet:
<math>f'(x)=(2x/\sqrt{400^2+x^2})-1</math>.
Setzt man diese Ableitung gleich 0, so hat sie für <math>0\le x\le100</math> keine Nullstelle bzw. keine Lösung. Hiermit gibt es in diesem Fall kein lokales Minimum. Die Funktion ist im Intervall [0,100] also streng monoton, weshalb der minimale Wert am Rand des Definitionsbereiches liegen muss, also entweder bei x=0 oder bei x=100.
* Durch Einsetzen von x = 0 erhält man <math>f(0)=2*400+100=900</math>
Durch Einsetzen von x = 100 erhält man <math>f(100)=2*412+100-100=824</math>
Da der Funktionswert für x=100 der kleinere ist, führt folglich der kürzeste Weg von A nach B auf gerader Linie direkt über den Acker.
}}


<br>


Zum Abschluss noch die '''Streckung / Stauchung in Richtung der x-Achse''': <br>
{{Arbeiten|NUMMER=17|ARBEIT=Versuche, deine Kenntnisse bezüglich Streckung in x-Achsenrichtung bei Geraden zu übertragen auf ganzrationale Funktionen im Allgemeinen: Gegeben ist die Funktion <math>f(x) = 2x^3 - 6x^2 + 3x</math>.
* Wie kannst du den Streckungs- bzw. Stauchungsfaktor <math>b = \frac{1}{2}</math> in die Gleichung einbauen? Zeichne die Funktionen mit [http://www.geogebra.org GeoGebra]. Handelt es sich um eine Streckung oder um eine Stauchung?
* Überprüfe deine Ergebnisse bzgl. der möglichen Fälle für b aus Aufgabe 8 - sind sie übertragbar auf ganzrationale Funktionen im Allgemeinen? Wähle je drei Beispiele für eine Streckung, Stauchung und eine reine Spiegelung an der y-Achse für Funktionen 3. und Funktionen 4. Grades - skizziere die Graphen in deinem Lerntagebuch. Zur Überprüfung: [http://www.geogebra.org GeoGebra].
* Untersuche, ob die Betrachtung dieser Transformationsart auch bei ganzrationalen Funktionen im Allgemeinen durch andere Transformationsarten ersetzt werden kann.}} <br>
{{Lösung versteckt|
* <math>f(\frac{1}{2}x) = 2(\frac{1}{2}x)^3 - 6(\frac{1}{2}x)^2 + 3(1/2x)</math>
* Die Fallbetrachtungen für b können übertragen werden.
* ERsetzbar?????}}
<br>
<br>




{{mitgewirkt|
=== Zusammenfassung ===
* [[Benutzer:Joerg Stadlinger|Jörg Stadlinger]]}}
{{Arbeiten|NUMMER=18|Fasse zusammen, was du über Transformationen von ganzrationalen Funktionen gelernt hast. Erstelle eine Liste mit den Transformationsarten und der jeweiligen Einbindung in die Funktionsgleichung.}}  
<br>
<br>


== '''Zusatzaufgabe''' ==


[[Kategorie:Kurvendiskussion]]
{{Kasten_blau|Falls du vor der vereinbarten Zeit mit der Bearbeitung des Lernpfades fertig sein solltest, entwirf ein kleines Funktionenbild oder -muster mithilfe von ganzrationalen Funktionen. Nutze dazu [http://www.geogebra.org GeoGebra].}}
<math><math>Formel hier einfügen</math></math>

Version vom 19. November 2010, 08:07 Uhr

Nuvola apps edu miscellaneous.png
Herzlich willkommen zum Lernpfad zu ganzrationalen Funktionen!

In unserer aktuellen Unterrichtseinheit geht es um Transformationen von verschiedenen Funktionen, d. h. also, ihr sollt herausarbeiten, mithilfe welcher Operationen bzw. Veränderungen in der Funktionsgleichung unterschiedliche Funktionsarten im Koordinatensystem verschoben, gestreckt bzw. gestaucht und gespiegelt werden können. In diesem Lernpfad sollst du dich nun speziell mit den ganzrationalen Funktionen auseinandersetzen.

