allgemeine Form: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Arbeitsblätter)
(Original wieder hergestellt)
Zeile 1: Zeile 1:
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
 
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
[[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_Stationenbetrieb|Stationenbetrieb]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]]  
+
[[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]]  
 
</div>
 
</div>
  
Zeile 23: Zeile 23:
 
Experimentiere mit dem Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben.
 
Experimentiere mit dem Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben.
  
 
+
:{{Lösung versteckt|1=
 +
#<span style="color: red">a bestimmt die Weite und die Öffnung nach oben und unten</span><br />
 +
#<span style="color: blue">b verschiebt den Scheitel</span><br />
 +
#<span style="color: green">c verschiebt den Scheitel für '''c > 0 nach oben''' und für '''c < 0 nach unten'''</span><br />
 +
}}
 
}}
 
}}
  
Zeile 43: Zeile 47:
 
Graphen liegt.
 
Graphen liegt.
  
 
+
:{{Lösung versteckt|1=
 +
#<span style="color: blue">a = 0,5; b = 2,4; c = - 1</span><br />
 +
#<span style="color: red">a = - 1; b = -3; c = 2</span><br />
 +
#<span style="color: green">a = 0,5; b = - 2,4; c = - 1</span><br />
 +
}}
  
 
}}
 
}}
Zeile 63: Zeile 71:
 
#Vergleiche die beiden Parabeln mit der Normalparabel.
 
#Vergleiche die beiden Parabeln mit der Normalparabel.
 
   
 
   
 
+
:{{Lösung versteckt|1=
 +
#[[Bild:Quadratisch_Wertetabelle.jpg]] [[Bild:Quadratisch_allgemein3.jpg]]
 +
#<span style="color: green">Scheitel von f: '''S(-3/-2)'''</span>;  <span style="color: blue">Scheitel von g:''' S(1/3)'''</span>
 +
#'''Parabel von f''': Enger als Normalparabel, nach oben geöffnet, verschoben
 +
::'''Parabel von g''': Weiter als Normalparabel, nach unten geöffnet, verschoben
 +
}}
 
}}
 
}}
 
|}
 
|}
Zeile 78: Zeile 91:
 
ARBEIT=
 
ARBEIT=
 
Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"?
 
Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"?
 
 
}}
 
|}
 
 
 
 
<br />
 
 
'''Lösung zur Aufgabe 1:'''<br />
 
 
:{{Lösung versteckt|1=
 
#<span style="color: red">a bestimmt die Weite und die Öffnung nach oben und unten</span><br />
 
#<span style="color: blue">b verschiebt den Scheitel</span><br />
 
#<span style="color: green">c verschiebt den Scheitel für '''c > 0 nach oben''' und für '''c < 0 nach unten'''</span><br />
 
}}<br />
 
 
'''Lösung zur Aufgabe 2:'''<br />
 
 
:{{Lösung versteckt|1=
 
#<span style="color: blue">a = 0,5; b = 2,4; c = - 1</span><br />
 
#<span style="color: red">a = - 1; b = -3; c = 2</span><br />
 
#<span style="color: green">a = 0,5; b = - 2,4; c = - 1</span><br />
 
}}<br />
 
 
'''Lösung zur Aufgabe 3:'''<br />
 
 
:{{Lösung versteckt|1=
 
#[[Bild:Quadratisch_Wertetabelle.jpg]] [[Bild:Quadratisch_allgemein3.jpg]]
 
#<span style="color: green">Scheitel von f: '''S(-3/-2)'''</span>;  <span style="color: blue">Scheitel von g:''' S(1/3)'''</span>
 
#'''Parabel von f''': Enger als Normalparabel, nach oben geöffnet, verschoben
 
::'''Parabel von g''': Weiter als Normalparabel, nach unten geöffnet, verschoben
 
}}<br />
 
 
'''Lösung zur Aufgabe 4:'''<br />
 
  
 
:{{Lösung versteckt|1=
 
:{{Lösung versteckt|1=
Zeile 123: Zeile 101:
 
::Entfernung zur Kreuzung: s = a·v<sup>2</sup> + b·v + c  mit c = 30m
 
::Entfernung zur Kreuzung: s = a·v<sup>2</sup> + b·v + c  mit c = 30m
  
}}<br />
+
}}
 +
}}
 +
|}
 +
 
 +
 
 +
 
 +
<br />
  
 
----
 
----
Zeile 132: Zeile 116:
  
 
|}
 
|}
== Als Extra-Übungseinheit könnt ihr euch freiwillig mit den folgenden Aufgaben zu Hause/in eurer Freizeit beschäftigen.  ==
+
== Arbeitsblätter ==
 
*[http://www.sinus.lernnetz.de/aufgaben1/materialien/mathematik/sek_I/quadratische_funktionen.doc Arbeitsblatt aus dem Sinus-Lernnetz]
 
*[http://www.sinus.lernnetz.de/aufgaben1/materialien/mathematik/sek_I/quadratische_funktionen.doc Arbeitsblatt aus dem Sinus-Lernnetz]

Version vom 15. März 2010, 17:55 Uhr

Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen 1 - Anhalteweg - Übungen 2 - Allgemeine quadratische Funktion - Übungen 3


Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat:

f(x)=ax2+bx+c


Vorlage:Arbeiten

Vorlage:Arbeiten


Vorlage:Arbeiten

Die allgemeine quadratische Funktion in der Anwendung

Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil (ax2), einen linearen Teil (bx) und einen konstanten Teil (c).

Du hast in den vorangegangenen Kapiteln erfahren, dass sich beim Bremsen eines Pkws der Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form f(x) = ax2 + bx beschreiben lässt, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.

Vorlage:Arbeiten




Maehnrot.jpg

Datei:Pfeil.gif   Hier geht es weiter.

Arbeitsblätter