Einführung in die Differentialrechnung/Einstieg und Einführung in die Differentialrechnung/Der Differentialquotient: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Einführung in die Differentialrechnung(Unterschied zwischen Seiten)
Keine Bearbeitungszusammenfassung
 
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Einführung in die Differentialrechnung}}}}
{{Navigation verstecken|{{Einführung in die Differentialrechnung}}}}
==Einstiegsaufgabe 1 - Blumenvase ==
Sie haben für diesen Abschnitt 15 Minuten Zeit.


Unterschiedliche Gefäßformen lassen sich durch ihren Füllgraphen beschreiben. Dieser ergibt sich, wenn in ein Gefäß eine Flüssigkeit mit gleichmäßigem Zufluss einfließt. Die entstehende Zuordnung Zeit(t) -> Höhe(h) kann in ein Koordinatensystem übertragen werden und stellt die Zunahme des Wasserspiegels in Abhängigkeit von der Zeit dar.
{{Box|1=Merke|2=
Der Differentialquotient  f'(x<sub>0 </sub>) ist definiert als Grenzwert eines Differenzenquotienten:


<br>
Differentialquotient  <math> f'(x_0) = \lim_{x_1\to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}</math>
{{Box|Experiment|Skizzieren Sie zunächst einen möglichen Verlauf des Füllgraphen für die Gefäße in ein Koordinatensystem. Vergleichen Sie Ihre Ergebnisse mit einer anderen Zweiergruppe und begründen Ihre Skizze.


Mit dem folgenden Experiment können Sie Ihre Vermutung aus der ersten Aufgabe überprüfen. Dazu sollen Sie gleichmäßig Wasser in ein Gefäß füllen. Mit einer Stoppuhr wird die Zeit gemessen, wie lange der Wasserspiegel braucht um auf 0.5 cm, 1 cm, 1.5 cm, 2cm usw. zu steigen. Die Messdaten für die Zeit übertragen Sie danach vom Arbeitsblatt in die untenstehende GeoGebra-Tabelle.{{Lösung versteckt|
Der Differentialquotient  f'(x<sub>0</sub>)  wird auch als ''Ableitung der Funktion f an der Stelle  x<sub>0</sub>'' bezeichnet.
*Messbecher
|3=Merksatz}}
*Einfülltrichter
*Höhenskala
*Stoppuhr (z.B. App im Smartphone)
*leere Plastikflasche 500ml|Benötigte Materialien|Benötigte Materialien Verbergen}}
Im Bild sehen Sie den Versuchsaufbau. Bei der Versuchsdurchführung ist es zum einen besonders wichtig, dass der Wasserzufluss immer gleichmäßig ist. Der obere Teil des Trichters muss daher immer mit Wasser gefüllt sein, sodass der Zufluss konstant bleibt. Zum anderen muss der „Zeitmesser“ genau beobachten, wann der Wasserspiegel die markierten Höhen erreicht, damit die Messung so exakt wie möglich ist.


''Achtung: Bei manchen Stoppuhren lassen sich Zwischenzeiten stoppen. Diese liefern für unseren Versuch die genaueren Ergebnisse, müssen aber zunächst noch addiert werden.''
Der Differentialquotient f'(x<sub>0 </sub>)  
 
<center>[[Datei:LP_Messbecher.jpg|150px]]</center>
|Experimentieren}}
{{Lösung versteckt|1=
<ggb_applet width="837" height="486"  version="4.2" ggbBase64="UEsDBBQACAAIALSEY0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAC0hGNDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1aW2/byBV+zv6KAR/6JEucCy9KpSxit2kWSIIgThdF3kbkWJo1xeHyIsmL/V39A/1jPXOjaMlrME0XKKoVbB/O8JtznzNnBC++P2wLtBN1I1W5DPA0DJAoM5XLcr0MuvbuKg2+f/XdYi3UWqxqju5UveXtMmBTEhzXwWjK9FqZLwPKVwmP0/AqXuXpFUtjejUnCb8iSSwwZ5yTiAcIHRr5slQf+FY0Fc/EbbYRW/5OZbw1LDdtW72czfb7/dQLn6p6PVuvV9NDkwcIFC+bZeAeXgK7R4v21MBJGOLZP96/s+yvZNm0vMxEgLRRnXz13YvFXpa52qO9zNvNMkhZGqCNkOsNWBnFOEAzDarA1EpkrdyJBpYOhsbmdlsFBsZL/f6FfUJFb06AcrmTuaiXQTilYZKkNMRpGidzwiIaIFVLUbYO7IXOPLvFToq95aufjEjtf9nIVSGWwR0vGrBJlnc1+BPUqTsYNu1DIVa89uOjNnQCIhv5C0BxwgJkXbAMEhxNQK8JicIJC0OrxkAmuKZVqjA8MXgW/YqAEEsoQr+ah8iOmRvGdpgYgkNLsHuZ6j9zPYifsceNjwa5iaFF2FtEteLeIuA+0b9x+LRFLJwn3+BIfBTLhmJTyiaE0UkCYqPoXCweyLQ8f9vWM5leYhQnX2HoIHQhiozLSUhCNNEEW0KAxLF9Fdo5CKshxBJmSWQxzC5nFsoshlkMo19h43k8vZFEb8GxRuJvS6LeszgaxBL2gvkxv2ci6XP7cHwsv0JizL4lYf8DgUn4KHd84liKHf2WcjRaqcXMF8KFUwg1G411+dWKbaNVpHOT4QijCNI4TiAhI4TnQBJdrAjCEWIRDHGKYk0TRHV9YoiiFGkcpsjkcZTCH2ZqV4wi4KUnE1vEEGUoogib7GcIvIDMDgKfEAqIKEIRLNLSsRZLY8RiGNAUMVBQ751El1AK62AMwgmiGFG9FieIxCgmKNH7DzO9LeNU6w5MCYpDFOulsAFh89mNBytSRLU1sAsq1cjeuRtRVH1UjB9lWXWt852bz7a592OrTuC5yu6vT5wteNP6ZwDBYXU8E+3h9ejIfLEo+EoU0Ffc6jxAaMcLvc0N/ztVtsjnALFz65pXG5k1t6JtYVWDfuI7/o634vAG0I1X0Ig2J/lCdFkhc8nLHyFJNAvNEPmD3VRLf7AzOrdSMqXq/PahgcxBhy+iVqBAOqWDDwNvPtg3DLNpmrB5/4G8zbjO+CichsMP7IYH94rNp/Phh8ZWstj1lvGDaLwr17XMh88/NNeqyPtwVEqW7Q2v2q42LRrUyVqb9LpcF8J41nQG0O1k9yt1uLUupZbX54cKRqGVv1rfqELVCPYjiSIAOLqy1GC0Yj0qNJjQIEIfI5n37/GcGIShK0sNCoJuVXOGYm8lDr0Y2ZhKA8yHKWYyZhl8EbINUFfK9p2dgAyV2b2zFts1H7rtChKuT2EA/EXaZs/1tXZL7MRrkOZgj6XjJ6W//dc/N+J3E7+YnWTtoqlqwfNmI0T7ZB6bA7HP49hlEyy6uxFFcTuEYsyOUIItcsAfQtdtS+95t2g+fw6He1z0LD9yxLHncLTHJeFzODYSF43ExSNxyUhcOhI3H4nD4VggHgskY4FjY4LHBgWPjQoeGxY8Ni54bGDw2MiQsZEhYyNDxkaGjI0MGRsZ8kRkRKEPbVUitLnNalWYYxrt/DOYnxkGphjUul76Os8fVKfPcaiHb1S97Qp+fWz39OzfBoebHr+1TE9QPz45ew2iGlF/hCtxceys4YU15y1YJx4t+AT8zSTys7wo1P4WehLJi7/mslXHS4B59Rl6ys+y6qu4+LmDt5+AyFr0ivOuVTdqWxWiFcNzZOhhqMRvzDclyH1j8p5DSxVOwgmH32xyRUI6j1I2uZuEL+FOo6eBEkepo8zRyNHY0cTR1NG5ozj0D54jtiyxE4Gf0gDDNHWvPTxylDmaOBo7Onc09ew9f6cC9pLJxFPq6JMaEKcgcRKIk0icBsRpRLwA4kUSpwNxOsELvwT3a7wO2CuBe7Bfjb1A7DUgvQVeEjGy7bl9dk4v7kUNuWm7yhI6u051jW1z+1b1xaJrxEfebl6X+Sexhl32kes7Ugu9g4Ue8ymHPN3CQjvv9hjXfd7foRexs7lY18L3MYX5lsx2WuZtOOxxz6YNqze12v5Q7j5DE3mi6mLm7Vk0WS0r3aqiFVza7sWxHc1lw+HKlw/XgfENWGFrSCtb3SWZXbPR+w3WcL1vKPqgdkI3TXBvgiNH9+8HcGmjv1H0vddrqDAwuwz+9HOn2j9/2csGOtvyF2gIRWnnjEgoWVsBV4jWNLhwRWiDAQuzOaEgILX6CUrb8eJvEYPgAOA32l0oENWG6y/vnmifdbldO7py1OH7VhqKI5g69L8R/17lw6hAO2hNedId1yfuADeMc8L17+SE/4ZRN4+NMu32OKtu/neseqRk2W1FLbNjChKjJyztPAMv6hndj4VgjOp4pOrY730oLWaDws23sreYSgjb4LfumogqYGdumQM/8u4gC8nrh8flarw3rv/wxsAbN394Y+gNeu6N6HK9wU69gS85N6Jzb1xwbsSn3iCXnBvJuTcuODfSU2/QS86N+bk3Ljg3cHjqDnbJyYHxuTsuOTvO2tHoorPjrB+NLjo7zhrS+KKz46wjjS86O85a0uSis+OsJ00uOjvOmtL0/zo7ZsOvwc3/qLj/Yn31b1BLBwj+hfRl+wcAAHQrAABQSwECFAAUAAgACAC0hGNDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALSEY0P+hfRl+wcAAHQrAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAkwgAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
 