Kompetenzen

Du kennst bereits:

  • verschiedene Begriffe / Eigenschaften im Zusammenhang mit Funktionen allgemein (Definitions- und Wertemenge, Symmetrie, ...),
  • lineare Funktionen allgemein und abschnittsweise definierte (lineare) Funktionen sowie
  • Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x- und auf der y-Achse, Streckung bzw. Stauchung in Richtung der x- und y-Achse sowie Spiegelungen an der x- und y-Achse).

Nach Bearbeitung dieses Pfades:

  • kennst du die ganzrationalen Funktionen als weitere Funktionenklasse.
  • kannst du wichtige Eigenschaften der ganzrationalen Funktionen erläutern.
  • weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
  • weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse strecken bzw. stauchen sowie an der x- und y-Achse spiegeln kannst.
  Und nun ....


Viel Spaß beim Bearbeiten!!


Infos vor Beginn

1) Lerntagebuch:
Während der gesamten Unterrichtseinheit sollst du ein Lerntagebuch führen: Das Tagebuch dient einerseits als "normales" Heft und andererseits als Reflexionsinstrument. Das heißt, du sollst nicht nur die gegebenen Arbeitsaufträge im Lerntagebuch bearbeiten, sondern dir darüber hinaus auch (schriftlich) Gedanken über deine Lernfortschritte und die Eignung des Arbeitsmaterials machen. Das Tagebuch wird nicht bewertet, es dient ausschließlich dazu, dir selbst klar zu machen, wie groß dein Lernfortschritt ist und wo vielleicht noch Probleme liegen.

Folgende Bestandteile sollte das Tagebuch haben:
1) Standortbestimmung: Was weiß ich bereits über Funktionstransformationen im Allgemeinen? Weiß ich bereits etwas über die zu bearbeitenden Funktionsarten?
2) Ein Eintrag nach jeder Stunde während der gesamten Unterrichtseinheit - mögliche Fragen, an denen du dich dabei orientieren kannst, sind:

  • Was habe ich gelernt? Was habe ich gut verstanden, welche Fragen sind noch offen? Welche Schwierigkeiten sind bei der Lösung aufgetreten?
  • An welchen Stellen habe ich etwas für mich Neues gelernt? Hatte ich Aha-Erlebnisse?
  • Bin ich mit meiner Arbeit zufrieden? Habe ich mein Arbeitsziel in dieser Stunde erreicht? Wenn nicht, woran lag es?
  • Wie habe ich mich in dieser Stunde im Unterricht oder in der Gruppenarbeit beteiligt? Welche Note würde ich mir geben?

3) Abschlusskommentar zu jeder Phase der Unterrichtseinheit:
4) Allgemeine Beurteilung der Einheit: Waren Aufbau und Material sinnvoll (speziell die Lernpfade)?
5) Abschlussprodukt: Funktionenbild mit Erläuterung


2) Allgemeine Hinweise:

  • Bearbeite den Lernpfad mit einem Partner oder einer Partnerin - so könnt ihr gemeinsam über die Aufgaben sprechen und schneller zu sinnvollen Ergebnissen gelangen.
  • Nutze die versteckten Hinweise erst, wenn du allein bzw. ihr zu zweit bei der Aufgabe nicht mehr weiter kommt - versucht es zuerst ohne Hilfe!
  • Für die versteckten Lösungen gilt: Schau sie dir erst an, wenn du die Aufgabe gelöst hast - sie dienen nur der Kontrolle!
  • Übernimm alle wichtigen Definitionen, Merksätze, Erläuterungen in dein Lerntagebuch - im Regelfall wirst du allerdings an der betreffenden Stelle explizit dazu aufgefordert.
  • ...



Definition der ganzrationalen Funktionen

Eine kleine Aufgabe zum Einstieg:
Vorlage:Arbeiten


Die Funktion, die du gerade aufgestellt hast, ist eine sogenannte ganzrationale Funktion - sie setzt sich zusammen aus den einzelnen Summanden , und , den Potenzfunktionen. Der höchste Exponent gibt den Grad der Funktion an, d. h. es handelt sich hier um eine ganzrationale Funktion dritten Grades. Die Vorfaktoren der einzelnen Summanden werden entsprechend den zugehörigen Exponenten von x mit - bezeichnet (, , ) - sie heißen Koeffizienten.

