Rund um den Kegel: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „==Der Kegel - Eine kleine Einführung== <br> In der vorherigen Lerneinheit hast du die Pyramide mit einem beliebigen Vieleck als Grundfläche kennengelernt.<br> E…“)
 
(Arbeiten -> Aufgaben)
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
{{Lernpfad Inhalt und Drumherum}}
 +
 
==Der Kegel - Eine kleine Einführung==
 
==Der Kegel - Eine kleine Einführung==
 
<br>
 
<br>
Zeile 11: Zeile 13:
 
==Eigenschaften des Kegels==
 
==Eigenschaften des Kegels==
 
<br>
 
<br>
{{Arbeiten|NUMMER=1|ARBEIT=
+
{{Aufgaben|1=1|2=
 
'''Fülle den Lückentext aus!'''
 
'''Fülle den Lückentext aus!'''
 
<br>
 
<br>
Zeile 17: Zeile 19:
 
Ein '''Kegel''' ist ein Körper, dessen '''Grundfläche''' ein '''Kreis''' (Grundkreis) ist. <br>
 
Ein '''Kegel''' ist ein Körper, dessen '''Grundfläche''' ein '''Kreis''' (Grundkreis) ist. <br>
 
Die '''Mantelfläche''' des Kegels ist gewölbt. Der Abstand der Spitze S zur Grundfläche ist die '''Höhe''' des Kegels. Eine Verbindungsstrecke vom Kreisrand zur Kegelspitze heißt '''Mantellinie''' und wird mit "s" beschriftet. <br>
 
Die '''Mantelfläche''' des Kegels ist gewölbt. Der Abstand der Spitze S zur Grundfläche ist die '''Höhe''' des Kegels. Eine Verbindungsstrecke vom Kreisrand zur Kegelspitze heißt '''Mantellinie''' und wird mit "s" beschriftet. <br>
Ebenso wie bei der Pyramide unterscheidet man auch hier zwischen '''geraden''' (senkrechten) und '''schiefen''' Kegel. Schaue dir dazu das folgende Geogebra-Applet an. <br>
+
Ebenso wie bei der Pyramide unterscheidet man auch hier zwischen '''geraden''' (senkrechten) und '''schiefen''' Kegeln. Schaue dir dazu das folgende Geogebra-Applet an. <br>
 
Für uns sind allerdings nur gerade Kegel von Bedeutung.
 
Für uns sind allerdings nur gerade Kegel von Bedeutung.
 
</div>
 
</div>
Zeile 23: Zeile 25:
  
