Lernpfad Energie/Armbrustschießen im Weltall

Aus ZUM-Unterrichten

Ein Gedankenexperiment

Jupitermond Ganymed
Planet Mars
Alte Abbildung einer Armbrust

Der Weltraum – unendliche Weiten. Wir befinden uns in einer fernen Zukunft … Die Zwillinge Paul und Pauline haben bei Jugend forscht einen vierwöchigen Weltraum-Trip gewonnen, der zu mehreren Planeten und Monden des Sonnensystems führt.

Ihre Physiklehrerin, Frau Müller, hat ihnen allerdings eine Art „Hausaufgabe“ mitgegeben: Sie sollen drei Spielzeug-Armbrüste mit auf ihren Weltraum-Ausflug nehmen und „universelle Wirksamkeit“ bestimmen. Was sie mit „universeller Wirksamkeit“ meint, sagt sie ihnen nicht. Sie meint, sie sollen sich selbst etwas überlegen.

Schuss nach oben auf Himmelskörpern

Pauline hat eine Idee: „Wir schießen auf den verschiedenen Himmelskörpern im Universum Bolzen mit den Armbrüsten nach oben und messen, wie hoch sie fliegen. Natürlich schreiben wir auch alles auf, was sonst noch wichtig sein könnte, z.B. der Ortsfaktor auf den Himmelskörpern g und die Masse der Bolzen. Vielleicht finden wir ja etwas, was auf allen Himmelskörpern, also im ganzen Universum gleich ist.“ Paul findet die Idee gut: Auf dem Erdmond, dem Planeten Mars und auf dem Jupitermond Ganymed führen Sie sorgfältige Messungen durch. Hier eine Tabelle mit ihren Ergebnissen:


Armbrust Himmelskörper (Ortsfaktor g [N/kg]) Bolzenmasse m [kg] max. Flughöhe h [m]
klein Mars (3,7) 0,01 67,6
klein Mars (3,7) 0,02 33,8
klein Erdmond (1,6) 0,01 156,2
klein Erdmond (1,6) 0,02 78,1
klein Ganymed (1,4) 0,01 178,6
klein Ganymed (1,4) 0,02 89,3
groß Mars (3,7) 0,01 270,4
groß Mars (3,7) 0,02 135,2
groß Erdmond (1,6) 0,01 624,8
groß Erdmond (1,6) 0,02 312,4
groß Ganymed (1,4) 0,01 714,4
groß Ganymed (1,4) 0,02 357,2

Zunächst wundern sich die beiden über die riesigen Flughöhen, die die Bolzen erreichen. Aber dann machen sie sich klar, dass die Schwerkraft auf den Himmelskörpern ja auch viel kleiner ist und auch keine Luftreibung herrscht (wegen des Mangels an Luft müssen sie ja auch ihren Raumanzug tragen).

Aufgabe 1.1: Ein grober Blick auf die Messdaten

Paul schreibt in sein elektronisches Notizbuch einen kurzen Text über ihre ersten Eindrücke. Dem Speicher ist allerdings die kosmische Höhenstrahlung nicht bekommen. Fülle die Lücken aus:

Wenn wir die gleiche Armbrust und den gleichen Bolzen verwenden, fliegt der Bolzen höher, wenn der Ortsfaktor des Himmelskörpers geringer ist. Wenn wir auf dem gleichen Himmelskörper mit der gleichen Armbrust schießen, fliegt ein schwerer Bolzen weniger hoch als ein leichter Bolzen. Wenn ich mich nicht sehr täusche, dann sind die Bolzenmasse und die Flughöhe vielleicht antiproportional, das heißt ihr Produkt ist bei gleichem Himmelskörper und gleicher Armbrust immer gleich. Wenn ich alle Bedingungen gleich lasse und nur die Armbrust wechsle, schießt die kleine Armbrust weniger hoch. Diese Armbrust ist also wohl weniger wirksam.

Das war natürlich nur eine kleine Fingerübung. Aber Du kannst auch schon einmal üben, ein Bildschirm-Foto ("Screenshot") zu machen und zu speichern.

Aufgabe 1.2: Kreatives Formelfinden

Pauline und Paul haben bei ihren Messungen immer drei Größen gemessen:

  • Der Ortsfaktor des Planeten
  • Die Masse des Bolzens
  • Die maximale Flughöhe

Die Kombinationen der drei Größen sind in allen Zeilen unterschiedlich. Frau Müller hatte aber darum gebeten, ein Maß für die "universelle" Wirksamkeit zu finden. Diese sollte also nicht vom Planeten oder gar vom verwendeten Bolzen abhängen, sondern eben nur von der verwendeten Armbrust.

Kannst Du also eine Formel finden, die bei allen Zeilen der kleinen Armbrust den einen einzigen Wert liefert und bei allen Zeilen der großen Armbrust einen einzigen Wert liefert (jedenfalls ungefähr). Diese beiden Werte sollten natürlich unterschiedlich sein.

Überprüfe Deine Formel an mindestens 5 Zeilen der Tabelle. Falls Du das Ergebnis zufriedenstellend findest, schreibe einen entsprechenden Notizbucheintrag für unsere beiden Jungforscher, den sie so an Frau Müller schicken können. Darin sollte auch die Maßeinheit für die universelle Wirksamkeit beschrieben werden, denn zu (fast) jeder physikalischen Größe gehört auch eine Maßeinheit.

Schüsse im freien Weltraum

Während einer längeren Flugstrecke weit weg von allen Himmelskörpern meint Paul: „Was ist, wenn Frau Müller gar nicht die Wirksamkeit auf den Himmelskörpern gemeint hat, sondern die Wirksamkeit in Bereichen des Universums weit weg von jedem Himmelskörper?“ Paula hält dagegen: „Unseren Test mit der Flughöhe können wir dann aber vergessen. Wir wissen ja, dass ohne Schwerkraft der Bolzen ewig weiterfliegen würde, wenn er nicht irgendwo anstößt.“ Paul: „Vielleicht sollten wir dann die Geschwindigkeit des Bolzens messen. Das ist ja kein Problem, wenn wir im langen Laderaum des Raumschiffs den Bolzen abschießen und die Flugzeit bis zur anderen Seite des Laderaums messen.“

Wieder stellen sie eine Tabelle auf. Die Wirksamkeit aus dem ersten Experiment schreiben sie schon einmal dazu.

Armbrust Wirksamkeit aus Vorgängerexperiment W [N m] Bolzenmasse m [kg] Geschwindigkeit v [m/s]
klein 2,5 0,01 22,4
klein 2,5 0,02 15,8
groß 10 0,01 44,8
groß 10 0,02 31,6
Aufgabe 1.3: Schwierigere Zusammenhänge

Paula macht sich einen Notizbucheintrag. Auch hier hat die kosmische Höhenstrahlung zugeschlagen.

Ob man es hinbekommt, auch aus den Geschwindigkeiten der verschiedenen Bolzen unsere ersten Werte für die Wirksamkeit auszurechnen. Ganz so einfach sieht es nicht aus. So sieht man, dass bei vierfacher Wirksamkeit nur die doppelte Geschwindigkeit gemessen wird, oder anders gesagt: verdoppelt sich die Geschwindigkeit, vervierfacht sich die Wirksamkeit.