Wenn alle Messdaten in der Tabelle eingetragen sind, können Sie sich die dazugehörigen Punkte im Koordinatensystem anzeigen lassen. Markieren Sie als erstes alle Messwerte (Zeit und Höhe). Durch einen Rechtsklick über den markierten Werten kann im erscheinenden Kontextmenü ''Erzeuge - Liste von Punkten'' ausgewählt werden, sodass die zu den Messwerten gehörigen Punkte im Koordinatensystem erscheinen.
 
|2=Geogebra-Tabelle einblenden|3=Tabelle ausblenden}}


* beschreibt die momentane Änderungsrate der Funktion f an der Stelle  x<sub>0 </sub> und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen  x<sub>0</sub> und  x<sub>1</sub> den Wert  x<sub>1</sub> immer mehr dem Wert  x<sub>0</sub> annnährt,
* beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x<sub>0</sub>|f(x<sub>0</sub>)) und entsteht, wenn man im Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten  A(x<sub>0</sub>|f(x<sub>0</sub>)) und  B(x<sub>1</sub>|f(x<sub>1</sub>)) den Punkt  B(x<sub>1</sub>|f(x<sub>1</sub>)) immer mehr dem Punkt  A(x<sub>0</sub>|f(x<sub>0</sub>)) annähert.
<br>
<br>
{{Box|1=Aufgabe 1|2=
'''a)''' Vergleichen Sie die Versuchsdaten mit ihren Skizzen und beschreiben den Verlauf des Füllgraphen. Inwiefern kann man die Form des Gefäßes am Füllgraphen ablesen?


'''b)''' Um weitere Erkenntnisse über den Füllvorgang zu erhalten soll nun die Geschwindigkeit des Anstiegs des Wasserspiegels untersucht werden. Ist es möglich, diese Geschwindigkeit zum Zeitpunkt <math>t = 3s</math> zu ermitteln? Begründen Sie ihre Antwort kurz.
Im [https://www.geogebra.org/m/mQSKUdzQ Applet ]  
|3=Arbeitsmethode}}
können Sie den Übergang vom Differenzenquotienten zum Differentialquotienten nachvollziehen.


<br>
'''Übertragen Sie die Definition des Differentialquotienten zusammen mit einer geeigneten Skizze in Ihr Heft.'''
<br>


==Einstiegsaufgabe 2 - Barringer-Krater ==


''Die Idee zu dieser Aufgabe entstammt dem Schulbuch Lambacher-Schweizer, Analysis Leistungskurs Gesamtband, Ausgabe A, Klett Verlag, Stuttgart 2001, ISBN 3127321805.''
{{Box|1=Aufgabe 12|2=
Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.|3=Arbeitsmethode}} 


[[Datei:Meteor.jpg|400px|miniatur|Barrington-Krater]]
In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater. Der Krater hat einen Durchmesser von bis zu 1200 Meter und eine Tiefe von 180 Meter. An einer sehr flachen Stelle kann der Teilquerschnitt des Kraters bis zum Rand durch die Funktion <math>k(x)=0,002x^2</math> für <math>0 \leq x \leq 300</math> beschrieben werden.
<br><br>
[[Datei:LP_Krater.png]]


<br />
'''Testen'''


{{Box|1=Aufgabe 2|2=
Sie sollten nach dem Test sagen können:
Im Krater befindet sich ein Fahrzeug, das eine Steigung von bis zu 115% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?


{{Lösung versteckt|1=
Ich kann die Bedeutung von Differenzenquotienten und des Differentialquotienten erklären.
Wird eine Steigung, wie z.B. bei einem Verkehrschild [[Datei:LP_Steigungsschild.png|100px]] angegeben, so bedeutet die Prozentangabe eine Höhenveränderung von 20m je 100m horizontaler Strecke. Im nachstehenden Bild finden Sie die genauen Angaben. Beachten Sie insbesondere auch die Länge der tatsächlich zurückgelegten Strecke je 100m, sowie den realen Winkel der Höhenänderung.
Ich kann erklären, wie man mit Hilfe von Differenzenquotienten den Differentialquotienten annähern kann.


[[Datei:LP_Steigungsdreick_10P.png|400px]]
<div class="zuordnungs-quiz">
|2=Hinweis einblenden|3=Hinweis ausblenden}}


|3=Arbeitsmethode}}
Ordnen Sie die Ausdrücke unten den richtigen Oberbegriffen zu.
{|  
| Differenzenquotient || Sekantensteigung || Durchschnittsgeschwindigkeit  || mittlere Änderungsrate  || <math>\frac{f(x)-f(x_0)}{x-x_0}</math>|| <math>\frac{y_2-y_1}{x_2-x_1} </math>
|-
| Differentialquotient || Tangentensteigung || Momentangeschwindigkeit || <math>\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} </math> || momentane Änderungsrate
|}
</div>


[//unterrichten.zum.de/images/a/a1/AB_Einstiegsaufgabe.pdf Arbeitsblätter zu den Einstiegsaufgaben]
Wenn Sie mehr als zwei falsche Zuordnungen gemacht haben, sollten Sie vor der Weiterarbeit noch einmal die Definitionen und Zusammenhänge der Begriffe wiederholen.
<br>
<br>
== Vorwissenstest ==
 
Vor der Bearbeitung der weiteren Aufgaben sollten Sie in einem kurzen Vorwissenstest überprüfen, ob Sie mit für die weitere Arbeit benötigten Rechnungen vertraut genug sind.
 
<div class="multiplechoice-quiz">
 
1a)
Gegeben ist die Funktion f(x) = 2x+1. Welchen Wert hat f(3)? (!1) (!3) (!5) (7) (!9)
 
1b) Die Rechenvorschrift <math>t(v) = \frac{100}{v}</math> gibt an, wie viele Stunden t man für 100 km bei einer bestimmten Geschwindigkeit v (in km/h) benötigt. Welchen Wert hat t(50)? (2) (!1) (!3) (!4) (!5) (!50) (!100)
 
1c) Für die Rechenvorschrift aus 1b gilt: t(25) = 4. Was bedeutet das? (Für 100 km benötigt man 4 Stunden bei 25 km/h) (!Für 25 Kilometer benötigt man 1/4 Stunde bei 100 km/h) (!Für 4 Kilometer benötigt man 25 Sekunden bei 100 km/h)
 
1d) Wenn man einen Gegenstand von z.B. einem Turm fallen lässt, kann die Fallstrecke s (in Meter) näherungsweise mit der Formel s(t) = 5t² beschrieben werden, wobei t die Fallzeit in Sekunden angibt. Um wie viel Meter fällt ein Gegenstand zwischen Sekunde 1 und 2? (15 Meter) (!5 Meter) (!10 Meter) (!20 Meter) (!25 Meter)


</div>
{{Fortsetzung|weiter=Die Ableitungsfunktion|weiterlink=Einführung in die Differentialrechnung/Die Ableitungsfunktion}}
Wenn deine Lösungsrate mindestens 75% beträgt, gehe zu den weiteren Aufgaben. Wenn du weniger als 75% richtig hast, schaue dir das folgende Video an, bearbeite die Testaufgaben erneut und finde deine Fehler in den Testaufgaben:


{{Lösung versteckt|1=
{{#evu:https://www.youtube.com/watch?v=HCl5PCBd9c8}}
|2=Video einblenden|3=Video ausblenden}}
{{Fortsetzung|weiter=Von der mittleren zur momentanen Änderungsrate|weiterlink=Einführung in die Differentialrechnung/Von der mittleren zur momentanen Änderungsrate}}


[[Kategorie:Mathematik]]
[[Kategorie:Mathematik]]
Zeile 91: Zeile 53:
[[Kategorie:Interaktive Übung]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:R-Quiz]]
[[Kategorie:R-Quiz]]
[[Kategorie:Geogebra]]
[[Kategorie:Sekundarstufe 2]]
[[Kategorie:Sekundarstufe 2]]

Version vom 16. November 2018, 00:11 Uhr

Sie haben für diesen Abschnitt 15 Minuten Zeit.


Merke

Der Differentialquotient f'(x0 ) ist definiert als Grenzwert eines Differenzenquotienten:

Differentialquotient

Der Differentialquotient f'(x0) wird auch als Ableitung der Funktion f an der Stelle x0 bezeichnet.

Der Differentialquotient f'(x0 )

  • beschreibt die momentane Änderungsrate der Funktion f an der Stelle x0 und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen x0 und x1 den Wert x1 immer mehr dem Wert x0 annnährt,
  • beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x0|f(x0)) und entsteht, wenn man im Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten A(x0|f(x0)) und B(x1|f(x1)) den Punkt B(x1|f(x1)) immer mehr dem Punkt A(x0|f(x0)) annähert.


Im Applet können Sie den Übergang vom Differenzenquotienten zum Differentialquotienten nachvollziehen.

Übertragen Sie die Definition des Differentialquotienten zusammen mit einer geeigneten Skizze in Ihr Heft.


Aufgabe 12
Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.


Testen

Sie sollten nach dem Test sagen können:

Ich kann die Bedeutung von Differenzenquotienten und des Differentialquotienten erklären. Ich kann erklären, wie man mit Hilfe von Differenzenquotienten den Differentialquotienten annähern kann.

Ordnen Sie die Ausdrücke unten den richtigen Oberbegriffen zu.

Differenzenquotient Sekantensteigung Durchschnittsgeschwindigkeit mittlere Änderungsrate
Differentialquotient Tangentensteigung Momentangeschwindigkeit momentane Änderungsrate

Wenn Sie mehr als zwei falsche Zuordnungen gemacht haben, sollten Sie vor der Weiterarbeit noch einmal die Definitionen und Zusammenhänge der Begriffe wiederholen.