 
<br><br>
 
<br><br>
<ggb_applet width="1584" height="717"  version="4.0" ggbBase64="UEsDBBQACAgIADe3bUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAA3t21BAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1b23LbRhJ9dr5iig/7ZFJzn0FWckqxY0cVOU4tvVvZvGwNgSEJCwQYAJQoV35qf2S/aXtmABIUJVqUZRXtsiXcGtPTp/t09wDQ8Q/LWYYubVmlRX7SIwPcQzaPiyTNJye9RT3u694PL747nthiYkelQeOinJn6pMedZJrALQmPmY14X8eM9Lk2oj+yxvaZIopKw6KEjXsILav0+7z41cxsNTexHcZTOzPnRWxqr3ha1/Pvj46urq4GrapBUU6OJpPRYFklPQTTzKuTXrPzPQy3cdMV8+IUY3L0+9vzMHw/zava5LHtIWfCIn3x3bPjqzRPiit0lSb1FGYvMdgxtelkCkZpCQdHTmoOiMxtXKeXtoJ7O4fe6Ho273kxk7vrz8Ieylb29FCSXqaJLU96eEAF0Ur0UFGmNq8bCdJoOmrHOL5M7VUYzO15PbyH6qLIRsaNg/76C1FMMXruNiRsKGykDJdwOIdZ2NCw4WEjggwPt/MgyoMMDzKc9dBlWqWjzJ70xiarALg0H5fgtNVxVV9n1s+nObG2mTwHm6r0Iwgzh2pAGs5j/Nz9ANTPOW4Q7hhJOlrrcrGn0lYlEZrfXyf9LEtZq5Rjtq2TijvslDuUBsPvZ2gHW1Dl//ufLY1sl5k3NYbjz1Mo+ZOYeHzUcuW4oQeqpk62CZ/azipHGBYhEbm4J0gAOaSCMBeIRLBRFAEdEBGICzgkGkm3VYgpuMARQxo5OcKQZ4fQ8IsrP5hEAgZzZxWQEhFQxJFgiHhScQRUQp6YQFLKQEIIJOAmp55QNwSTiEs4YhpxmKPjpCIgyOBGOAb1FDGCmLuZKEQlkm48wh3XpXZThyEpkhhJ4gYEWgOlA51BXiPmrJENXGk+X9QbEMWzpN2ti/nKFyANCWmd7EKC2siFz44zM7IZ1Ieh8yRClyZzfPKKxkVeo9aJMpyblGY+TeNqaOsa7qrQB3Npzk1tl69Bump1e9m4yKvfyqJ+WWSLWV4hFBcZXs25yEhnn65mDQesc4F3L4jOBdnZV7fqLeAKWlQW9Bdl1YqbJDlzEuvUAEi+y7PrH0trLuZFumnG8ZEvNcd2EWdpkpr8XxCsTovDBa0qj89XbeWROmpnUpTJ8LqCEEbLP2xZALZCDkSkBSGRxDSKoJJchysMq4ESXDOOdRQRx74qNo57HCo5FkopzllEOYE0dX3HpcZ19nLlILO0a1snpSN25+Cs+rHI1qe8+S/NvF6UvmcATaWz6TSfZNaHiM+2UJDji1GxHIbYYGGs99dzOMJhBqOJhx2VzmQwctJsR2HrZdzUVlLYy2AvgdtgS5PVdRJRL+G3o7D1UhC9YWqNqaQ1k+JWTVr5hIZ7DW3aZOVi35X3RZ7W5+1BncYXjakk3PDrYjay6whyAq/S0IyAlsFNNeSLqnG2QT9S1b83HZ7b/3dn//3U1sZ1KoIyiDSlBPymkdYhnG8E8vGFLXObNbyBkFkUiyqkgQ6lEhunMzjcyA/GBcU/waZwNrGT0jbyJvNdX3CLv4q7jNg67Yd6XRazs/zyPUTcjQkcH7WzPK7iMp27yEYjqDUXdh27YLuBUpV073NEBzRjV5IA0NqhPbGlSSw4IwF+TVM7tugXO7HZf8bpMrVlbdG70Qd7UbtcsainBcTey2kJwEKcoWFtFtAIzkyeg0bIe+BKlx0yO4NuENWeAp5FK7+f+ubSORgVMHBc3wyMDs4gcCshPHVMNp96xzagZebalhsw+gHfFslNcMF3HgFIRPMQbnNrQ6SGGcPOHIbznN/IpOCtCi0hpbnouj7p9V0coo8h3EJz7Yx1iSDoZN2zN/wMwRdw+gRiP34LiBH8lJC9/BYg0wOi4R8mkWKQ3gkP+JGBlJxqWIFSxoTQ5FHQjIsZsDhBuW9nf8qydA4zWjdYBjvqIkNcPCJDHcYBvkXdXo/DoM1QWy6C7JPGKw/E2y5quvSdHiKCdX2EecdHROznJMhwNglnvOob9bOGzu4C1q+VL/x1U879zs9pkljf1Yf+Ip3Y/BJsgMYKoSVuys81DpGDPrZnlgBfPzCBNKc+ko7zIGbKdIlOvTy4GPoezCRjmnMBdf4UZKXYvABBegreYIoOCKzMlCBQ4CR10qxRf8pd2PCB4IxRqH1YgZhrqE6Fa1cgoJjQjGJFpZJNr2b/zAMKVSjK6WyepXFa746bcwDvrqC5GS1md7Q4P6yCwTwCn/HD2XxroKyJ2qY23mQ2vRr/tliin4ilBwF/ltfQKwEwN9CPA/pmC/1X4cJPu52wmVVfPdALLtQmYTMKm4c6Yo25GEQKaMAioQgXkj5dbfnpgFBwVRUYjSWGigD01k+Iw+tvocb2ScNd9kiIfTIfvr6LkaM98uHoq8qHfUKfIiPuCtafH9ZtHFSs0gZWQh6L3ct5CQ5ws2pgeG+XNcwDLpz0/vbnoqj/XoWNv3UT4Bpke5s3PnpH9xhxWdWmrH9zWAS73nZGeDceV7b29SQkTr2bz36YG4QebTH5zT5F9c0DqUxoeIzkt4cQnnzAiIaCrCMKXSkj6gvm1fv54WwfP5x9K34g9IuWtKGduPM3wH8TqtrZlg+S3T6omtFakJOvorCpgYR1ucQEKyK41CyUOQqIcyABZrBYlxy3y9FHrnke38xFwKrrh4jZfkp5Ye3cPYR+l78vTV65t9ubpu3Hr2TLt8N9+DX8RHVY4/04xWGd2vukffL0pamnBpHmVCkspOKRoOTJedgs64ZbvrL78dAeZi3vNO6i4SJkO0K5ZjiKJGYRdm+iAWzGBlqzyD3y5+73Diryg6bi7X4edpbvG34e7+fn8aH7ueNm90pPR1oSzOFXSLlcDrDrNSjlsAqm5Ov189s0md+Sde98fPbLPsn3l4e5uX1V+dl1tftQ+56vAciDsuK7sp4WkyI32S1L7+FdS+/JHkvvyUF3KH3e4IsbeBkZREwRrCmVUaSx/kJNyf6PJk3wxmTLG+f7RPb5wUQ2oWqguObMPWCPIsqa9zVsFenyUUN9Z2E430J1ul9hmD6oXXsorOtmDTK4f8bxGDWj5UCfRYOIEqYF1UxxJcl9OEAPskz4T0/u8rl/L/dqy/X/++9u3/vPDVaeBWl3P8xn0cbnQCgIacmoVBHXkWy+fnpE1pF7sm7rI5f7Zy9Txh3KtV1/lhVX/7DjzC49sltfWuyzQhpvIf92n1T29hCfQDjX7L8QilxXpgmH1TAlRGrd8JFpJil05UpqpaCJY0+9MNpumNP98mJ66A1z5+G7kJxQqPgKayVZ82qSEKopJ4rAj6D36gYOMxPu9PN2/fuwn58/fC1+vmP9C+6nHDI1gU4EK43Z1+To219M0I0XE2/u+G7t/u8r6Oe/E3rsRt5/Y1zZMh2vv8dtPzhu0W+c0nmt0TwPIUxoKpiUVPHwRxnXrhdSPGJYKYF1pIj7imSdcT+NOdvA/I/UTi0yOUrARI92NU9rSNdD74eRLUYmntb2OboyFZobGM6W9eD+LmGH55JbcJaYQllTTAkSUd1m24hgDO0/5Fbs6t3tKB91P8H0n1M3fxH04v9QSwcIA1qF/WMKAACuNAAAUEsBAhQAFAAICAgAN7dtQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAA3t21BA1qF/WMKAACuNAAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPsKAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
 
<br><br><br><br>
+
[https://ggbm.at/fuqnuF99 GeoGebra Applet "Gerade und schiefe Kegel"]
 +
 
 +
<br><br><br>
  
 
==Mantelfläche und Mantelflächeninhalt==
 
==Mantelfläche und Mantelflächeninhalt==
<br>
+
 
{{Arbeiten|NUMMER=2|ARBEIT=
+
{{Aufgaben|1=2|2=
'''Die Mantelfläche des Kegels''' <br>
+
'''Die Mantelfläche des Kegels'''  
a) Stelle dir vor, du schneidest einen senkrechten Kegel entlang einer Mantellinie auf und breitest den Mantel eben aus. Beschreibe die geometrische Figur, die du für die Mantelfläche erhälst.<br>
+
 
 +
a) Stelle dir vor, du schneidest einen senkrechten Kegel entlang einer Mantellinie auf und breitest den Mantel eben aus. Beschreibe die geometrische Figur, die du für die Mantelfläche erhälst.
 +
 