Nun in allgemeiner Form:

Definition

Ein Term der Form mit ; , , , ..., , und heißt Polynom. Die Zahlen , , , , ..., , nennt man Koeffizienten des Polynoms. Als Grad des Polynoms wird der höchste Exponent n von x bezeichnet, dessen zugehöriger Koeffizient nicht Null ist.
Eine Funktion f, deren Funktionswert f(x) als Polynom geschrieben werden kann, heißt ganzrationale Funktion.

Der Grad des Polynoms heißt auch Grad der ganzrationale Funktion. Die Definitionsmenge einer ganzrationalen Funktion ist die Menge der reellen Zahlen, also R.




Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam zum Üben:

  

Gegeben ist die Funktion .

1) Der

der Polynoms ist

, da 4 der höchste vorkommende Exponent ist.
2) Die

lauten wie folgt: =

, =

, =

, =

, =

. Der Index des jeweiligen a entspricht immer den

des zugehörigen x. Achte auf die

! Laut Definition kommen für die Koeffizienten alle

Zahlen in Frage, wundere dich also nicht, wenn in der Funktion z. B. eine Wurzel auftaucht.
3) Da für x alle möglichen Zahlen eingesetzt werden können, ist also hier entsprechend der Definition D =

.


Mit den folgenden Übungen kannst du überprüfen, ob du alles verstanden hast:
Vorlage:Arbeiten

1) Grad: 7, Koeffizienten:
2) Grad: 0, Koeffizienten:
3) Grad: 1, Koeffizienten:
4) Grad: 6, Koeffizienten: ,

5) Grad: 4, Koeffizienten: , , ,


Entscheide: Handelt es sich um eine ganzrationale Funktion? Begründe in deinem Lerntagebuch.

1

ja
nein

2

ja
nein

3

ja
nein

4 4)

ja
nein

5

ja
nein


Vorlage:Arbeiten

Wichtige Eigenschaften ganzrationaler Funktionen

Vorlage:Arbeiten

-2x - 1.jpg -10x^3 + 2x.jpg 2x^3 + 3x.jpg 2x^4 -x^2 + 3.jpg 5x^3 - 2x^2 - 3.jpg
-2x-1 -10x3+2x 2x3+3x 2x4-x2+3 5x3-2x2-3
X^2-x.jpg X1^3.jpg X1^4.jpg X^4-3x^2 - 2x - 2.jpg X^5 + 3x^2.jpg
x2-x x3 x4 x4-3x2-2x-2 x5+3x2
X^6 + x^2.jpg -x^3.jpg -x^4 + 3x^2.jpg -x^4.jpg
x6+x2 -x3 -x4+3x2 -x4


Im Folgenden sollst du die gerade geordneten Funktionen noch einmal genauer untersuchen hinsichtlich möglicher Symmetrien sowie ihrem Verhalten für sehr große und sehr kleine x (Verhalten im Unendlichen):

Symmetrie

Vorlage:Arbeiten

Vorlage:Versteckt


Merke

Der Graph einer ganzrationalen Funktion f verläuft genau dann

  • achsensymmetrisch zur y-Achse, wenn f(x) nur Potenzen mit geraden Exponenten enthält.
  • punktsymmetrisch zum Ursprung, wenn f(x) nur Potenzen mit ungeraden Exponenten enthält.


Verhalten im Unendlichen / Verlauf des Graphen

Vorlage:Arbeiten

Vorlage:Versteckt


Merke
Das Verhalten einer ganzrationalen Funktion f für sehr große x wird von dem Summanden mit der höchsten Potenz von x, d. h. dem Summanden mit dem höchsten Exponenten, bestimmt. Der Graph zur Funktion verhält sich also wie der Graph zur Funktion y = , wobei n der Grad von f ist.



Vorlage:Arbeiten


Merke
Der Graph zur Funktion verhält sich so wie der Graph zur Funktion y = , wobei n der Grad von f ist. Alle weiteren Summanden beeinflussen den Verlauf nur geringfügig.


Mithilfe der folgenden Übung kannst du Verlauf und Symmetrie von ganzrationalen Funktionen untersuchen und so überprüfen, ob du alles verstanden hast.

Transformationen

Die ganzrationalen Funktionen, die du in diesem Lernpfad kennen gelernt hast, weisen bestimmte Transformationen auf, d. h. die Funktionsgleichung gibt an, inwiefern der Graph gestreckt oder gestaucht, in Richtung der x- oder y-Achse verschoben oder an der x-Achse gespiegelt ist.

Mit zwei Arten von ganzrationalen Funktionen hast du dich in den vergangenen Wochen im Unterricht bereits näher beschäftigt, und zwar mit den linearen und den quadratischen Funktionen. Dabei handelt es sich um nichts anderes als um ganzrationale Funktionen ersten und zweiten Grades. Eine lineare Funktion wird entsprechend der Definition als Polynom folgendermaßen geschrieben: - der zugehörige Graph heißt - wie du weißt - Gerade. Die dementsprechende Schreibweise der quadratischen Funktionen sieht folgendermaßen aus: (Normalform) - der zugehörige Graph heißt Parabel.

Vorlage:Arbeiten Vorlage:Versteckt

Im Folgenden sollst du dich genauer mit Verschiebungen, Streckungen / Stauchungen und Spiegelungen von ganzrationalen Funktionen (speziell dritten und vierten Grades) beschäftigen. Los geht es mit den einfachsten ganzrationalen Funktionen - den Geraden. Mit verschiedenen Aspekten im Zusammenhang mit linearen Funktionen hast du dich im Unterricht zwar schon beschäftigt, aber noch nicht mit Transformationen von Geraden im Koordinatensystem. Das sollst du nun nachholen:

Vorlage:Arbeiten

{{{1}}}


Eine Transformationsart, die bislang noch nicht betrachtet wurde, ist die Streckung / Stauchung in Richtung der x-Achse. Vorlage:Arbeiten

{{{1}}}


Automatisch hast du jetzt also auch schon die Spiegelung an der y-Achse als weitere Transformationsart mit bearbeitet.

Vorlage:Arbeiten

Es ist möglich, zu g(x) zu gelangen, indem man f(x) mit dem Faktor 4 in Richtung der y-Achse streckt und um +\frac{1}{2} auf der y-Achse verschiebt. Demzufolge ist es bei linearen Funktionen nicht notwendig, die Streckung / Stauchung in Richtung der x-Achse gesondert zu betrachten. Um eine Spiegelung an der y-Achse hervorzurufen, gibt es allerdings keine andere Möglichkeit.


Vorlage:Arbeiten

Die Möglichkeit, die Normalform in die Scheitelpunktform zu überführen, ist allerdings nur bei quadratischen Funktionen so einfach möglich. Ganzrationale Funktionen mit n > 2 werden im Regelfall in Polynomschreibweise angegeben und lassen sich nicht in eine Art "Scheitelpunktform" überführen, an der alle Transformationsarten ablesbar sind.
Auch für diese Fälle gibt es eine solche Funktionsgleichung, aber die Auseinandersetzung damit ist nicht die Aufgabe eurer Gruppe, sondern die der Gruppe "Potenzfunktionen". Ihr sollt euch mit der etwas schwierigeren Polynomschreibweise auseinandersetzen.
Du hast ja bereits herausgefunden, wie die verschiedenen Transformationen sich bei linearen Funktionen (also den einfachsten der ganzrationalen Funktionen) in die Funktionsgleichung einbauen lassen; im Folgenden sollst du versuchen, dein Wissen bezüglich der einzelnen Transformationsarten auf ganzrationale Funktionen zweiten, dritten und vierten Grades zu übertragen.

Beginnen wir mit der Streckung bzw. Stauchung in Richtung der y-Achse:

{{Arbeiten|NUMMER=13|ARBEIT=Du siehst auf dem folgenden Bild zwei Funktionsgraphen: f(x) ist die Ausgangsfunktion mit der angezeigten Funktionsgleichung - g(x) ist demgegenüber in Richtung der y-Achse gestreckt. Bestimme die Funktionsgleichung zu g(x).
<ggb height="" width="" showMenuBar="false" showResetIcon="true" filename=" .ggb" />

  • Bestimme zuerst den Faktor a, mit dem du f(x) strecken oder stauchen musst, um g(x) zu erhalten.
  • Durch welche mathematische Operation kannst du nun zur Funktionsgleichung von g(x) kommen?
  • Welche Punkte des Graphen verändern sich durch eine Streckung in Richtung der y-Achse, welche nicht?
  • Stauche f(x) um den Faktor a= Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac {1}{2}<math>. Wie lautet die Funktionsgleichung zur neuen Funktion h(x)? Überprüfe mit dem GeoGebra-Link unten. <br> * Überprüfe mithilfe des Links, ob deine Erkenntnisse sich auch auf Funktionen dritten und vierten Grades übertragen lassen. Welche Fälle für a lassen sich unterscheiden? Wähle für jeden Fall zwei entsprechende Beispiele und überprüfe - notiere in deinem Lerntagebuch. Was ändert sich im Fall a < 0? * Formuliere einen Merksatz, der erklärt, wie du eine beliebige ganzrationale Funktion mit einem Faktor strecken oder stauchen kannst (Wie muss der Faktor jeweils aussehen?). Welche Punkte des Graphen werden durch eine Streckung / Stauchung nicht verändert? <br> Falls du nicht weiter weißt, nutze den versteckten Hinweis. Falls du zeichnerisch ausprobieren möchtest, kannst du das hier tun: [http://www.geogebra.org GeoGebra].}} <br> {{versteckt|Zur Bestimmung des Streckfaktors wähle dir einen Wert, also z. B. x = 1. Lies die zugehörigen Funktionswerte für beide Funktionen an den Graphen ab - in welcher Beziehung stehen die beiden Funktionswerte zueinander? Überprüfe mithilfe weiterer Werte und überlege dir, wie du diesen Streckfaktor mit der Funktionsgleichung von f in Verbindung setzen kannst.}} <br> {{Lösung versteckt| {{Merke|1=Eine Streckung bzw. Stauchung einer ganzrationalen Funktion wird erreicht durch die Multiplikation der '''gesamten''' Funktion mit dem Streckfaktor a. Für a lassen sich drei verschiedene Fälle unterscheiden: <br> * -1 < a < 1: Es handelt sich um eine Stauchung; im Falle eines negativen Streckfaktors kommt eine Spiegelung an der x-Achse hinzu. * a = 1: Die Funktionsgleichung ändert sich nicht, es handelt sich weder um eine Stauchung noch um eine Streckung. * a > 1 bzw. a < -1: Es handelt sich um eine Streckung. Für negatives a ist es zusätzlich eine Spiegelung an der x-Achse. <br> Durch eine Streckung oder Stauchung ändern sich alle Werte der Funktion mit Ausnahme der Nullstellen - Nullstellen bleiben von Streckungen (bzw. Stauchungen) in Richtung der y-Achse grundsätzlich unberührt.}} }} <br> Mit Bearbeitung dieser Aufgabe hast du bereits implizit die '''Spiegelung an der x-Achse'' mit untersucht und damit bereits eine weitere Transformationsart "abgehakt". Bevor du dich der nächsten Transformationsart zuwendest, hier noch einige Übungen zu Streckungen und Stauchungen: <br> Weiter geht es mit den '''Verschiebungen in Richtung der beiden Achsen''': <br> Der Abwechselung halber betrachten wir nun eine Funktion 3. Grades. {{Arbeiten|NUMMER=14|ARBEIT= <br> <ggb height="" width="" showMenuBar="" showResetIcon="" filename=" .ggb" /> <br> Beschreibe anhand der folgenden Bilder kurz in deinem Lerntagebuch, wie der Graph zu g aus dem Graphen zu f hervorgeht. Gegeben sind die Funktionsgleichungen <br> * <math>f(x) = 3x^3 - 4x^2 + 1}

Wo finden sich die Verschiebungen in der Funktionsgleichung wieder? Kannst du eine Gleichung der Form g(x) = ... aufstellen, in der du allgemein f(x) nutzt (anstatt 3x^3 - 4x^2 + 1) und die ausdrückt, dass f um 3 Einheiten in Richtung der x-Achse und um 2 Einheiten in Richtung der y-Achse verschoben ist?}

Vorlage:Versteckt

Vorlage:Arbeiten


Merke
{{{1}}}


Nun ein konkretes Beispiel: Vorlage:Arbeiten

Vorlage:Versteckt



Kleine Übung zum Verschieben von ganzrationalen Funktionen:





Zum Abschluss noch die Streckung / Stauchung in Richtung der x-Achse:
Vorlage:Arbeiten

  • Die Fallbetrachtungen für b können übertragen werden.
  • ERsetzbar?????




Zusammenfassung

Vorlage:Arbeiten

Zusatzaufgabe

Vorlage:Kasten blau