Die Zeit des ZUM-Wikis geht zu Ende!

01.09.2021: Das ZUM-Wiki kann nur noch gelesen werden.
Ende 2021: Das ZUM-Wiki wird gelöscht.

Mehr Infos hier.

Bremsbeschleunigung: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Original wieder hergestellt)
Zeile 1: Zeile 1:
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
[[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_Stationenbetrieb|Stationenbetrieb]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]]  
+
[[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]]  
 
</div>
 
</div>
  
Zeile 6: Zeile 6:
 
=== Unterschiedliche Straßenverhältnisse ===
 
=== Unterschiedliche Straßenverhältnisse ===
  
In dem Kapitel Bremsweg sind wir in den Aufgaben 1 und 2 davon ausgegangen, dass allein die Geschwindigkeit den Bremsweg beeinflusst. Das ist in der Realität natürlich nicht der Fall. In Aufgabe 3 aus dem Kapitel Bremsweg sind wir von unterschiedlichen Straßenverhältnissen ausgegangen. Aufgabe 3 sollte uns somit auf dieses Kapitel vorbereiten, denn: Bei gleicher Geschwindigkeit hat ein alter LKW auf schneeglatter Fahrbahn selbstverständlich einen ungleich längeren Bremsweg als ein neuer Kleinwagen auf einer trockenen und sauberen Straße. Diese Einflüsse kommen in der sogenannten ''Bremsbeschleunigung'' zum Ausdruck.
+
Bisher waren wir davon ausgegangen, dass die Länge des Bremsweges lediglich von der Geschwindigkeit abhängt. Das ist in der Realität natürlich nicht der Fall. Bei gleicher Geschwindigkeit hat ein alter LKW auf schneeglatter Fahrbahn selbstverständlich einen ungleich längeren Bremsweg als ein neuer Kleinwagen auf einer trockenen und sauberen Straße. Diese Einflüsse kommen in der sogenannten ''Bremsbeschleunigung'' zum Ausdruck.
 
Die Bremsbeschleunigung gibt an, wie stark ein Fahrzeug abgebremst wird: Eine hohe Bremsbeschleunigung spricht also für einen kurzen Bremsweg.  
 
Die Bremsbeschleunigung gibt an, wie stark ein Fahrzeug abgebremst wird: Eine hohe Bremsbeschleunigung spricht also für einen kurzen Bremsweg.  
  
Zeile 29: Zeile 29:
 
ARBEIT=
 
ARBEIT=
 
Wie muss a<sub>B</sub> gewählt werden, damit ...<br />
 
Wie muss a<sub>B</sub> gewählt werden, damit ...<br />
#...bei der Geschwindigkeit von 90 km/h der Bremsweg 65 m lang ist?<br />
+
#...bei der Geschwindigkeit von 74 km/h der Bremsweg 65 m lang ist?<br />
#...bei der Geschwindigkeit von 90 km/h der Bremsweg 37 m lang ist?<br />
+
#...bei der Geschwindigkeit von 74 km/h der Bremsweg 37 m lang ist?<br />
#...bei der Geschwindigkeit von 51 km/h der Bremsweg 55 m lang ist?
+
#...bei der Geschwindigkeit von 51 km/h der Bremsweg 58 m lang ist?
  
 
Nutze zur Lösung der Aufgabe das obere Applet. Um die Werte exakt einstellen zu können, klicke den Schieberegler an und verwende dann die Pfeiltasten.
 
Nutze zur Lösung der Aufgabe das obere Applet. Um die Werte exakt einstellen zu können, klicke den Schieberegler an und verwende dann die Pfeiltasten.
  
 
+
:{{Lösung versteckt|1=
 +
#a<sub>B</sub> = 3,25 m/s<sup>2</sup>
 +
#a<sub>B</sub> = 5,71 m/s<sup>2</sup>
 +
#a<sub>B</sub> = 1,73 m/s<sup>2</sup>
 +
}}
 
}}
 
}}
 +
 +
 +
In der Realität hängt der Wert der Bremsbeschleunigung a<sub>B</sub> von verschiedenen Faktoren ab. Im folgenden Video wird der Einfluss der Temperatur der Bremsen auf den Bremsweg untersucht. Der Pkw wird immer von einer Geschwindigkeit von 100 km/h bis zum Stillstand abgebremst und dabei der Bremsweg ermittelt.
  
 
{|
 
{|
  
 
|valign="top"|
 
|valign="top"|
 +
{{Arbeiten|
 +
NUMMER=2|
 +
ARBEIT=
 +
Welche Bremsverzögerung liegt vor bei
 +
#60%,
 +
#75%
 +
#100% der Betriebstemperatur der Bremsen?
 +
 +
Entnimm die erforderlichen Größen dem Video.
 +
 +
 +
:{{Lösung versteckt|1=
 +
 +
Geschwindigkeit: v = 100 km/h = (100:3,6) m/s
 +
 +
Bremswege:<br>
 +
:s(60%) = 49 m <br>
 +
:s(75%) = 47 m <br>
 +
:s(100%) = 37 m <br>
 +
 +
Mit Hilfe des Applets von oben erhält man dann:
 +
#a<sub>B</sub> = 7,87 m/s<sup>2</sup>
 +
#a<sub>B</sub> = 8,21 m/s<sup>2</sup>
 +
#a<sub>B</sub> = 10,43 m/s<sup>2</sup>
 +
 +
andere Möglichkeit:
 +
Formel nach a<sub>B</sub> auflösen
 +
 +
:<math>a_\mathrm{B}=\frac{v^2}{2}\cdot \frac{1}{s}</math>
 +
 +
dann die Werte einsetzen
 +
 +
Achtung: Die Geschwindigkeit muss dazu in m/s umgerechnet werden!
 +
 +
v = 100 km/h = (100:3,6) m/s
 +
 +
 +
 +
}}
 +
}}
 +
|valign="top"|
 +
:{{#ev:youtube|2CevzuOT5_0|350}}
  
 
|}  
 
|}  
Zeile 54: Zeile 103:
  
 
{{Arbeiten|  
 
{{Arbeiten|  
NUMMER=2|
+
NUMMER=3|
 
ARBEIT=
 
ARBEIT=
 
Wie ändert sich der Verlauf des Graphen, wenn der Vorfaktor von v<sup>2</sup>, d.h. wenn <math>\frac{1}{2a_\mathrm{B}}</math> kleiner bzw. größer wird?
 
Wie ändert sich der Verlauf des Graphen, wenn der Vorfaktor von v<sup>2</sup>, d.h. wenn <math>\frac{1}{2a_\mathrm{B}}</math> kleiner bzw. größer wird?
  
 +
:{{Lösung versteckt|1=
 +
<math>\frac{1}{2a_\mathrm{B}}</math> wird kleiner, wenn a<sub>B</sub> größer wird. Wenn a<sub>B</sub> größer wird, verläuft der Graph flacher.
 +
Entsprechend wird <math>\frac{1}{2a_\mathrm{B}}</math> größer, wenn a<sub>B</sub> kleiner wird. Wenn a<sub>B</sub> kleiner wird, verläuft der Graph steiler.
  
 +
}}
 
}}
 
}}
  
Zeile 76: Zeile 129:
  
 
{{Arbeiten|  
 
{{Arbeiten|  
NUMMER=3|
+
NUMMER=4|
 
ARBEIT=
 
ARBEIT=
 
Untersuche an dem Applet rechts nun systematisch den Einfluss von a auf den Verlauf des Graphen:
 
Untersuche an dem Applet rechts nun systematisch den Einfluss von a auf den Verlauf des Graphen:
Zeile 82: Zeile 135:
 
# ...a größer als 1 ist?<br />
 
# ...a größer als 1 ist?<br />
 
# ...a zwischen 0 und 1 liegt?<br />
 
# ...a zwischen 0 und 1 liegt?<br />
# ...a 0 ist?<br />
 
 
# ...a negativ ist?<br />
 
# ...a negativ ist?<br />
 
:Vergleiche mit dem Graphen der Funktion g mit g(x)=x².
 
:Vergleiche mit dem Graphen der Funktion g mit g(x)=x².
  
 
+
:{{Lösung versteckt|1=
 +
# Ist a>0, dann ist die Parabel enger (gestreckt) als die Normalparabel.
 +
# Für 0< a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel.
 +
# Ist a negativ, so wird die Parabel an der x-Achse gespiegelt. Sie ist also nach unten geöffnet.
 +
}}
 
}}
 
}}
 
|width=20px|
 
|width=20px|
Zeile 97: Zeile 153:
 
|}
 
|}
  
<!-- Videos nicht mehr zugänglich --~~~~
 
 
===Nochmal ganz langsam===
 
===Nochmal ganz langsam===
 
:{{#ev:youtube|UCiaNcGIiOE|350}} {{#ev:youtube|yWAto5qEDJw|350}}
 
:{{#ev:youtube|UCiaNcGIiOE|350}} {{#ev:youtube|yWAto5qEDJw|350}}
-->
 
  
  
<br />
 
Lösung zur Aufgabe 1:
 
:{{Lösung versteckt|1=
 
#a<sub>B</sub> = 4,8 m/s<sup>2</sup>
 
#a<sub>B</sub> = 8,4 m/s<sup>2</sup>
 
#a<sub>B</sub> = 1,8 m/s<sup>2</sup>
 
}}
 
 
Lösung zur Aufgabe 2:
 
:{{Lösung versteckt|1=
 
<math>\frac{1}{2a_\mathrm{B}}</math> wird kleiner, wenn a<sub>B</sub> größer wird. Wenn a<sub>B</sub> größer wird, verläuft der Graph flacher.
 
Entsprechend wird <math>\frac{1}{2a_\mathrm{B}}</math> größer, wenn a<sub>B</sub> kleiner wird. Wenn a<sub>B</sub> kleiner wird, verläuft der Graph steiler.
 
 
}}
 
Lösung zur Aufgabe 3:
 
:{{Lösung versteckt|1=
 
# Ist a>0, dann ist die Parabel enger (gestreckt) als die Normalparabel.
 
# Für 0< a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel.
 
# Für a=0 gilt: f(x) = 0 x x² <=> f(x)=0. Der Funktionsgraph für a=0 liegt somit auf der x-Achse.
 
# Ist a negativ, so wird die Parabel an der x-Achse gespiegelt. Sie ist also nach unten geöffnet.
 
}}
 
  
 +
<br />
  
== Schreibe dir nun die neuen Erkenntnisse, die du in diesem Kapitel erworben hast auf und versuche sie auch mit Hilfe deines Partners zu verstehen! Was ist an Stoff neu hinzugekommen, was war bereits bekannt? Mache dir Gedanken. ==
 
 
----
 
----
 
{|border="0" cellspacing="0" cellpadding="4"
 
{|border="0" cellspacing="0" cellpadding="4"

Version vom 15. März 2010, 17:45 Uhr

Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen 1 - Anhalteweg - Übungen 2 - Allgemeine quadratische Funktion - Übungen 3


Unterschiedliche Straßenverhältnisse

Bisher waren wir davon ausgegangen, dass die Länge des Bremsweges lediglich von der Geschwindigkeit abhängt. Das ist in der Realität natürlich nicht der Fall. Bei gleicher Geschwindigkeit hat ein alter LKW auf schneeglatter Fahrbahn selbstverständlich einen ungleich längeren Bremsweg als ein neuer Kleinwagen auf einer trockenen und sauberen Straße. Diese Einflüsse kommen in der sogenannten Bremsbeschleunigung zum Ausdruck. Die Bremsbeschleunigung gibt an, wie stark ein Fahrzeug abgebremst wird: Eine hohe Bremsbeschleunigung spricht also für einen kurzen Bremsweg.

In einer Formel für den Bremsweg sollte also nicht nur die Geschwindigkeit, sondern auch die Bremsbeschleunigung berücksichtigt werden. In Lehrbüchern findet man die Formel:
              s=\frac{1}{2a_\mathrm{B}}\cdot v^2     (s = Bremsweg in m, v = Geschwindigkeit in m/s und aB = Bremsbeschleunigung in m/s²).

In dem folgenden GeoGebra-Applet kann der Bremsweg mit Hilfe der beiden Schieberegler oben links variiert werden.
Hinweis: Der Einfachheit halber wurde der obige Zusammenhang so verändert, dass die Geschwindigkeit in km/h angegeben wird.



 


Vorlage:Arbeiten


In der Realität hängt der Wert der Bremsbeschleunigung aB von verschiedenen Faktoren ab. Im folgenden Video wird der Einfluss der Temperatur der Bremsen auf den Bremsweg untersucht. Der Pkw wird immer von einer Geschwindigkeit von 100 km/h bis zum Stillstand abgebremst und dabei der Bremsweg ermittelt.

Vorlage:Arbeiten


Wenn wir die bisherigen Überlegungen verallgemeinern wollen, müssen wir unsere Gleichung für den Bremsweg genauer analysieren. Zunächst stellen wir fest, dass es eine funktionale Abhängigkeit des Bremsweges von der Geschwindigkeit gibt; wir können unsere Formel als Funktionsgleichung schreiben:
s(v)=\frac{1}{2a_\mathrm{B}}\cdot v^2. Die rechte Seite der Funktionsgleichung besteht aus dem Vorfaktor \frac{1}{2a_\mathrm{B}} und dem Quadrat der Variablen.
Besonders interessant ist dabei der Einfluss des Vorfaktors auf den Verlauf des Graphen:


Vorlage:Arbeiten

Merksatz: (Rein-)Quadratische Funktionen

Die Funktionen, die wir bis jetzt betrachtet haben, weisen eine Gemeinsamkeit auf: Ihr Funktionsterm hat die Form ax². Sie zählen daher zu den quadratischen Funktionen. Die Graphen quadratischer Funktionen unterscheiden sich stark von den Graphen linearer Funktionen.


Vorlage:Merksatz


Vorlage:Arbeiten


Das Applet zeigt den Graphen einer Funktion f mit f(x) = ax². Hierbei steht a für eine beliebige reelle Zahl (nicht mehr für die Bremsbeschleunigung!).
Mit Hilfe des Schiebereglers (unten links im Applet) kannst du den Wert für a variieren.

Nochmal ganz langsam




Maehnrot.jpg Als nächstes kannst du prüfen, ob du bis jetzt alles verstanden hast.

Datei:Pfeil.gif   Hier geht es weiter.