Einführung in die Integralrechnung: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
K
K (Bot: Automatisierte Textersetzung (-{Babel +{Kurzinfo))
Zeile 7: Zeile 7:
 
}}
 
}}
 
|}
 
|}
{{Babel-1|M-digital}}
+
{{Kurzinfo-1|M-digital}}
  
 
==Das Flächenproblem==
 
==Das Flächenproblem==

Version vom 4. November 2007, 15:10 Uhr

Mathematik-digital Pfeil-3d.png
Lernpfad
Integral Titel.png
In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. Einige Übungen sind dem gleichnamigen Lernpfad Einführung in die Integralrechnung der österreichischen Arbeitsgruppe Medienvielfalt im Mathematikunterricht entnommen, die aus einer Kooperation von mathe-online und GeoGebra entstanden ist.


Voraussetzungen:
Zeitbedarf: etwa 3 Schulstunden
Materialien:Pdf20.gif Das bestimmte Integral; Pdf20.gif Aufgaben mit Lösung; Pdf20.gif Integralfunktion

Kurzinfo
mathematik-digital
Diese Seite gehört zu
mathematik-digital.

Inhaltsverzeichnis

Das Flächenproblem

Integral Grundstück.png
Ziel der folgenden Überlegungen ist es, ein Verfahren zu entwickeln, mit dem Flächeninhalte von krummlinig begrenzten Flächen berechnet werden können.


Unter- und Obersumme

Int abb1.png
  1. Zerlege das Intervall [0;4] in 8 gleichlange Teilintervalle und skizziere den Graphen und die Rechtecke in dein Heft.
  2. Berechne die zugehörige Ober- und Untersumme.
  3. Gib auch das arithmetische Mittel von Ober- und Untersumme als Näherungswert für die Fläche unter dem Funktionsgraphen an.
  4. Lösung
  • Berechnung von Unter- und Obersummen mit GeoGebra


Das bestimmte Integral


Flächenberechnung

Int abb2a.png





Integralfunktion

  • Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur Integralfunktion. Halte die Ergebnisse in deinem Heft fest.
  • Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen?
  • Bearbeite nun als Zusammmenfassung das Pdf20.gif Arbeitsblatt "Integralfunktion".


Zusätzliche Übungsaufgaben


Für Interessierte

  • Informiere dich im Internet über die Geschichte der Integralrechnung.
  • Bei welchen Fragestellungen kommt die Integralrechung zum Einsatz? Finde möglichst vielfältige Beispiele.
Team.gif
Entstanden unter Mitwirkung von: