Die Winkelhalbierende: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Was ist eine Winkelhalbierende?)
Zeile 31: Zeile 31:
 
Sei ein Winkel &alpha; gegeben mit den beiden Halbgerade g und h als Schenkel. <br>Die Symmetrieachse der beiden Halbgeraden g und h  heißt '''Winkelhalbierende w''' des Winkels &alpha;.}}
 
Sei ein Winkel &alpha; gegeben mit den beiden Halbgerade g und h als Schenkel. <br>Die Symmetrieachse der beiden Halbgeraden g und h  heißt '''Winkelhalbierende w''' des Winkels &alpha;.}}
 
|width="30px"|
 
|width="30px"|
| <ggb_applet width="350" height="250" filename="Winkelhalbierende.ggb" showResetIcon="true" />
+
| <ggb_applet width="350" height="250" filename="Winkelhalbierende.ggb" showResetIcon="true">
 
|}
 
|}
  

Version vom 3. Juli 2008, 11:07 Uhr

Kurzinfo
mathematik-digital
Diese Seite gehört zu
mathematik-digital.
Materialien:
1. Pdf20.gif Arbeitsblatt zur Winkelhalbierenden und
2. Tonpapier.png orange-farbenes gleichschenkliges Dreieck (Tonpapier)


Die Winkelhalbierende

Maxmoritz.jpg

Max und Moritz - welch' zwei Knaben,
die sich sehr an Scherzen laben,
sind an ihrem Lieblingsort,
ganz weit von den Eltern fort.
Im Dachgeschoss, das ich da mein',
fehlt der rechte Lichterschein.
Sie beschließen ganz geschwind,
weil sie so geschickt doch sind
mitten in des Daches Gängen

soll die große Lampe hängen.
Haus von Max und Moritz
mit zwei gleichgeneigten Dachflächen

Hausdach.jpg



Arbeitsaufträge:
  1. Nimm das Tonpapier.png orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
  2. Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!
  3. Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der Winkelhalbierenden!
Tonpapier.png



Was ist eine Winkelhalbierende?

Das Seil, an dem die Lampe aufgehängt ist, halbiert den Winkel der beiden Dachflächen. Aufgrund welcher geometrischen Eigenschaft der Winkelhalbierenden konntest Du das Seil konstruieren?

Definition der Winkelhalbierenden


Sei ein Winkel α gegeben mit den beiden Halbgerade g und h als Schenkel.
Die Symmetrieachse der beiden Halbgeraden g und h heißt Winkelhalbierende w des Winkels α.