 
<span style="color:green">(Beispiel: Die Mantelfläche des Zylinders ist ein Rechteck. Die Breite des Rechtecks ist gleich der Höhe des Zylinders, die Länge des Rechtecks ist gleich dem Umfang des Zylinders.)</span> <br>
 
<span style="color:green">(Beispiel: Die Mantelfläche des Zylinders ist ein Rechteck. Die Breite des Rechtecks ist gleich der Höhe des Zylinders, die Länge des Rechtecks ist gleich dem Umfang des Zylinders.)</span> <br>
  
Zeile 46: Zeile 52:
 
}}
 
}}
 
<br><br>
 
<br><br>
{{Arbeiten|NUMMER=3|ARBEIT=
+
{{Aufgaben|1=3|2=
 
'''Der Mantelflächeninhalt des Kegels''' <br>
 
'''Der Mantelflächeninhalt des Kegels''' <br>
 
Der Mantelflächeninhalt des Kegels berechnet sich über folgende Formel:<br><br>
 
Der Mantelflächeninhalt des Kegels berechnet sich über folgende Formel:<br><br>
Zeile 75: Zeile 81:
 
}}
 
}}
  
{{Arbeiten|NUMMER=4|ARBEIT=
+
{{Aufgaben|1=4|2=
 
'''Der Mittelpunktswinkel <math>\alpha </math> des Kreissektors (bzw. der Mantelfläche)''' <br>
 
'''Der Mittelpunktswinkel <math>\alpha </math> des Kreissektors (bzw. der Mantelfläche)''' <br>
  
Zeile 99: Zeile 105:
 
==Oberfläche und Oberflächeninhalt==
 
==Oberfläche und Oberflächeninhalt==
  
{{Arbeiten|NUMMER=5|ARBEIT=
+
{{Aufgaben|1=5|2=
 
Notiere auf deinem Laufzettel, wie sich die Oberfläche eines Kegels zusammensetzt und stelle eine Formel für den Oberflächeninhalt auf. <br><br>
 
Notiere auf deinem Laufzettel, wie sich die Oberfläche eines Kegels zusammensetzt und stelle eine Formel für den Oberflächeninhalt auf. <br><br>
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
Zeile 110: Zeile 116:
 
==Volumen des Kegels==
 
==Volumen des Kegels==
 
<br>
 
<br>
{{Arbeiten|NUMMER=6|ARBEIT=
+
{{Aufgaben|1=6|2=
 
'''Experimentelle Bestimmung des Kegelvolumens''' <br><br>
 
'''Experimentelle Bestimmung des Kegelvolumens''' <br><br>
 
... mit Hilfe der beiden abgebildeten Füllkörper:<br>
 
... mit Hilfe der beiden abgebildeten Füllkörper:<br>
Zeile 120: Zeile 126:
 
}}
 
}}
 
<br><br>
 
<br><br>
{{Arbeiten|NUMMER=7|ARBEIT=
+
{{Aufgaben|1=7|2=
 
'''Herleitung des Kegelvolumens'''<br>
 
'''Herleitung des Kegelvolumens'''<br>
  
Zeile 133: Zeile 139:
 
<br><br>
 
<br><br>
  
<ggb_applet width="1586" height="717"  version="4.0" ggbBase64="UEsDBBQACAgIALiKbkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAC4im5BAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dSXfbVpZeV/0KtPqc2nQEv3lI2VVHnhU7sWM5TnU2OiAJkbBAUAZAS/Kpn9LL/IHOole16uzrN/W9GCgOIAlQpAS6OrFNEtMD7nfnd9/Fw79eDUPnsx8nwSh6dEBdcuD4UXfUC6L+o4NxenZoDv76lz8+7Pujvt+JPedsFA+99NGBwCOD3qMDzsSZEj152D3r2kPBuubQGEYPPSFp1/aM6HQ6B45zlQTfRqMfvKGfXHhd/6Q78Ife61HXS7OBB2l68e2DB5eXl245lDuK+w/6/Y57lfQOHLjNKHl0UHz5Fi43c9Ilzw5nhNAHf/v+dX75wyBKUi/q+gcOPsI4+Msf//DwMoh6o0vnMuilA3hgRdiBM/CD/gAeyih4qAd41AVQ5MLvpsFnP4Fzp35mD50OLw6yw7wI9/8h/+aEk+c5cHrB56Dnx48OiMsklYpIYTnlXBp+4IziwI/S4lhajPmgvNrDz4F/mV8Wv2UjigMnHY3CjodXdP7+d4cRRpxv8IPmHww+lMp3kXwb4fkHyz9E/iHzY0R+usgPFfkxIj9GwD1+DpKgE/qPDs68MAESBtFZDPBNfifpdehn91NsuHl6+g08UxJ8gYM5AZLmNIfthHyDfxX8FaSg9dRD0qlR03jccNBySCqNqj8mu9WT8nJQQfjimEwueU61YtD8wes96BRtYajsT/Z3YUS+6jHnR8x/325AJe7kER8+KGXlYSEeTjLAYwv2Sf1hggLDrSMt8j11JAiH0sDm0qEWPjRzQBwcKh0h4Sc1jsJP7XANO4TDHePgcZQ7mXRIA/8InV1MORIuhls1CKVDYSDhSO7QTKiEA6LkZIIJQso4HCGlI+EkHJ4yvARXjlDwixtHwD2iTGoKB3I4EX7D8Mzh1OF4MtUOU47C61GBsq4M3jpckjmKOIriBUGsQaRzcYbjjcPxaVRBriC6GKczJOoOe+XXdHQxwQKOBoV0o/ZyBTWjFf/wMPQ6fgiW4gSRdJzPXogSkQ10NopSpwRR5dv6sXcxCLrJiZ+mcFbifPQ+e6+91L96Dkcn5djZsd1RlLyNR+mTUTgeRonjdEchmdzzKKRT39nkruEHn9ohpnfIqR1q6ruuHHcEe5xx4sP4ozgpD/d6vWM84kY1ACXfROH149j3zi9GwexjPHyQGZ2H/rgbBr3Aiz4As+IoSBdnYoMyfVXaIGVseSejuHdynQALO1e/+PEIdBW3LtdGKLAmympiDpzrfA/nwgVbxjUIjGDKCgn31vVQ+AR3rQEbQKW1ghuiYdf1kn3F0P7nCUTelX/ztP0YRXvqx3HyeBTebMoI8MS7SMdx5j+ASozxqY6ifuhnTJLpWzDO3fPO6Ook5w6eX+v99QX8IvkddPoZ4R1QDkzCDfeLz07+mR2DtzY5imTHkOwIUrJb0Jvsp5ZlR2SfnfwzOwr4N7+14lFp+ZiMlMMESabSyEEhOKW6Qu5HUz+OgvR1+SMNuufFo9L8hB/Gw45/w0N4wNMgd0xgFHd+GLrTYfDZwDdJ0r+hZyIPsu//OfX9/cBPvew349IarSX8y6wxOUPPsfLDcz+O/LCQHGCZ8Wic5IpgSqh6fjcYws98R0F4D5niJ3imfGvP78d+cbwXZh5gDku2l0zLxMLm7FLP49HwOPr8Hjhu7gYePijv8mHSjYML5GynA9bm3L/hXXh2D4xVb/o8FHWgZheNEhA0RWp/QIXkR+Ayw5hBd+C8vQajBq4e4NNzXvl9PzwFFvPG6WAEfPdkEANRgceck9Qbg0M49KIIRgOtBzCibgh9uFzqpBn7ZxI0wfwoczIRXGfU+QiKd54pMqgzEsD+SlnIpMYLLwYZpgW9Qu/aj2comF3vzdlZ4qfO1aODQ4qqJZPNm93fj3rzZAdUM9qAkrrIGfHC93Mezp8HvlzAaJk2mNGygGOCI2VxxDWOiAz4JQ9BchccSYEqYsau5FvnOADYMqfiGno+vi96spyaetfU1C7lSsA9GgrhgZT67mj75L5oy++IU80y2pKd0/bpvekBVlCX7pq68kYPbIee3dEQVG3PibKI4+0ovO6PooMbH9gjqF8dj6JacDyGHOx4HImdE3KcloeBqQvBY6H50V5+dCc/ugsf4Gb28uGLQSvgzIcv8ZpccdYDScE7Po/8JMk0Rlo4RNmXl0Gv52eR0YMFXijitfzSU9Rd5AUqeQU3ULmSHRbwPguu/F6+pWS85Zyc+H38Nbk/b5GXb3v/q7m5zu1PcyIpOJEvyvsXtFeaCMUNetqcGF46o5uA6H+K8lOS3JELhhdh0A3SCQOGKDDHUQpunZ85IYuu1bnvX6Dn/CZ6H3tRgum5TZHptB2Zw8xJvS7SlF8ypaEMo0xbIgEkbb4eMLptB6MUk8NqOanYXAMauhfY9NqPjZw1poBGLdFoJ/1nnaFn9x0UMbF7V1MrEBtM8XBluRElmopzoYgkFiyQJHI7Xv2sp3RSMPusp/S09JTmfaNgteMzLzrBbUSnzO7sWmxYtUYjLldcaiGosdoKwetIFGuJRNUBuXCHnyyA/LEZyB/bDPLEiRCVKBuXzfh3an9Bnlx4DuYgh/njAszH64KYaTV8vBnIZTZ3c5jpPKLUuoQzYbVhmnEmtSwdEwu4cmq1Yloq0JkZwksckznlSbcQtn93X5aq8MzUKjHZTvKuVJi7sESvQebmWPe7MgSfZ93zU7qaeVGAJ3THo9dAs1JHgYrI0JH0nqLQQ+0aAQ4CtxJ2UW5ZLfduAz21nNej8dCPg+4NUTOSwgONywd19bpkxXoBmNYQtCb7H1KaC0C1o1amUEKsz3CGQZSNMvSuMo73OskoHKf+STf2/eimQiW/73LKjmT4YGbX6gIpJjJvO8O1PHwwioMvoyidRXmT8HReXGH8CoklVRJbV119f7fqaicaibICDbKTNGKFSnqWq6TvF1SS30Ah+bdSRzt3maoCj0w3MQ6+MCcMNhNFpcpJbl1FqGSKwhbFiDK7yco0gul4meX41ACmT62GqTQZ1kXvVUmwGswQMA45KswFmIRU2lBFCNWiBag8W4ZKvwEq/b1ApdqQS5eCy8o0R6Q02VUCc9XESLAQB/YX4HjeJDJ4vpkdoSyPDLLPVtgS4hoqhAUFBlKjteB3mIZZFrz5ucR8WoDoxToPeBakF+td4GqYsLCvn3908o9NMZqitOQuMUwxRsBqEGPyRNshg2saqbWSisI+oXOhoQrz/opRJgwEd9xske5PgrgbzqspJFZG9mcLZD9bTfTuKJpykc9aqKk2UjVBHytguukoThznihQzMtek9LvKLVc0S7jgPlpO29ApUQEZjYMr56g8/qg86oiBHaOutNYIqww3zAD2R7wY4EjAda0LPoYBMRRg0lB1OkcSTy9joXmFiKWLwRnAsZHgneUc4C9wwLOs3Ad2vWwif3hWa+TvbvPNq8jysj1EAfXPjJSEg0GC/5ktlBJYBaUkt2AYOPi84PzeTaDxMueyReM8OGUNvKXBesZrsb/EXE214RBWCMkFcGcLnNjnyzRD3ACWuNWgNIwAGXOtEIxygI6CDNlaWfRtwrRMiw9KZR0vOlCN3Kf26CkFkoIFEFYpLbVQhZcqXAE6ShuNeXFFhF0Vb+ywxqoI8Z7nVVMv8qqplwvULyqiCnT8zOHCuv7sC5zRz74IRHCtn1tZa8W2U2u1QZZ4JoV5l6VW/pbS3LtX9sydLaqyxUwNF+DhKWsUFqPzhYr9va3uOWs9MuDmaKUso4RapjUhrCy9klRzC6peGMMsxSmQL5mzpDUTcAaFAI7QHaX87gGqfvuhoi4FQ8vACguVrTWVzw5xiWEWQs9KliK5hYZzNBgBDSdRLTS4/LUQa2d90Dxkg9ZDtiBcalKoPyNd4N9maFmXEU4gCOGUM0F4rdKTtoBVp/Tk+VQIPeMXdNeZ+4XCyVuCfwf1J9XY44orY42W4KwxKUQRbWtXMKu1tcxKOFHsVY1rHehfLEut9ZpC32s59EtMKhZnKg4QGw17KNOF0FPmSiFBHTAIeQXwxf4iXzXLUJRszED+qkkM9uormWeASA3z2FaBKYa4rNAHu6mpqQvE6yZAvP5KgMCMnwL6SwXqlghCaAuQ+KEJEj98JUhYlyiuwOAxy4RmGA/eOxBvmgDx5isBguLEnGEymxeQXO8Qh2rv4FXuHbxegCNs5huELfcM8jyIdA34BkYRbaimVMvCExDgCRgGwbaVgmm7o6z3vbmAP+Qgv1kAedgM5OFegCxcCNSlFEoQSpQQtAAZ9ivKjVIYEyi6txhXKdRwAdq3TdTp21sBO1lyRTZJuC8pwNxEm2LdAuOcWQEeRr3S6bp16OshGC5A8GMTCH7crN4/o/1NfWgDBKbqeYsI2e7c2lFwAMHjwEoUQZmtae/YhhhVTZc8LtfgZNMfbxcwK2YzeH7YRbEWvZwl6a6bCl4yOcLbsRCd3+XsyEXbV3H+Ky137lSlbloGBy9X1TKXaEEsU1wwGLEsTVAuZmatMtZyofheeWnrcqoVNSPtQqfsI0TnsFEm964AHUBFKs4104Ibu0+y07yXyVLDIQrDUU6we6Xp6GxoOkQ7TAe7NTc1sBztV1b/sk1MvPZjczjV86xSWe21rlpn5/fGkqCZn4rWCMFO0Vmgbl0C+FgrGM7k7BM4DVo9LFqQqFkyJmo70BOHjlYDTY0rp8P1GjC3c8r9aRB66XzVauEvnC/zF47+5F2Mkj83SRGUp6zJ1ex4Gem0JCtqlLXGgGNuAFhZzrQzO/Of3kE6u5Loj9cQ/XFzoj9uGdEVLpqiWLFAtGTG2Pum+ZM1NH/SnOZPWkZz7cppmttyBTTqspv/6E4WqlXS/Okamj9tTvOnLaO5dPm0crlLki8JAAsC5WHg5Ae7Yde8veUN6SubXE5fxZu+Smf6Kt3JD2x+WQ/N6haYU7DeSRC5vAHNXYaQ3jJuvu9HqK7OxnlHC9pFaQrxiMmZmrhKGiUsRCkENtO9mrJaE6bsAzzYkEzM2FSjCzWkZ7UQLdZOSSussowprbikZJ8ilzUJyn3Ai9wEljPyZAkv5IkSsOEC4n3OpaZFz/2vAqDefgBULU8gaGrWeeVlET1WiwlhQbAoF7tqqXFfIeKzGS/uxwWX4VlzL+5Zy7w4C56zEUIrhW+5EJMAkVtMyXGptFAgjuquHOfna0j+vDnJn9+G5FstSJuptLSSWKqYUsoaTth9E/7FGsK/aE74F7ch/E5WilIsKDfEMmsIrhQqvQVQXQZsjpZcSG13v1K0EoGXaxB42RyBl21DAPheIunB+AtBskW5GQLgBdxwvTBU3Fl95ctyee48udPVhJ438GnLS+8q19wsWXJzuNmam/3qAvspBz5dAP5dEwl7tyHst28Du5gEA1tumQIBogCl5oVJsa7gRFBKFdh5+KKLVVVwDKg2sDZaMs55tXrbXvXdYsOmkyZ0PmmB+d5KhZ1wsWmKBDPDGAWVN+mpxe6uprzoBXiyAMnHpivOPm4627w1/q8ZcxqXWc5BEtCWY/RZrtrm4IBp0IBYVoalyHur597E6WDUH0VeWNGi5aRoeV2xrCNs1Dk4bPkSw8MKoKe7oVLrUoI1H4yB8pPC1gH8LhqznJct1sIKjN43UZXv2+PucY1LO4XlEvxubEKegaGkS5hRYH2wGacte+Yol1AqJKeCaSoN41vUgx+yXm3VQvF+gdzj1eTOG79NyDneDw3IXV2mrcnmTD/1AsqC7btenPpJ4EX5AUkKvzMHwPGvLiZWvhEw75fZp0EjYAZrgKmWg7vG5fCegHm/iefwdpnIDJt6DsN98hwsWgshwXnOHLYveWtOLQyRmlIuwdzUSlW303OozEYcr5nBPm6ejTjeTQ684Tqm2fdmMGUVviIDImCm1U0SbubFGWwH782oAcG7NQmhd80heFcvIXR3QauBwAeISYW2Glu/THpM2pmotahI22nUuiRWmq4HeLekdiBqqv2itrvR0pUSqC8pw/af2vBnh1QXqzeVtRxbcnAqOXwvjZc0WlCZ+dUCoql9mgxf3z2/DhfEjSKp+P9ZYOvBVb3E009NNOZPX0viibtKAyraGE2JFcLsNPG0Mhvx07Ie7kkjCUraLkEVL6KYzkVwAcFxVnEtjDKtaREbl5mIpCIT8aGJ7HxoTyZCceZyzZSmTFEBTl/O/dLVGgujNSOWG1q8IU0ocEoMAedeaQmO4O3660O0FQOKKL5lhsa/SoHGWRj2p0/jUfrnwWmSf8lOnqVpCkcfzJ7awsBpPrz8ZeoK8++qP+Ts1q7YhwXWTJs6YWnbQ9BDXAdlwNu1BP5o4MmJCdauogwrqITVlOsin41VBVQxBqzMqMDW0/sbla5NlFapp5+bqKef26OeBGMuAe+JGy6UEjafu9MaQk5uIOKhFFukFV2BiWsk9iLClARYD7vNyoTKfNzPy0Tuc6N83Od2Sxt2hFVcKsOtwN6EBLvITla8K3YfSbqfN0DrQ47WzwtoXTZC67LdaB2ugOu+0PrQPDq5XEDplyYq7JevNDqZ1CFSNlORqnfxrpFqb6MQo58WAPLWNQpYXJK94Zrfu9N8wAjTBfOsjA2rRSwr/ZUuB88EG7cyaw2t15K5na7GyrmOxbxrrykD9DZ+5cxdT3ZIlxFliYW4R1Gd9X/KwOYuobgWnxrwOIURtQq99wnsWgm+oCnwQeuBv6ss317xwrIGAB+b4v/xlt0eUBFv3LevJgPk08+5tSUYg1gIODTgi6+T1+XrjDQKvaHSamWF2Kuwsjr/wmbyLyenb+vnX7bTwWPrmE55o/n6XEs4VQAYmGl8vV3pGgvKCKAolWbMkpnk73qy8TmyvapPNn7XDRQ3S1z9WJm4OixkxNQjk5ghE3WdXwJ/4Dve0DnpDgK/48d+P4R7Pv/GGQ+dXuA7L3//HzgAX8gOR0RBmp6Fv//ahU1fxs5nP/791wj2Ra7zs5c4Z7//GoYpnBY73vjsr3/6d0r+zGAMfC3lN07PS5LsQq/8vh86Y9B2OMDb69gbBkAR2O/A4AFe/MMoHMODOAO49cjNLsRd5/f/ghu8iH//xxlcbtTB0xMYqTuAkf8ROwk+wplfXL8fhOm/Fc/X8+BuvQhGHzphEHpnXgzXheu/HUfnqQPskt1Oxx91vO4g9Z1LuJcLuN/Aj1O3PiuJ20jgrU3qnKAdChfVJShOyQ1IFLOFK8WZYAKkjQliLdXLBK3BxMmPy8s4zxu9BPG85S9BXFPGabkrpEVLxDW+tfPOJxqXJyfZcoiOmr2h+Oje09NTawu0xJ5PnOC0CFZLF9oQjIwWAhdUg9dgRF7JqQzEjSgMuFZew/+VsXrdIo1qBStnFOyL06KNQn0VIlvpmM+pFnDBCc5YaYFNeSfzh4Yxaq0VRoNnzlQzC67mKMeaUk7tA+Wsi6ojfwOn0oaW652Mwjk9CooZ35tcvrytLu30AtfVppq+xw7ejbxGbrC6jQiqshUqZSbIEsUpVRr+WMXKDmF1CWcWmK424cxWXmWGSO+W35REeWRCEwKsZyd0s5oBvaTFnvbS8HpeQIXtLxajdxbMyrCR5R+23fLPN33GZQEgsRz1HcOazN3b+moetjM8/NSHG3COxmd9dJ2/rc/P9l5910rqn43gdhM/Ds4mrJCAnc4GKkhFK7n+EHNEDN8RLhUWSau8qEi5DJe34ZuRJboBph7TV82PVPlRj5v5UY/XlwntySwJKBkOJk0qSSi+AXy3JVx14XjSDI4nXw0clLkW4j2jqaUCXwvOdorH90HvogKSx2U9xJMKbJ42w+bppiHHFpM0s2+jMERR8NaI4eDKyZr0rR1arGrUsimbbs3NnWdR4m76Sg8BCkMSuDGt6E2y14JR5fhmdInNlvTqTiObldQ/C8PgIlloAjrNsdnahmcVrJusZtzuKAq6N6Wg22fbbbRWqnRS+BonJej7UV6LkYCRJYUndE3K9Ee55YrmOXvYR0t3iU4hCMwTB1fOUXa8yNL56EgxhjVjB84RHCsE+PUaW8NyA/pLCSDAEeABXqxrcKkFMcgeFhc9HfHiBo4EyqByKcnaqMFp4AAA9xxJcLNhMxc4lWQN/OHb8LvKRolzIcTb0+vT+NQ7HZ4Gp71T33nk5Huc/3DKM+Brsa07/N/fChfNqeGjTYbcRqJ/6x2cvU4yCsepf9KNfT96PermWiJLGNB8HhfgXi2ZR7HvzYllsiCCRQp6jSRG4yG4jjeyODkLrwa3Pi5ViCs1uohEgzNPhKHLKLeoOelm2bhkeS7ueamDXjazkM83NQu7qBoEf5Bg4pkSISwrm7Whwp/t4rYVZ2Rln6E2UQXdMiktGDUsvsfX0eyULrXe7l1y22IxSdC0ajlolY92M31MXaU4EF5SiP0I2Ia8JJkbl1irgUe5hYiFi1XrHESr14VVY/vjjB6ZwfZTU2w/tQrbaWiNUpaDJ64lpk+LsiChXAEugMUElxUA8NcJ7VEFtH7TUhB/01KQ3UJbzqgdCgZRlcUukFyAcZZ7XNVTuZg6WbOYOqmzmHou6GhvT9e2BB5giimGD4RiHJGtr8K4w4JGEVozIUGxyGzGHMMOrsBYEKGwB3D23pH5qIMz1yhKiFaMUaxby6MOiHGFROaFOJYYyhlrFnfUaehfWvClDHTczJE8vuvZ3alaFpHPptN6ugIzCIAVwXcycyJN8Vb4xeJss7o4e7MUQlWgsqQ8sww86kjysqBlSqSnQhfiao3dCLgUWOpspb1F7FId5SZz4e2rU/+0D3/D6cC2vMuNA9sd5El2HNGqoitHRUS7Ol1QFvROUfXo9OS0ezo4jU6D0/Q0rUoZ5GfdOnFwv51OmpS7zbwOY15R8KJFEV1Yr7mEiZsRfVboNmfq/aH28SmtprQsg/eFAsM5dRj1w4UX/JS26ajMpy5ap3/+92p96GXXLWkFR1ckb4i2imOpjzAQVRcPuD1605r0Lv2jDSaAvbg7ZY/KPHsYji7f+Wehf5VRd84VbYbFUYnFcY7E8RJb9c/fGuHxW2UyDdsRGVwySnjZufJfC49VDtZ3914+t50JHOWC9QWYOWAs2ORVS4cUtkuridWKKHB9+XbmxIAjowTIlIVl+Lvvj/p+J/b+8n9QSwcI+PSpv6caAAArzQAAUEsBAhQAFAAICAgAuIpuQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAC4im5B+PSpv6caAAArzQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAD8bAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
[https://ggbm.at/bPeH6yeB GeoGebra Applet "Volumenvergleich Pyramide und Kegel"]
  
 
<br><br><br><br>
 
<br><br><br><br>
Zeile 143: Zeile 149:
 
==Übungsaufgaben: Berechnungen rund um den Kegel==
 
==Übungsaufgaben: Berechnungen rund um den Kegel==
 
<br>
 
<br>
{{Arbeiten|NUMMER=8|ARBEIT=
+
{{Aufgaben|1=8|2=
 
Aus einem Kreisausschnitt wird ein Trichter geformt (s. Abbildung). Welches Volumen fasst der Trichter? <br>
 
Aus einem Kreisausschnitt wird ein Trichter geformt (s. Abbildung). Welches Volumen fasst der Trichter? <br>
 
[[Datei:Übung_Kegel_Trichter.jpg|560px]]
 
[[Datei:Übung_Kegel_Trichter.jpg|560px]]
Zeile 167: Zeile 173:
 
<br><br>
 
<br><br>
  
{{Arbeiten|NUMMER=9|ARBEIT=
+
{{Aufgaben|1=9|2=
Bearbeite im Buch auf Seite 26 Nr. 6 a), b) und c)! <br><br>
+
Bearbeite im Buch (Lambacher Schweizer, Ausgabe 2010) auf Seite 26 Nr. 6 a), b) und c)! <br><br>
 +
ODER <br><br>
 +
Bearbeite im Buch (Fokus Mathematik, Ausgabe 2016) auf Seite 49 Nr. 14! <br><br>
 
''Die Lösungen werden gemeinsam in der Klasse besprochen!''
 
''Die Lösungen werden gemeinsam in der Klasse besprochen!''
 
}}
 
}}

Aktuelle Version vom 11. März 2018, 01:26 Uhr

Mathematik-digital Pfeil-3d.png  Inhalt und Drumherum:    Hinweise - Einführungstests - Zylinder - Satz von Cavalieri - Pyramide - Kegel - Zusatzaufgaben


Inhaltsverzeichnis

Der Kegel - Eine kleine Einführung


In der vorherigen Lerneinheit hast du die Pyramide mit einem beliebigen Vieleck als Grundfläche kennengelernt.
Ersetzt man nun das Vieleck der Grundfläche durch einen Kreis, so erhält man einen verwandten Spitzkörper: den Kegel!


Eistüte umgedreht.jpg . . . .Kegel Pylon.jpg. . . . DSC04737 Istanbul - La Moschea Blu - Minareti - Foto G. Dall'Orto 29-5-2006.jpg. . . . Turmspitze.jpg

Ob Eistüte, Pylonen oder Turmspitzen, man findet sehr häufig kegelförmige Objekte in unserer Lebenswelt.



Eigenschaften des Kegels


Stift.gif   Aufgabe 1

Fülle den Lückentext aus!

Ein Kegel ist ein Körper, dessen Grundfläche ein Kreis (Grundkreis) ist.
Die Mantelfläche des Kegels ist gewölbt. Der Abstand der Spitze S zur Grundfläche ist die Höhe des Kegels. Eine Verbindungsstrecke vom Kreisrand zur Kegelspitze heißt Mantellinie und wird mit "s" beschriftet.
Ebenso wie bei der Pyramide unterscheidet man auch hier zwischen geraden (senkrechten) und schiefen Kegeln. Schaue dir dazu das folgende Geogebra-Applet an.
Für uns sind allerdings nur gerade Kegel von Bedeutung.



GeoGebra Applet "Gerade und schiefe Kegel"




Mantelfläche und Mantelflächeninhalt

Stift.gif   Aufgabe 2

Die Mantelfläche des Kegels

a) Stelle dir vor, du schneidest einen senkrechten Kegel entlang einer Mantellinie auf und breitest den Mantel eben aus. Beschreibe die geometrische Figur, die du für die Mantelfläche erhälst.

(Beispiel: Die Mantelfläche des Zylinders ist ein Rechteck. Die Breite des Rechtecks ist gleich der Höhe des Zylinders, die Länge des Rechtecks ist gleich dem Umfang des Zylinders.)

Die Mantelfläche des Kegels ist ein Kreisausschnitt (Kreissektor). Der Radius des Kreisausschnittes ist die Länge der Mantellinie s. Die Bogenlänge b ist der Umfang des Kegels.


b) Zeichne die Mantelfläche eines Kegels und beschrifte sie entsprechend.

Kegel Mantelfläche.jpg

Kegel Mantelfläche2.jpg



Stift.gif   Aufgabe 3

Der Mantelflächeninhalt des Kegels
Der Mantelflächeninhalt des Kegels berechnet sich über folgende Formel:

M_{K}=\frac {1} {2} b\cdot s=\pi \cdot r\cdot s

Versuche diese Formel herzuleiten!
Gehe dazu schrittweise vor und zeige zuerst, dass M_{K}=\frac {1} {2} b\cdot s ist. Nutze auch die beschriftete Zeichnung der Mantelfläche als Hilfestellung!

  • Der Mantelflächeninhalt des Kegels entspricht dem Flächeninhalt des Kreisausschnittes mit Radius s und Bogenlänge b.
  • b ist die Bogenlänge des Kreisaussektors mit Radius s und gleichzeitig der Umfang des Kegels mit Radius r!

Hier findest du verschiedene Tipps, wie du vorgehen kannst (wenn du nicht weiter kommst)...

  • Stelle zunächst eine Formel für die Bogenlänge b (bzw. den "Umfang" des Kreisausschnittes) und für den Flächeninhalt des Kreisausschnittes (also den Mantelflächeninhalt des Kegels) auf.
  • Stelle nun einen Zusammenhang zwischen Bogenlänge und Flächeninhalt des Kreisausschnittes her!


Zusammenhang zwischen Bogenlänge und Flächeninhalt des Kreisausschnittes:

Stelle die Formel für die Bogenlänge b nach \pi um und setze dies in die Formel für den Mantelflächeninhalt des Kegels ein! Nun kannst du noch kürzen und du erhälst die Formel M_{K}=\frac {1} {2} b\cdot s.


Die Bogenlänge b ist gleich dem Umfang des Kegels mit Radius r! Somit kannst du für b oben die Formel für den Kegelumfang einsetzen, kürzen und du erhälst die Formel

M_{K}=\frac {1} {2} b\cdot s=\pi \cdot r\cdot s
Stift.gif   Aufgabe 4

Der Mittelpunktswinkel \alpha des Kreissektors (bzw. der Mantelfläche)

Stelle eine Gleichung zur Berechnung des Mittelpunktwinkels \alpha auf!

Dazu muss man eine Verhältnisgleichung aufstellen!



Der Winkel \alpha des Kreisausschnitts verhält sich zum Winkel des vollen Kreises wie ...



... die Bogenlänge des Kreisausschnittes (=Umfang des Kegels mit Radius r) zum Umfang des vollen Kreises mit Radius s!



Anmerkung:

Über den Zusammenhang zwischen Mittelpunktswinkel \alpha , dem Vollkreiswinkel und den beiden zu betrachtenden Radien r und s kann man ebenfalls die Formel für den Mantelflächeninhalt aufstellen:

M_{K}=\pi s^{2}\cdot \frac {\alpha } {360^{o}}=\pi s^{2}\cdot \frac {r} {s} =\pi \cdot r\cdot s

Die oben aufgestellte Verhältnisgleichung wird einfach in die bereits bekannte Flächeninhaltsformel des Kreissektors eingesetzt!





Oberfläche und Oberflächeninhalt

Stift.gif   Aufgabe 5

Notiere auf deinem Laufzettel, wie sich die Oberfläche eines Kegels zusammensetzt und stelle eine Formel für den Oberflächeninhalt auf.

Die Oberfläche eines Kegels setzt sich aus einem Kreis mit Radius r (Grundfläche) und einem Kreisausschnitt mit Radius s und Bogenlänge b zusammen.

O_{K}=G+M=\pi r^{2}+\pi r\cdot s





Volumen des Kegels


Stift.gif   Aufgabe 6

Experimentelle Bestimmung des Kegelvolumens

... mit Hilfe der beiden abgebildeten Füllkörper:
Füllkörper Kegel Zylinder.jpg

Das Experiment wird vor der gesamten Klasse durchgeführt!

Beschreibe das Experiment auf deinem Laufzettel und notiere das Ergebnis!



Stift.gif   Aufgabe 7

Herleitung des Kegelvolumens

Beweise, dass ein Kegel und eine Pyramide mit gleichem Grundflächeninhalt und gleicher Höhe auch gleiches Volumen besitzen!
Nutze dazu auch das folgende Geogebra-Applet, bei dem du dich im ersten Schritt anschaulich von der Richtigkeit der Aussage überzeugen kannst. Schreibe anschließend einen allgemeingültigen Beweis auf.

Der Beweis kann analog zu dem Beweis aus Aufgabe 5 der Lerneinheit "Rund um die Pyramide" geführt werden (Volumenvergleich zweier Pyramiden mit gleichem Grundflächeninhalt und gleicher Höhe)!

Stichworte: Zentrische Streckung!



GeoGebra Applet "Volumenvergleich Pyramide und Kegel"





Hier geht es zur Zusammenfassung!





Übungsaufgaben: Berechnungen rund um den Kegel


Stift.gif   Aufgabe 8

Aus einem Kreisausschnitt wird ein Trichter geformt (s. Abbildung). Welches Volumen fasst der Trichter?
Übung Kegel Trichter.jpg


Der Trichter ist ein Kegel. Zur Berechnung des Volumens benötigen wir den Radius r und die Höhe h des Kegels.
Die Bogenlänge b des Kreisausschnitts mit Radius s berechnet sich durch:

b=2\pi s\cdot \frac {\alpha } {360^{o}}=\pi s\cdot \frac {\alpha } {180^{o}}=\pi \cdot 20cm \cdot \frac {120^{o}} {180^{o}}=\frac {40\pi } {3} cm \approx 41,89cm

Die Bogenlänge b entspricht dem Umfang des Grundkreises des Kegels mit Radius r, also b=2\pi r!

\Rightarrow r= \frac {b} {2\pi }=\frac {40\pi } {3} \cdot \frac {1} {2\pi } cm= \frac {20} {3}cm \approx 6,67 cm

Die Höhe h wird über den Satz von Pythagoras berechnet (oben in der Abbildung kannst du das benötigte rechtwinklige Dreieck erkennen!):

h=\sqrt {s^{2}-r^{2}}= \sqrt {\left(20cm\right)^{2}-\left(\frac {20} {3}cm\right)^{2}} = \sqrt {\frac {3200} {9}cm^{2}} \approx 18,86 cm

(Hier könnte man jetzt noch teilweise die Wurzel ziehen! Also \sqrt {\frac {3200} {9}cm^{2}}=\frac {20} {3}\cdot \sqrt {8}cm)

Nun kann das Kegelvolumen berechnet werden:

V=\frac {1} {3}\pi r^{2}\cdot h= \frac {1} {3} \pi \cdot \left(\frac {20} {3}\right)^{2} \cdot \sqrt {\frac {3200} {9}}cm \approx 877,61 cm^{3}

Der Trichter hat ein Volumen von ungefähr 877,61 cm³, also weniger als ein Liter!



Stift.gif   Aufgabe 9

Bearbeite im Buch (Lambacher Schweizer, Ausgabe 2010) auf Seite 26 Nr. 6 a), b) und c)!

ODER

Bearbeite im Buch (Fokus Mathematik, Ausgabe 2016) auf Seite 49 Nr. 14!

Die Lösungen werden gemeinsam in der Klasse besprochen!