Chemie-Lexikon/Redoxreaktionen mit Elektronenübertragung und Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Grundwissen - Zusammenfassung: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Chemie-Lexikon(Unterschied zwischen Seiten)
Markierung: 2017-Quelltext-Bearbeitung
 
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
In der Mittelstufe werden die Begriffe Reduktion und Oxidation meist im Zusammenhang mit Verfahren zur Gewinnung von Metallen besprochen, wobei eine Übertragung von Sauerstoff stattfindet.
Auf dieser Seite werden alle Voraussetzung wiederholt, die du zur Bearbeitung des Lernpfades benötigst.  


== Wiederholung: Redoxreaktionen als Sauerstoffübertragungsreaktionen ==
=Wiederholung=


<div class="grid">
==Lineare Funktionen==
<div class="width-2-3">
Lineare Funktion sind besondere Funktionen, die eine Funktionsgleichung der Form <math>f(x)= m*x+b</math>oder <math>y=m*x+b</math>haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl <math>m</math>gibt den Wert der Steigung an und die Zahl <math>b</math>gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.
In der Mittelstufe kommen Redoxreaktionen im Rahmen der Verfahren zur Gewinnung von Metallen zur Sprache. Typischerweise betrachtet man die Reduktion von Kupfererzen mit Hilfe von Kohle und den Hochofen-Prozess. Aber auch bei der Thermitreaktion handelt es sich um ein Redoxreaktion: 


<math>Fe_2O_3 + 2 \ Al \longrightarrow Al_2O_3 + 2 \ Fe</math>
<br />


Hier findet zum einen die '''Oxidation von Aluminium''' statt, hin zu <math>Al_2O_3</math>. Zum anderen die '''Reduktion von''' <math>Fe_2O_3</math> hin zu Eisen.
====Der Differenzenquotient====
</div>
Die Steigung des Graphen einer linearen Funktion oder die Steigung einer Geraden durch die Punkte A und B kann mit Hilfe des Differenzenquotienten berechnet werden.
<div class="width-1-3">
[[Datei:Velp-thermitewelding-1.jpg]]
</div></div>


Beide Teil-Reaktionen haben eine Funktion in der Gesamtreaktion.
Ist eine Funktion f auf einem Intervall <math>[a;b]</math> definiert, so gibt der Differenzenquotient
* Die '''Oxidation von Aluminium''' liefert die für die Reduktion benötigte Energie, denn Oxidationen sind immer exotherm und Reduktionen endotherm. Aluminium ist daher auch das '''Reduktionsmittel'''.
* Die '''Reduktion von '''<math>Fe_2O_3</math> führt zur Freisetzung von Sauerstoff, was die Oxidation begünstigt und damit verstärkt. <math>Fe_2O_3</math> wirkt damit als '''Oxidationsmittel'''.


<center>[[Datei:Redox_Thermit_mit_Beschriftung.png|350px]]</center>
<math>\frac{\Delta{y}}{\Delta{x}}=\frac{f(b)-f(a)}{b-a}</math> die Steigung <math>m</math> der Geraden durch die Punkte <math>A=(a|f(a))</math> und <math>B=(b|f(b))</math> an.


Noch einmal kompakt die Begriffe zusammengefasst:
Die Differenzen können auch als <math>\Delta{y} </math>und <math>\Delta{x}</math>geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte. 


{{Box|DEFINITIONEN zu den Redoxreaktionen bei Sauerstoffbeteiligung|2=
=====Beispiele:===== 
* '''Oxidation''' = Reaktion mit Aufnahme von Sauerstoff
* '''Reduktion''' = Reaktion mit Abgabe von Sauerstoff
* '''Oxidationsmittel''' = Stoff, der die Oxidation ermöglicht, indem er selber Reduziert wird.
* '''Reduktionsmittel''' = Stoff, der die Reduktion ermöglicht, indem er selber oxiddiert.
|3=Hervorhebung2}}


== Redoxreaktionen ohne Sauerstoff ==
[[Datei:Beispiel_DQ.png|rand|380x380px]]                [[Datei:Beispiel2_DQ.png|rand|430x430px]]


Betrachtet man Reaktionen an denen kein Sauerstoff beteiligt ist, dann kann man Gemeinsamkeiten zu den Reaktionen mit Sauerstoff erkennen.⟶
<math>m=\frac{\Delta{y}}{\Delta{x}}=0,5</math>                                                                               


'''<u>Beispiel:</u>'''
<br />
* <math>2 \;Cu  +  \;O_2  \longrightarrow 2 \; CuO</math>
* <math>Cu \; + \; S \longrightarrow CuS</math>


In beiden Reaktionen geben die Kupferatome Elektronen ab und es entstehen <math>Cu ^{ 2 \oplus}</math>
=====Die h - Schreibweise=====
Anstatt die Differenz <math>x_1-x_0=\Delta{x}</math>in Relation zur Änderung der y-Werte <math>f(x_1)-f(x_0)</math> zu setzen, kann man den Differenzenquotienten auch wie folgt schreiben:


* <math>2 \;Cu  + \; O_2  \longrightarrow 2 \; Cu ^{ 2 \oplus} + 2 \; O^{ 2 \ominus}</math>
<math>\frac{f(x_0+h)-f(x_0)}{h}</math>
* <math>Cu \; + \; S \longrightarrow Cu ^{ 2 \oplus} + S^{ 2 \ominus}</math>


Das heißt, in beiden Beispiel reagiert das Kupfer genauso: es gibt sowohl bei der Reaktion mit Sauerstoff Elektronen ab, also auch bei der Reaktion von Kupfer mit Schwefel.


=== Geschichtliches und Verallgemeinerung ===
Der Begriff Oxidation wurde ursprünglich von dem französischen Chemiker Antoine Laurent de Lavoisier geprägt, der damit die Reaktionen von Elementen und chemischen Verbindungen mit dem Element Sauerstoff ''(Oxygenium, franz: oxygène)'' und dessen Aufnahme, unter Bildung von Oxiden, beschreiben wollte. Als Lavoisier die Theorie in den 1780er Jahren veröffentlichte, hatte er anfänglich gegen die Anhänger der Phlogiston-Theorie zu kämpfen, konnte sich aber durchsetzen.


Später erfolgte eine Erweiterung des Begriffes, indem man Reaktionen mit einbezog, bei denen einer Verbindung Wasserstoffatome entzogen wurden (Dehydrierung). Auf Grundlage der Ionentheorie und des Bohrschen Atommodells konnte die Oxidation schließlich unter Betrachtung der Aufnahme und Abgabe von Elektronen interpretiert und verallgemeinert werden.


Daher werden heute die Begriffe zu den Redoxreaktionen mit Hilfe der Aufnahem und Abgabe von Elektronen definiert.


{{Box|ZUSAMMENFASSUNG Grundbegriffe zu Redoxreaktionen|2=
<br />
* '''Oxidation''' = Elektronenabgabe
* '''Reduktion''' = Elektronenaufnahme
* '''Reduktionsmittel''' = Stoff, der beim Reaktionspartner die Reduktion bewirkt, indem er ihm Elektronen abgibt
* '''Oxidationsmittel''' = Stoff, der beim Reaktionspartner die Oxidation bewirkt, indem er ihm Elektronen abnimmt
|3=Hervorhebung1}}


====Die mittlere Änderungsrate====
<br />Mit Änderungsrate ist eine relative Änderung eines Bestandes zu dessen abhängiger Größe zu verstehen. Beispiele für für solche Bestandsgrößen und Änderungen sind in folgender Tabelle illustriert.
{| class="wikitable"
|+
!Bestandsgröße
!Zuflüsse
!Abflüse
|-
|Anzahl der Schüler
|Einschulungen
|Schulabgänger
|-
|Treibstoffmenge im Tank
|Tanken an der Tankstelle
|Treibstoffverbrauch
|-
|Kontostand
|Zubuchung
|Abbuchung
|-
|Anzahl der Hotelgäste
|ankommende Gäste
|abreisende Gäste
|-
|Staatsverschuldung
|Staatseinnahmen
|Staatsausgaben
|}


=====Beispiel=====
[[Datei:Differenzenquotient_Temp.png|alternativtext=|rand|rechts|400x400px]]
Bei einem Experiment wurde die Temperatur einer Flüssigkeit in 10 Minuten Abständen gemessen.  Die mittlere Änderungsrate der Temperatur lässt sich nun mit Hilfe des Differenzenquotient berechnen:


{{Box|ZUSAMMENFASSUNG Grundbegriffe zu Redoxreaktionen|2=
<math>\frac{\Delta{y}}{\Delta{x}}=\frac{T(b)-T(a)}{b-a}=\frac{9 C}{20 min}=0,45\frac{C}{min}</math>
* '''Oxidation''' = Sauerstoffaufnahme oder Elektronenabgabe
* '''Reduktion''' = Sauerstoffabgabe oder Elektronenaufnahme
* '''Reduktionsmittel''' = Stoff, der beim Reaktionspartner die Reduktion bewirkt, indem er ihm Elektronen abgibt
* '''Oxidationsmittel''' = Stoff, der beim Reaktionspartner die Oxidation bewirkt, indem er ihm Elektronen abnimmt
|3=Hervorhebung1}}
 
 
{{Box|DEFINITION Oxidationszahl|2=
Die '''Oxidationszahl''' ist eine gedachte Ladung eines Atoms innerhalb einer chemischen Verbindung oder eines mehratomigen Ions. Eine wesentliche Rolle spielt dabei die Elektronegativität, bei anorganischen Verbindungen kann man sich auf einige Regeln zur Bestimmung konzentrieren.
|3=Hervorhebung2}}
 
== Oxidationszahl ==
 
Um festzustellen, ob eine Oxidation oder eine Reduktion bei einem Redoxpaar stattfindet haben wir bisher immer die Ladungen der Ionen betrachtet. Das ist bei zusammengesetzen Ionen, wie <math>SO_4^{2-}</math> oder <math>MnO_4^{-}</math> nicht möglich, da das geladene Teilchen ein zusammenhängendes Molekül ist.
 
Man nutzt dann die '''Oxidationszahl''' (manchmal auch ''Oxidationsstufe, Oxidationswert, elektrochemische Wertigkeit''), die die theoretische Ionenladung eines Atoms innerhalb einer chemischen Verbindung oder eines mehratomigen Ions angibt. Dabei geht man davon aus, dass das zusammengesetzte Molekül in Ionen zerlegt wird. Anders als bei den tatsächlichen Ionenladungen, die als Zahl mit nachgestelltem  oder  geschrieben werden, wird bei Oxidationszahlen das + oder − als Vorzeichen vorangestellt und die Zahl mit römischen Ziffern angegeben. Im Falle der Oxidationszahl null wird ±0 geschrieben.

Version vom 7. August 2019, 07:59 Uhr

Auf dieser Seite werden alle Voraussetzung wiederholt, die du zur Bearbeitung des Lernpfades benötigst.

Wiederholung

Lineare Funktionen

Lineare Funktion sind besondere Funktionen, die eine Funktionsgleichung der Form oder haben. Der Graph einer linearen Funktion ist eine Gerade. Die Zahl gibt den Wert der Steigung an und die Zahl gibt den y-Wert des Schnittpunkts der Geraden mit der y-Achse an.


Der Differenzenquotient

Die Steigung des Graphen einer linearen Funktion oder die Steigung einer Geraden durch die Punkte A und B kann mit Hilfe des Differenzenquotienten berechnet werden.

Ist eine Funktion f auf einem Intervall definiert, so gibt der Differenzenquotient

die Steigung der Geraden durch die Punkte und an.

Die Differenzen können auch als und geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.

Beispiele:

Beispiel DQ.png Beispiel2 DQ.png


Die h - Schreibweise

Anstatt die Differenz in Relation zur Änderung der y-Werte zu setzen, kann man den Differenzenquotienten auch wie folgt schreiben:




Die mittlere Änderungsrate


Mit Änderungsrate ist eine relative Änderung eines Bestandes zu dessen abhängiger Größe zu verstehen. Beispiele für für solche Bestandsgrößen und Änderungen sind in folgender Tabelle illustriert.

Bestandsgröße Zuflüsse Abflüse
Anzahl der Schüler Einschulungen Schulabgänger
Treibstoffmenge im Tank Tanken an der Tankstelle Treibstoffverbrauch
Kontostand Zubuchung Abbuchung
Anzahl der Hotelgäste ankommende Gäste abreisende Gäste
Staatsverschuldung Staatseinnahmen Staatsausgaben
Beispiel

Bei einem Experiment wurde die Temperatur einer Flüssigkeit in 10 Minuten Abständen gemessen. Die mittlere Änderungsrate der Temperatur lässt sich nun mit Hilfe des Differenzenquotient berechnen: