Einführung in die Differentialrechnung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Tobias.Rolfes
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(243 dazwischenliegende Versionen von 11 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Achtung: Baustelle: Lernpfad zur Einführung in die Differentialrechnung
{{Box|1=Lernpfad|2=
Im bisherigen Mathematikunterricht wurden bereits vielfach Funktionen und deren Wertetabellen und Graphen betrachtet. Allerdings wurde das Änderungsverhalten von Funktionen bisher nur eingeschränkt untersucht, obwohl es eine essentielle Eigenschaft von Funktionen ist.


== Einstiegsaufgaben ==
Am Ende des 17. Jahrhunderts gingen Gottfried Wilhelm Leibniz und Isaac Newton der mathematischen Bestimmung des Änderungsverhaltens von Funktionen genauer nach und entwickelten Ideen, auf deren Grundlage die Differentialrechnung entwickelt wurde. Die Differentialrechnung war ein wichtiger Baustein in der Weiterentwicklung der Mathematik und der Naturwissenschaften und ist heute eine unverzichtbare Methode in der Mathematik.


===== Blumenvase =====
Im folgenden Lernpfad lernen Sie die Ideen von Leibniz und Newton kennen. Sie lernen dabei die grundlegenden Begriffe der Differentialrechnung wie '''mittlere und momentane Änderungsrate''', '''Steigung, Sekante, Tangente, Differenzenquotient, Differentialquotient''' und '''Ableitung''' kennen.


===== Barringer-Krater =====
Zur erfolgreichen Bearbeitung sollten Sie vertraut mit der Theorie der linearen Funktionen sein. Sie sollten insbesondere wissen, was die Steigung einer linearen Funktion ist und wie man sie bestimmt.


[[Datei:Meteor.jpg|400px]]
Zur Dokumentation Ihres Lernprozesses sollen Sie die Aufgaben des Lernpfades in einer Mappe oder einem Heft nachvollziehbar aufschreiben.
[[Datei:Logo Mathematik-digital 2011.png|200px|right|verweis=Mathematik-digital|Mathematik-digital]]
|3=Lernpfad}}


In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater.
{{Einführung in die Differentialrechnung}}


Der Krater hat einen Durchmesser von etwa 1200 Meter und eine Tiefe von 180 Meter. An der flachsten Stelle kann der Kraterrand durch die folgende Funktion beschrieben werden:
Die didaktischen Gestaltungselemente dieses Lernpfad werden im Abschnitt 8 des Buchs ''Medienvielfalt im Mathematikunterricht'', Jürgen Roth, Evelyn Süss-Stepancik, Heike Wiesner (Hrsg.), Springer Spektrum 2015, ISBN 978-3-658-06448-8 beschrieben.
<math>k(x)=0,002x^2</math> für <math>0<=x<=300</math>


''Hier kommt noch ein Koordinatensystem mit der Funktion hin''
'''Autoren:''' Jochen Dörr, Tobias Rolfes, Dirk Schmerenbeck, Roland Weber
{{Fortsetzung|weiter=Einstieg|weiterlink=Einführung in die Differentialrechnung/Einstieg}}


Im Krater befindet sich ein Fahrzeug, das eine Steigung von bus zu 100% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?
[[Kategorie:Differentialrechnung]]
 
[[Kategorie:Mathematik-digital]]
== Mittlere Änderungsrate ==
[[Kategorie:Mathematik]]
 
[[Kategorie:Sekundarstufe 2]]
===== Blumenvase =====
[[Kategorie:Lernpfad]]
 
[[Kategorie:Analysis]]
In die abgebildete Vase wird gleichmäßig Wasser eingelassen. Die Tabelle stellt dar, wie sich die Wasserhöhe (gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert.
 
:{| class="wikitable"
!'''Zeit (Sekunden)''' !! '''Höhe (cm)'''
|-
| 0 || 0,51
|-
| 3 || 1,33
|-
| 6 || 2,74
|-
| 9 || 4,91
|-
| 12 || 8,00
|-
| 15 || 12,17
|-
| 18 || 17,58
|}
 
'''Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.'''
 
''Bsp.''<br /> In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)<br /><br />
 
{{Aufgaben-M|1|
Berechnen Sie anhand der obigen Tabelle und mit dem Taschenrechner oder PC die mittlere Änderungsrate in den angegebenen Zeitabschnitten:<br />
a) in den ersten drei Sekunden<br />
b) zwischen Sekunde 3 und 6<br />
c) zwischen Sekunde 15 und 18<br />
d) zwischen Sekunde 3 und 12<br />
e) in den ersten 18 Sekunden<br />
}}
:{{Lösung versteckt|1=
a) In den ersten drei Sekunden steigt die Wasserhöhe um 1,33 cm - 0,51 cm = 0,82 cm. Pro Sekunde steigt es daher um 0,82 cm : 3 s = 2,73 cm/s.<br />
b) In den drei Sekunden von Sekunde 3 auf Sekunde 6 nimmt die Wasserhöhe um 2,74 cm - 1,33 cm = 1,41 cm zu. Die mittlere Änderungsrate ist daher 1,41 cm : 3 s = 0,471 cm/s.<br />
c) Zwischen Sekunde 15 und 18 liegen wiederum 3 Sekunden. In diesem Zeitraum steigt das Wasser um 17,58 cm - 12,17 cm = 4,17 cm. Pro Sekunde nimmt das Wasser in diesem Zeitraum daher um 4,17 cm : 3 s = 1,389 cm/s zu.<br />
d) Bei Sekunde 3 beträgt die Wasserhöhe 1,33 cm, während sie bei Sekunde 12 genau 8 cm beträgt. In diesen 9 Sekunden ist die Wasserhöhe also um 8 cm - 1,33 cm = 6,67 cm gesteigen. Die mittlere Änderungsrate zwischen Sekunde 3 und 12 beträgt daher 6,67 cm : 9 s = 0,741 cm/s.<br />
e) Das Wasser nimmt in den ersten 18 Sekunden um 17,58 cm - 0,51 cm = 17,07 cm zu. Die mittlere Änderungsrate beträgt in diesem Zeitintervall daher 17,07 cm : 18 s = 0,948 cm/s.<br />
 
}}
<br /><br />
Möchte man nun für einen Zeitpunkt (z.B. Sekunde 6) eine Änderungsrate bestimmen, so spricht man von der '''momentanen Änderungsrate'''. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in Aufgabe 2.
<br /><br />
{{Aufgaben-M|2|
Um näherungsweise die momentane Änderungsrate für Sekunde 12 zu erhalten, bestimmen Sie mit Hilfe der Schieberegler des Applets und mit Hilfe des Taschenrechners bzw. PCs die mittlere Änderungsrate ...<br />
a) ... zwischen Sekunde 12 und 15<br />
b) ... zwischen Sekunde 12 und 14<br />
c) ... zwischen Sekunde 12 und 13<br />
d) ... zwischen Sekunde 12 und 12,5<br />
e) ... zwischen Sekunde 12 und 12,3<br />
f) ... zwischen Sekunde 12 und 12,1<br />
g) ... zwischen Sekunde 12 und 12,05<br />
h) Schätzen Sie aufgrund der Ergebnisse aus a) - g), welches Ergebnis für die momentane Änderungsrate bei Sekunde 12 Ihnen plausibel erscheint.<br />
}}
<ggb_applet width="559" height="590"  version="4.2" ggbBase64="UEsDBBQACAgIANxxXUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADccV1DAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVc2XLbRhZ9dr6iiw9TUiJSvWLxSE5JlGU55cSukSc1lYdxgWCThAUCDABKlCrfNU/zlh+b290AN4CrJIrO2JYbIHq599xzl26SOvlx1A/RrUzSII5Oa6SBa0hGftwOou5pbZh16k7txzffnXRl3JWtxEOdOOl72WmNN2htMg7uGnps0IYbx8HC4bzuypZd574gdccirE496mDXspjvOzWERmnwOop/8foyHXi+vPZ7su99iH0v01P2smzw+vj47u6uUSzeiJPucbfbaozSdg2B4FF6WssvXsN0M4PumO5OMSbH//r5g5m+HkRp5kW+rCGl1DB4892rk7sgasd36C5oZ73TmnCsGurJoNsDLW0Kkh6rTgNQdSD9LLiVKQydutU6Z/1BTXfzIvX8lblC4VidGmoHt0FbJqc13LAdRm2LCywIcbngNRQngYyyvC/J1zwuZju5DeSdmVZdGZSxa4MFgjRohfK01vHCFLQKok4CiIJAyRBu0+w+lC0vKe4n8pAj+Asdggep5gLTGRhOa4yxI8c9sjE+EgIbUabWBUCyOA71pATARX8gaKhpGEJ/6Ath7nl+a5lbWzcEm4bkDx31n6turCUK5fcTjfIXplVihUJsWiGY/Uj9WPCjNZ3TiEytamBavOg8jOMVhXDXX5FPYYiR0LpTTDE6Ug0xDYXGsswjbF4DfHVDTcNNI0wfboZz05WbPtz04WwTZEtcKZR0HLK+kvRRxhwDS6tMScUCUz6SQcWiREwtCmvpf/qntCTbSM+F0G6wosUf4/dbLGjjGb4WZDUtydtlMDyZUCfHRSQ8yQVCaU/1zf02k/1Uichc7VWIIAGuY9ngBAIRFxpbRSqKiEBcwC1xkKVaGzEVnDhiyEGqH2FI+45w4D+uA5eFBMylXrRNBEOMI8EQ0R7HEaCAtNcCJpRBDyGQgEFqdaKWZRbiFtwwB3EQUPmrreIng3FwD4tTxAhiaiyxEbWQRZGtfJ5wFQosR8kOk1JkYWSpoeD04PDG2WGEg5jSBrxgEKfBGNyeDAdjq2gcg2gwzGaw8/vt4jKL53q3Y//mfA5r6aVZcQ2dIFlNUqJJXjMZ89VJ6LVkCGXFtaIBQrdeqGKEnr8TRxkqKJC/1k28QS/w02uZZTAqRV+9W++Dl8nRJfROCwH10jqRn8ihHwbtwIt+BY6oKdSEaJzXVYAu8rqw8lX8OE7a1/cpEAeNfpNJDDI5vEFcYdnUxg6xKHjbvXnCidMQjBLGHeZYHEMqTH1PEZ6JhgW5HOoe7trMchhY4D5/BoM4lETcZg7HhLncrCxvx5p5I5kWUHYT5XE5+OrmfXoeh5OXBnEQZU1vkA0TXaJBnEyUTmdRN5QaWh15odrxb1rx6Npgysxcn+8HcIeNAK1uMw7jBIE/UiGgQ962TKv7KMnGvbDug3UPXBgpaI+fE5fqHrptmVb3Aqsb0XJNSaEmwcUyQaojDUxuOFaEZsUZVTwNoyD7UNxkgX+Tq0rMgF+G/RbQbUxg6HARmErPFLWzy5DaDJWfZBXcEIXX3cozWCnvpgk6R82TG5lEMjQEjIAEw3iYGo8Ys/rVyTCVn7ysdxa1/yG74MqfPBVNM5DAdC2mB/+UftCHgeb1nGCeYsQ/QSPzalt2E5n390JdTxub6Kd42h1KL+upLpO4/z66/Qx0mxP15LjQ5yT1k2CgWI1aEN5v5IS47SD1IDm0p8eB8ilo4atABXBmCusa8oZZL050yQzuDukHfbzJYkAeAiwwWXl6KPtQLqNM8zka9mUS+GM7ZkSX4iDjMFeDiIICyowobn2FuDRn/Qma8HgB55EXDnqesjXJme3dg1h6Dbt4BWb7OW4XK+fLhqr0R/0g0tP0vZEqbGC+VhqHwww2P2CbaLL5MZLlkQsKHbW1Gil/oerqHgIY5eqqE4zkOGwDaMED0GmWGxPnyyCc3sCGItURIstjgb64CtptGY3F9SKgkzYKBMaB0hcrFxhIaZxnPHYAAOgwNMWF3DgrzfS5ZCZcaaXZUDDlH89gp3nF19UaRg5HQRh4yf2sb07D4cf9vhe1UaRrosthpHkPZZMqiUa1SVr2sGIHOkajfx+wQ9CGKFVcyCkehYjfYLn+w6zo3TFr5SuUoO+M1ypQrC13hg1RxiWUcSXKeAklxTJKrs+qrOT79Pl9v1rb5/J9buOd+n6FE5BqJ/ChLlEjtfqXf/43DB9kkJUMOBokIInqmOPvQTk5UjXnAT801eRyI3vlyMEIFRuacJlM6LTWy4XqHWSH6BQB5rCV+B4dZOgH5BxqzyxLWvK0XtnTHhXQNnS17QPa5txZbuOrHM4DfIQUpIfFVLqirbJ6/mA8fgWQ1U5sORpI1bRMszGU01uFVLkizh3RUe3DVIGpJVYltxnIpl+dK6oWJ4aPCZQ/3Tjywg9ggrm0cGWywb0qMEtZwF+eBZRFx2j5j+KlIGafgPn21CzjWSc5oE5jWaZYEcDk75EZkpriPegPwsAvh6GN0nF9Ph/XVRrW+biuU/O8LbobZuTuN5yRZ5F8H6ktCmgwB2HXAOcb1A7A2EzYFDsOdqhrc9hYHyEw/MwfflgCtrkc2Nmg0dyS5U8QNUosr1C4iCKzOj9DTFnBbjzmNC9qTF4CPtqQ0dH+MXrt9LUeozuzjN6S0BebEPpijwi9Uz4vLwj9Ly+zmVxa+O9wM/lJk2SWnVGJaW83YdrbLZmm6nB9CkgnZ4lPVr5utBkp1Rf4ieq1cnF7WRS3o4OLwyOENy1uL/ffrZ8KvHnihvdQ685R960JrFcmsF5AwxRG83z+NYBp/RtiekvTu/eFmP5tfcEBuy9kFfGNEAXY43kXJhJc2JdW16AbZz3iGEtSYs7OKZsEHrKZLRdHzVR21d1YFrldhl4m62PqI2fOTfHSXcAqEwBPQhUTxskb3LV8xn4j5UC9K/Ix+px4Uao+3bI45i5Hs5fnoL3BkzWEoDZhlg2+jAUmb+tEaISrXPxBVai44QjbsjG3LGa7VnGk8m0YoL1nBqgohKbYXQKbfUtYd/YM66kjhEpq710sKe8wuokXnsvsTsr5dJjvMyKT4FSJYTJc1S6tvTzVzRfO7fmymTcEsNFhjNqcUQvzF01oZB2jPe4NA/8LfZGtA3+xrUO5fD0ryldg1BHqqGbj89mzPSph9TmGjrUCIoHg2MKWgIaTZ6r/zwsA6xrBrm43hvB8jyCsPzeGS3B4/wTvmTzptnObTecEv+X7JlEN2IooNgvYT38FwOpPjdg6O82fTGo9N6n1zOTV94t2mtT0/mp6t0xvr9hnBlvtMuniXeaKNzqe6Gi1KhtXf0hiw+3l1xc9AJ4iVlUIm6nEGzbDBDMHW5Q6zGbOkrJjhVF2Xom39gTlogK3Go5BFdzZwhTbFqFcWDa3rW8IVW/b/c0z4PoXJm+wNyDn28eCvcv3iy8AY6nkfDc5cm5uc+T8bhfFZvUmZ+23Rl/gzPmdye1Nk9uvFlUCLD9z1rkf+neLU2f/CzPVQO8L3aoeYGucOn/Th867Ojlak3tPdHK0JwG1u2fo1p/jEHRPsFauvk9Y7+q8f0/g7+UHd/sC/5ZvX+3liXN35sQ5/6wbU2fPzfIHWG6W57n5A9ebiiNngoVFhCNcSzj2i2aznZw48//7E+dzmpevlZXqPGLnpSP6yaf6N8BiO0lJLunffh/G2d9/k0FmrmpluTM5mjrNrcjET/zR73WPaUpKNWeVuvrzPz25nlbNfdaKjj+yf07X+iJBs0QsZ2e8YoUHkLVcgC3+Uttzi9pkE1zZeriWpaUNYtm7kfdslt0XMsy80Xr0Pttjel9UqHW/nloXe6zWWcGuc4bqSCWG1fw6K/GL7coZLgpxm0rc5lriXpTE5Tv0BjFLm6DTURev13QIsb/MOS80u2DoGCkerRFHRSkyNZjj7sYUvQxPfalsHXHViEdnqFVCkYlQZE2pyl+x3ia+LxfsM/Cwok5BD8M+UmXYYKgERKfIPEQ/IPXVvPzmWt4MI6jOX0+eApaT534/53+FujMOYKR45mPqJS4A62ZekulPeKP8fVKMHVv9Agpq2ZwwZs6vWMNlLoVtPHFti3PsiOmz09VQ05VQE8B6CmxShfY03GRLuLfc1z8b3DZzLIYppy7FgLiB224QJlzqui62XS4cdyHcx9O/5kDdF7/P7M3/AFBLBwgTZGNRPAwAAH5NAABQSwECFAAUAAgICADccV1DRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIANxxXUMTZGNRPAwAAH5NAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA1AwAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br />
:{{Lösung versteckt|1=
a) Bei Sekunde 12 beträgt die Wasserhöhe genau 8 cm, während das Wasser bei Sekunde 15 die Höhe 12,167 cm hat. In den drei Sekunden ist es also um 12,167 cm - 8 cm = 4,167 cm gestiegen. Die mittlere Änderungsrate in diesem Zeitabschnitt beträgt daher 4,167 cm : 3 s = 1,389 cm/s.<br />
b) 10,648 cm - 8 cm = 2,648 cm => 2,648 cm : 2 s = 1,324 cm/s<br />
c) 1,261 cm/s<br />
d) 1,2302 cm/s<br />
e) 1,218 cm/s<br />
f) 1,206 cm/s<br />
g) 1,204 cm/s<br />
h) Der Wert scheint gegen 1,2 cm/s zu streben.<br />
}}
<br /><br />
{{Aufgaben-M|3|
Die Höhe des Wasserstandes der bisher betrachteten Vase kann mit der Funktion <math>w(t)=0,001(t+8)^3</math> beschrieben werden. Hierbei gibt <math>w(t)</math> die Höhe des Wasserstandes in cm zu einem Zeitpunkt <math>t</math> (in Sekunden) an.<br />
a) Bestimmen Sie den Näherungswert für die momentane Änderungsrate noch genauer, indem Sie mit Hilfe der Funktionsvorschrift die mittlere Änderungsrate im Zeitabschnitt von Sekunde 12 bis 12,001 bestimmen.<br />
b) Beschreiben Sie, wie Sie vorgehen müssten, um einen möglichst exakten Wert für die momentane Änderungsrate bei Sekunde 12 zu erhalten.<br />
}}
:{{Lösung versteckt|1=
a)<br />
<math>w(12)=0,001(12+8)^3=8</math><br />
<math>w(12,001)=0,001(12,001+8)^3=8,00120006</math><br />
=> Höhenzunahme: <math>8 cm - 8,00120006 cm = 0,00120006 cm</math><br />
=> mittlere Änderungsrate: <math>0,00120006 cm : 0,001 s = 1,20006 cm/s</math><br />
b) Der Zeitabschnitt für die mittlere Änderungsrate müsste immer kleiner gewählt werden, z.B. zwischen Sekunde 12 und 12,00001 usw.<br />
}}
 
== Sekantensteigung ==
 
===== Barringer-Krater =====
 
 
Die durchschnittliche Steigung des Kraters zwischen den Punkten A(x<sub>0</sub>|f(x<sub>0</sub>)) und B(x<sub>1</sub>|f(x<sub>1</sub>)) kann mit <math> m=\frac{\Delta y}{\Delta x}=\frac{f(x_1)-f(x_0)}{x_1-x_0}</math> berechnet werden. Dies enspricht der Steigung der Geraden, die durch die Punkte A und B geht. Eine soche  Gerade, die den Graphen einer Funktion in zwei Punkten scheidet, nennt man ''Sekante''. <math> m=\frac{\Delta y}{\Delta x}=\frac{f(x_1)-f(x_0)}{x_1-x_0}</math> ist dann die Sekantensteigung.
 
{{Aufgaben-M|1|
Überlegen Sie, wo  in der Zeichnung folgende Größen zu finden sind:
x<sub>1</sub>-x<sub>0</sub> und f(x<sub>1</sub>)-f(x<sub>0</sub>)
 
''Achtung: Nicht auf den Monitor malen;-)''
}}
 
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAOqzXEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADqs1xDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bOBL/u/spBsLi0NzFtqiX7Z7dRdwkvgLpdoHkDovb9BayRNtsZEkryYnd3X73G5KSLFt+O27dAkkoiUMO5zdPUkrrp8nIg0caxSzw2wqpqgpQ3wlc5g/ayjjpVxrKT69/aA1oMKC9yIZ+EI3spK0YnJK5bcW2jKZumP1K3XGbFcOx3Eqz7tQrLtGIpvbtpmHpCsAkZq/84Gd7ROPQduitM6Qj+yZw7EQwHiZJ+KpWe3p6qmasqkE0qA0GveokdhXAZfpxW0kvXuF0c4OedEGuqSqp/fruRk5fYX6c2L5DFeAijNnrH160npjvBk/wxNxkiAJrDZRjSNlgiEI165YCNU4VIiIhdRL2SGMcW7gVQiejUBFkts/7X8gr8HJ5FHDZI3Np1FbUqmYQQ7U0U4EgYtRPUhqS8qpls7QeGX2S0/ErwclQIAkCr2fzmeCvv0BTNRXOeUNko2FjWbJLlc9UXTaabAzZmJLGkMMNSWpIGkPSGKiqRxaznkfbSt/2YoSO+f0I1Zbfx8nUo2I96YOZ1OQcZYrZJyTWVcRVYo3PVfWc/1r4a/CO2ryQpMA1icY7Ms1YEs3StuepHSSpPpOzWeapmSvktNYwlYJvJahZwBZZiR/xW+KorxNzkaO8P4yhZXwREVu1zFdaqXtAPOS0qfkkdBRzh9GbYDa53RMw0TmsOpq5CaSJTV0DdAcgJhgm3pIGWLytg17HDgN0aACnIzoI7zAb+Meoi8ksMHEy/rSOTgkEGRlg6kCEUxmArgTCMdFJNR0pTBNMHMTZE41PoVtgWHinN8DANXKfrBMk1HEg3iN7DXQCOh9M6qBZYPH5iMF93WrwpeOUGlgqWIRPiG6NLi3dGekboHNpsnjG/HCczEHkjNzsMgnCXBdIjQFpFu5kgJqLhi9ant2jHmaIW65JgEfb4x4hGPUDP4HcIeWzQWSHQ+bEtzRJcFQMH+1H+8ZO6OQaqeOMt6B1Aj/+JQqSN4E3HvkxgBN4ar7mwCOFay1fNd7ohQ6j2GEWOqzCdX0p3wB7YBxT5B9EcUZuu+5bTjELDYjke9+bdiJqP4QBmxejVRPJpkXHjsdcZvv/QWPlXDguMMs9PF5luafebGYrCSL3dhqjCcPkvzQKeFwh1TrBTNo00AN0Hd1kKnssq1lVNbOhGnUTO60GLs2xue+RakPTTIuo+NNsYorGMVmXWW1YasNoElI39HoT5xOc6WOuIXtCc+EHEXfsVHB+8zbuBN7skRD/jR0m40hUDRgbIy7ThT/wqDAREW0xJTsPvWByK21Dl3PdTUO8U+UCegMBO2Bo0ExMl4O07clW0PCV5VSqoFEFhZoZG3PzftLUBIVoe7IVVGi9cmmppCQTk6gZGxaLgKYqc24jTJ/n97HPkpvsJmHOQyopkfQ/j0c9mhvQ/JTkmaZs1RYMrPVAI596qT2jJsfBOJbuWTB1lzpshLeyIwXE5sr6Ny5APnXpIKLZuj1Rj0m4RK9atNTSYzHVdRSM3vqPd2gJCwto1bJVtmInYiE3OOhhDnigM5tyWWxjCnGL47gDougOTxUIT8KhQdccJ8MgEhUXRhRsud9NwojGvKSV4AJOg3XthIe5l5MzaINWVa8qBvwdJv97qZ2J6alHR1icQSIssj/2BaNcPX1R8HE9QND7iMFwQX0FgLF/hYWC7YVDm9eEKVaePaXRHHpiuneBu4gpqkwIjnEhlCYRUiqNKUl9CEKcTrhgYTEzS08wBj9gpRkLd8wH8Yt/MdelIv9Ks5JQCMxHI9t3wRf5+xfu6cosn9gqx0XKPE6yJxdyknRoCVkRLnLYLjbAOnOfIqpEk9FBtGl0OCa2ZDm2wgFimIhyl2+Ipkja4Bef5F5K7iW4wDzqzSVK+XTBeQ6FvrML9J3vA3ojh17XjgL9DXrQAvIXKDJJ4Z5TgL1eAdwZc3zt/SKKSeYSI7/dF/4ZiBViZPYr4UQUNYnsnlEEy4k/fDkklmmMjUKPOSxZj/atF4SLcNslnEfrcfbHIxoxJ4dyJCZE0ccZAFViyEnn8M82JGsdwNSFAjjwC0GdrIX/fb8f00SYrC6grmjaUu2UapTDI/f7CLPkIPBtb4k1d6Q1Ty6wQCkh3dvBontli55H9LhJsmjOqTVntvxVTHkt6BfrQHd2AN05WdD1rwH6Wz/BIhlhWMDbWYf35Hd1l8zJyffJnfxwZCCbnmwOR31WeVTUo6S/VYD21gNKdgOUnAygxrEB3SYsTJei6u4QFtxTCQs5miRDs3FiobizDnO6A+b0ZDEXpfGJRGK6Du6rXcLG1Sa8v1zUOPIeZBWWEkSBp1vC8noXLK9PD8sjbaU3JLQyjt1dcOyeYCI7EpCXLH29ujSFdcub4x6ndy824Lm4eZsNW9jEkVl9uU003bBFWiFNd+VWXy6ru+HMZYU03U5JGuMgYRbPPPkZrpfY0/Tcc8ZWvOJZv8Z05BdZ4GR+gajlbRc4eW57WLJC1u/TiPqfqP/HOEj4y/t0uRIiqEEmxBaLXjLZymOJZzDoWzoY0dKhYWeVdw7W23GczpZJMzjo9Co9PDno8HAW6fLDq6xgr5jW8faeAjWPn0jmmQRNpvye5YHSkL/eeu/fRbYf8y9nJE3h/c1OqktDUbq3mlPecDflDU9JeY1F5dW1bZWnfUPayw58fldL2mO7aY+dtPbMrc/avkHtlcPmx91093E/3WWvw1PlEVV71kI7P/OvkMZ3GDivpfIuSsp72E15D6eoPF39zl3valUF7u2mPe8UtWcUXE/b2vdORX3livmOThJew4si+W+8zv3n/SUvkWFyf96+P8fipYIp8P4c2oB/JAX8A17e2Hf019/yXcCHM3woe+XfZRV2gsyUBc77ncA9p5JZLGSZRy39Mi7GHUF/9hWZ+BRKVTJ9pRMgBFEiXvhLGN8xV+zMf7s4h+6H7XTAN3plHUyFDvovUQtnFd6oZ7BBFd3OfqroLvm8YCtVPGOZcjxNdM+hU9LENsGMl38rq3h/t4Dmf8WApm2uJb6/OiLNRNclxYW7KS48pQJ+ce/8LattxRneWqdL49yby73O8XDY0U+heDhFPstyahtQJOAZdW0Qf3O5XxBPpTs4nx7ykdLxgjiids7x+1BgP/tIp2Km79C05l5GtzJYpDq52vB6ZoXBXV0f/VyWax7ZLKsf0Mpk9QBZ+bDO7K6u9zO7q40vo77l2uHqHK63rOLInBIuywfIr+BHuO9HtvNnpqHP2dXkc1v2zJV7n/9MK/DP8GN7UW1LTqj3U+CSrzm+5IvwLXSX/ivSRtXxSGBWxX9P8FCA7lN4j1ZUYK34eTq/z/6P8fX/AVBLBwiDdHRiwwkAAGQ5AABQSwECFAAUAAgICADqs1xDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAOqzXEODdHRiwwkAAGQ5AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAWwoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br><br>
 
 
:{{Lösung versteckt|1=
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAMKzXEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADCs1xDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bOBL/u/spBsLi0Nz5Ieplu2d3ETeJr0C6XSC5w+I2vYUs0TYbWdJKcmJ3t9/9hqQky5bfqRu3QBJK4pDD+c2TlNL+aTr24IFGMQv8jkJqqgLUdwKX+cOOMkkG1aby0+sf2kMaDGk/smEQRGM76SgGp2RuR7Eto6Ub5qDacNxW1XAst9pqOI2qSzSiqQO7ZVi6AjCN2Ss/+Nke0zi0HXrjjOjYvg4cOxGMR0kSvqrXHx8faxmrWhAN68NhvzaNXQVwmX7cUdKLVzjdwqBHXZBrqkrqv767ltNXmR8ntu9QBbgIE/b6hxftR+a7wSM8MjcZocBaE+UYUTYcoVCthqVAnVOFiEhInYQ90BjHFm6F0Mk4VASZ7fP+F/IKvFweBVz2wFwadRS1phnEUC3NVCCIGPWTlIakvOrZLO0HRh/ldPxKcDIUSILA69t8JvjrL9BUTYUKb4hsNGwsS3ap8pmqy0aTjSEbU9IYcrghSQ1JY0gaA1X1wGLW92hHGdhejNAxfxCh2vL7OJl5VKwnfTCXmlRQpph9QmJdRVwl1vhcVSv818Jfg3fUF4UkBa5JNNmTacaSaJa2O0/tSZLqczlbZZ6auUZOawNTKfhOgpoFbJGV+BG/JY76JjGXOcr7pzG0jK8iYrue+Uo7dQ+IR5w2NZ+EjmPuMHoLzBa3ewImOofVQDM3gbSwaWiA7gDEBMPEW9IEi7cN0BvYYYAOTeB0RAfhHWYT/xgNMZkFJk7GnzbQKYEgIwNMHYhwKgPQlUA4JjqppiOFaYKJgzh7ovEpdAsMC+/0Jhi4Ru6TDYKEOg7Ee2SvgU5A54NJAzQLLD4fMbivW02+dJxSA0sFi/AJ0a3RpaU7I30TdC5NFs+YH06SBYicsZtdJkGY6wKpMSDNw50MUAvR8EXbs/vUwwxxwzUJ8GB73CMEo0HgJ5A7pHw2jOxwxJz4hiYJjorho/1gX9sJnV4hdZzxFrRO4Me/REHyJvAmYz8GcAJPzdcceKRwreWrxhu90GEUO8xCh1W4bqzkG2APTGKK/IMozsht133LKeahAZF873uzbkTt+zBgi2K06yLZtOnE8ZjLbP8/aKycC8cF5rmHx6ss9zRarWwlQeTezGI0YZj+l0YBjyuk1iCYSVsGeoCuo5vMZI9ltWqqZjZVo2Fip9XEpTk29z1Sa2qaaREVf1otTNE4Jusya01LbRotQhqG3mjhfIIzfcg1ZE9pLvww4o6dCs5v3sbdwJs/EuK/scNkEomqAWNjxGU694ceFSYioi2mZOe+H0xvpG3ocq7bWYh3qlxAfyhgBwwNmonpcpi2fdkKGr6ynEoVNKqgUDNjY27eT1qaoBBtX7aCCq1XLi2VlGRiEjVjw2IR0FRlwW2E6fP8PvFZcp3dJMy5TyUlkv7nybhPcwNanJJ8oSnb9SUDa9/TyKdeas+oyUkwiaV7FkzdpQ4b463sSAGxubL+jQuQT106jGi2bk/UYxIu0asWLbX0WEx1FQXjt/7DLVrC0gLa9WyV7diJWMgNDvqYA+7p3KZcFtuYQtziOO6AKLrDUwXCk3Bo0DUnySiIRMWFEQVb7nfTMKIxL2kluIDTYF075WHu5fQMOqDV1MuqAX+H6f9eamdieurRMRZnkAiLHEx8wShXz0AUfFwPEPQ/YjBcUl8BYOxfY6Fge+HI5jVhipVnz2i0gJ6Y7l3gLmOKKhOCY1wIpUmElEpjSlIfghCnEy5YWMzc0hOMwfdYacbCHfNB/OJfzHWpyL/SrCQUAvPx2PZd8EX+/oV7ujLPJ7bKcZEyT5LsybmcJB1aQlaEixy28y2wzt2niCrRZHQQbRodjoktWY2tcIAYpqLc5RuiGZI2+cUnuZeSewkuMI96C4lSPl1ynqdC390H+u73Ab2RQ69rR4H+Gj1oCflzFJmkcC8owN6sAO6MOb72YRHFJAuJkd8eCv8cxCoxMvuVcCKKmkT2wCiC5cQfvhwSyzTGxqHHHJZsRvvGC8JluO0SzuPNOPuTMY2Yk0M5FhOi6JMMgBox5KQL+Gcbko0OYOpCARz4paBONsL/fjCIaSJMVhdQVzVtpXZKNcrTI/f7CLPkMPBtb4U1d6U1T8+xQCkh3d/Dovtli15E9LhJsmjOqTVntvwsprwR9PNNoDt7gO6cLOj6c4D+1k+wSEYYlvB2NuE9/V3dJ3Ny8kNyJz8cGcqmL5unoz6vPKrqUdLfOkD7mwEl+wFKTgZQ49iA7hIWZitRdfcIC+6phIUcTZKh2TyxUNzdhDndA3N6spiL0vhEIjHdBPflPmHjchveXy9qHHkPsg5LCaLA0y1hebUPllenh+WRttJbEloZx94+OPZOMJEdCcgLlr5eXZnCeuXNcZ/Tu+db8FzevM2HLW3iyLy+3CWabtkirZGmt3arL5fV23LmskaaXrckjfEkYZbPPPkZrpfYs/Tcc85WvOLZvMZ05FdZ4HRxgajlXRc4/dL2sGKFbDCgEfU/Uf+PSZDwl/fpciVEUIdMiB0WvWKytccSX8Cgb+hwTEuHht113jncbMdxOlsmzfBJp1fp4cmTDg/nkS4/vMoK9qppHW/vKVDz+IlknknQZMrvWe4pDfnrrff+bWT7Mf9yRtIU3t/spbo0FKV7qwXljfZT3uiUlNdcVl5D21V52jekvezA53e1pD22n/bYSWvP3Pms7RvUXjlsftxPdx8P0132OjxVHlG1L1po52f+VdL8DgPnlVTeeUl59/sp7/4Ulaer37nrXa6rwL39tOedovaMgutpO/veqaivXDHf0mnCa3hRJP+N17n/vLvgJTJM7yqduwoWL1VMgXcV6AD+kRTwD3h5bd/SX3/LdwEfzvCh7JV/V1XYCTJTljg/u45ZLERZBC39MC7GDcFg/hGZ+BJKVTJ1pRMgAlEi3vdLFN8xV2zMfzuvQO/Dbirg+7yyCmZCBYOXqISzKm/UM9iiiV73ME30tn1dcPwi5XiK6FWgW1LELqGMF39ra3h/v3DmP6Opa9srie+vikjz0FVJceF+iguf3TM27Jy/ZbWtOcHb6HRpmHtzcdApHg47+hkUj6bIZ1VG7QCKBDyfbozhby4Oi+GpdPu/z1qKMU/5ROl4QRxRq3D8PhTYzz/RqZrpGzStdZDRrQ0WqU4ut7ycWWNwl1dHP5Xlmkc2q8oHtDJZPEBWPWwyu8urw8zucuurqG+5driswNWORRxZUMJF+fj4FfwId4PIdv7MNPQ5u5p+7siehWrv859p/f0Zfuwsq23F+fRhClzxLcfXfA2+g+7Sf0TaqjoeCcya+N8JHgrQfQpv0YoKrBc/Tuf32X8xvv4/UEsHCDahp/6/CQAAYjkAAFBLAQIUABQACAgIAMKzXENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAwrNcQzahp/6/CQAAYjkAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABXCgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
}}
 
<br>
 
In der Graphik der Lösung der vorherigen Aufgabe kann man den Punkt B bewegen, indem man mit der Maus auf ihn zeigt und bei gedrückter linker Maustaste die Maus bewegt.
 
<br>
{{Kasten_blau|
Eine Sekante schneidet den Graphen in zwei Punkten. Wenn nun der Punkt B immer weiter dem Punkt A angenähert wird und bei diesem Prozess letztendlich der Punkt B mit dem Punkt A zusammenfällt, so berührt die Gerade den Graphen nur noch in einem Punkt, dem sogenannten Berührpunkt. Diese Gerade nennt man nun nicht mehr Sekante (da es keine zwei Schnittpunkte mehr gibt), sondern ''Tangente an den Graphen der Funktion f im Punkt A''. Die Steigung der Tangenten gibt die Steigung des Graphen der Funktion im Berührpunkt an.
}}
 
{{Aufgaben-M|2|
Vollziehen Sie den beschrieben Übergang von der Sekante zur Tangente im obigen Applet nach.
}}
 
 
<br><br>
 
{{Aufgaben-M|3|
Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit <math> f(x)=x^2</math> gezeichnet.
* Zeichnen Sie die Sekante durch die Punkte A(1;f(1)) und B(2;f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.
* Zeichnen Sie ebenso die Sekante durch die Punkte A(1;f(1)) und C(1,5;f(1,5)) und bestimmen Sie aus der Zeichnung ihre Steigung.
* Zeichnen Sie (näherungsweise) die Tangente an den Graphen im Punkt A(1;1) ein und bestimmen Sie ihre Steigung aus der Zeichnung.
}}
 
:{{Lösung versteckt|1=
* Die Steigung ist (ungefähr) 3.
* Die Steigung ist (ungefähr) 2,5.
* Die Steigung ist (ungefähr) 2.
}}
 
 
<br><br>
 
{{Aufgaben-M|4|
Wir betrachten witerhin die Funktion f mit <math>f(x)=x^2</math>.
* Bestimmen Sie  rechnerisch für die Werte <math>x_0=1</math> und <math>x_1=1</math> mit Hilfe der obigen Formel die Steigung der Sekante durch die Punkte A(1;f(1)) und B(2;f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.
* Näheren Sie nun die Steigung der Tangenten im Punkt A(1;1) an den Graphen besser an, indem Sie für x<sub>1</sub> einen Wert wählen, der näher an x<sub>0</sub> liegt. Vergleichen Sie mit Ihrem Ergebnis aus der vorherigen Aufgabe.
* Überlegen Sie, wie man einen möglichst genauen Wert für die Steigung der Tangenten erhalten kann.
}}
 
:{{Lösung versteckt|1=
* Die Steigung ist <math>m=\frac{4-1}{2-1}=3</math>.
* Wählt man <math> x_1=1,5</math>, so ergibt sich <math>m=2,5</math>.
* Wenn man x<sub>1</sub> sehr dicht an 1 wählt, ist die Näherung recht genau.
{{Kasten_blau|
Die Idee bei der Annäherung der Tangente durch Sekanten ist es, den Wert x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern. Dann ergibt die Steigung der Sekanten eine immer bessere Näherung für die Tangentensteigung.
}}
 
}}
 
<br><br>
 
 
 
Anstatt x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern, kann man auch die Differenz <math>h=\Delta x=x_1-x_0</math> klein werden lassen. Es ist dann <math> x_1=x_0+h</math>.
 
{{Aufgaben-M|5|
Überlegen Sie, wo in der folgenden Zeichnung die Größen h, x<sub>0</sub>+h, f(x<sub>0</sub>+h)
f(x<sub>0</sub>+h)-f(x<sub>0</sub>) zu finden sind.
}}
 
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAK60XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACutFxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bRhL+nP6KAVEc4oslcfkmKSelkB1bDeA0Bew7FFfnCopcSRtTJEtStpw2//1md0mKEvUuK1EM2F6SO7uz8zwzsy+kWz9NRh7c0yhmgd9WSFVVgPpO4DJ/0FbGSb/SUH5680NrQIMB7UU29INoZCdtxeCSzG0rtmU0dcPsV+qO26wYjuVWmnWnXnGJRjS1bzcNS1cAJjF77Qe/2CMah7ZDr50hHdlXgWMnQvEwScLXtdrDw0M1U1UNokFtMOhVJ7GrAA7Tj9tKevEau5tp9KALcU1VSe2391ey+wrz48T2HaoAN2HM3vzwovXAfDd4gAfmJkM0WGugHUPKBkM0qlm3FKhxqRARCamTsHsaY9vCrTA6GYWKELN9Xv9CXoGX26OAy+6ZS6O2olY13dDrpgJBxKifpBIk1VTL+mjdM/ogO+NXQo+hQBIEXs/m/cDff4Omaiqc8oLIQsPCsmSVKp+puiw0WRiyMKWMIZsbUtSQMoaUMZCoexaznkfbSt/2YgSO+f0IScvv4+TRo2I86YOpzeQUbYrZZxTWVURVIo3PVfWU/1r4a/CK2qyRpKA1icZbKs1UEs3SNtep7WWpvtJOzVxip7VCqTR8I0PNgk5UJX7Eb0mjvsrMeY3yfj+FlvFVTGzVslhppeEB8ZDLpu6T0FHMA0Zvgtnkfk/AxOCw6ujmJpAmFnUNMByAmGCYeEsaYPGyDnodKwzQoQFcjuggosNs4B+jLjqzwMTO+NM6BiUQVGSAqQMRQWUAhhKIwMQg1XSUME0wsRFXTzTehW6BYeGd3gADx8hjsk5QUMeGeI/qNdAJ6LwxqYNmgcX7IwaPdavBh45damCpYBHeIYY1hrQMZ5RvgM6tybIZ88NxMgORM3KzyyQIcy5QGhPSNNnJBDWTC1+0PLtHPZwfrjmTAPe2xyNCKOoHfgJ5QMpng8gOh8yJr2mSYKsYPtn39pWd0MklSseZbiHrBH78axQk54E3HvkxgBN4aj7mwCOFay0fNd7ohQqjWGEWKqzCdX2h3gBrYBxT1B9EcSZuu+47LjFNDYjkB997PIuofRcGbNaMVk1MNS06djzmMtv/Dzor18JxgenMw/NVNvPUm81sJEHkXj/G6MIw+S+NAgwqvWppDdNSdbNJNIPwPPKYVjUaVVUzG6pRN5uGyaev2LF58JFqs24Sq2k0TZwlGg3SwEZZnVVVLdMysaVJDN0wUqbofc6RPaG5+YOIh3ZqOr95F58F3vSRAODcDpNxJFYNmB0jblXHH3hUOInItzglO3e9YHItvUOXfd08hninygH0BgJ4wOSAQ0OBtOzJUsjwkeVSqpBRhYSauRtz83rS1ISEKHuyFFLov3JoqaUkM5OomRoWi5SmKjOBI5yfz+9jnyVX2U3CnLvUUiLlfxmPejR3odkuyRN12arNuVjrjkY+9VKPRibHwTiWAVpwdpc6bIS3siIFxOZk/RsHIJ+6dBDRbNyeWI9JuEStWvTV0mPR1WUUjN759zfoCXMDaNWyUbZiJ2Ihdzjo4SxwR6c+5bLYxknELbbjIYimO3yyQHgSDg0G5zgZBpFYcWFOwZJH3iSMaMyXtBJcwG5wXTvhie7l5ATaoFXVi4oB/4TJ/15qJ6J76tERLs8gER7ZH/tCUU5PXyz4OA8Q9D5hOpyjrwAw1i/xULC9cGjzNWGKlWc/0mgGPdHd+8CdxxQpE4ZjZgilS4SUSmdK0hiCELsTIVgYzNTTE8zCd7jWjEU45o34xc/MdamYgaVbSSgE5qOR7bvgixn8Vx7pynRGsVWOi7R5nGRPOrKTtGkJWZEuctg6a2Cdhk8RVaLJ7CDKNDscEluyGFsRADFMxEKQb4geUbTBLz7LvZTcS3CDedabmSrl07ng2Rf6s22gP3se0Bs59Lp2EOivMILmkO+gySSFe4YAezUBPBhzfO3dMopJZiZGfrsr/FMQK8TI/FfCiShqEtkdswguJ/70ZZNYTmNsFHrMYclqtK+9IJyH2y7hPFqNsz8e0Yg5OZQj0SGaPs4AqBJDdjqDf7YlWRkApi4I4MDPJXWyEv4P/X5ME+GyuoC6omkL2SmtUfbP3B8inCUHgW97C7z5THrzpIMLlBLSvS08ulf26FlEDztJFt059ebMl7+JK68EvbMKdGcL0J2jBV3/FqC/8xNcJCMMc3g7q/Ce/KFuM3Ny8V3mTn48MpBFTxb7oz5deVTUg0x/ywDtrQaUbAcoWefFB0NUX76g2AtR7BL3xHxtI56hz7wa7p8vHhfC7W6RL9xjyRc5yiRDuXFkOfpsFeZ0C8zp0WIu1sxHkqLpKrgvtsknF98smyxF/ECbk2VYShAFnm4Jy8ttsLw8PiwPtMdeM9OVcexug2P3eHA0Dn1a8ZalL14XzmHd8ra5x+XdzhpA57d102Zz2zsyXXlukk7XbJ6WWNNdegggh9VdcxqzxJruWckaYy9j5k9D+emul9iP6YnoVK14/bN6jGnLrzLAyewAkeVNBzh5an9YMELW79OI+p+p/+c4SPiL/XS4EiKoQWbEBoNe0NnSA4sncOhrOhjR0nHi2bLoHKz24zjtLbNmsNe5Vnqsstex4jTT5cda2Uq+YlqH25UK1Dx+VplPJegy5Tcwd5SG/MXXB/8msv2Yf1MjZQpvdraiLk1F6a5rhrzhduQNj4m8xjx5dW1T8rTviL3sKOgPtcQe2449dtTsmRufwn2H7JXT5qftuPu0G3fZi/KUPKJqT7rSzt8GVEjjGSbOS0lep0Te3Xbk3R0jebr6zEPvYtkK3NuOPe8Y2TMKoadtHHvfE318wlu6bvG3o9D/hhRq67Pn88ucaexdlogLtyMuPKYly/xu4XumbcmpxcqgS7fa5293OrnAZgffd9/QSYJ65Fb7H3y3/K/bt3yjjfwBmgQVNBDacHsKshZewcsr+4b+9ns+yo8n+FDWyr+L9ugJKlLmtO50gDeXYvb5XoPFwpJZD0i/uo2Rkf70C1XxkaWqZL6XdoAARIn4lEgC+J654mTvdwTtlMP3saB++r1CxUzfGmjNnXxuaa5IKblYcyC9xN8uLg9+EMWJRzUL3O0Rnaz/EiE7gQov1ZOVXndxuZvXXaw9fj98gjyc212cwuXHzVggMyS8LZ+YvYYf4bYf2c5fGUNfsqvJl7askYSlfH35C294uvgCP7bnaVtwJLcbgWtfbB/21d8G3KX/l7GWOp4JzKpupKkAw6fw4mA9gfz8tsDg8Pa0fXuaMoBxsyp4Ot3dsO/s+M7lKRf2hwuezil0NwwefrhfwF74/6thFgiwBv7u2W7wdxd8Yfp8clf3FM5K8G/2QtGT82FYmg/PV8+Dsy8Uz3dbOR/ik5lKvuOpN7V801M8at/9w5nMWXeD+m4Z1GuWuLNQL1j6fZ3PvZYjXU/RFV83ak8GdAnmWvHfLvh99v+5b/4PUEsHCP7QjyIQCgAAPDwAAFBLAQIUABQACAgIAK60XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgArrRcQ/7QjyIQCgAAPDwAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACoCgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<br><br>
 
:{{Lösung versteckt|1=
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAIu0XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACLtFxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bRhL+nP6KAVEc4oslcfkmKSelkB1bDeA0Bew7FFfnCopcSRtTJEtStpw2//1md0mKEvUuK1YC2F6SO7uz8zwzsy+kWz9NRh7c0yhmgd9WSFVVgPpO4DJ/0FbGSb/SUH5680NrQIMB7UU29INoZCdtxeCSzG0rtmU0dcPsV+qO26wYjuVWmnWnXnGJRjS1bzcNS1cAJjF77Qe/2CMah7ZDr50hHdlXgWMnQvEwScLXtdrDw0M1U1UNokFtMOhVJ7GrAA7Tj9tKevEau5tp9KALcU1VSe2391ey+wrz48T2HaoAN2HM3vzwovXAfDd4gAfmJkM0WGugHUPKBkM0qlm3FKhxqRARCamTsHsaY9vCrTA6GYWKELN9Xv9CXoGX26OAy+6ZS6O2olY13dDrpgJBxKifpBIk1VTL+mjdM/ogO+NXQo+hQBIEXs/m/cDff4Omaiqc8oLIQsPCsmSVKp+puiw0WRiyMKWMIZsbUtSQMoaUMZCoexaznkfbSt/2YgSO+f0IScvv4+TRo2I86YOpzeQUbYrZZxTWVURVIo3PVfWU/1r4a/CK2qyRpKA1icZbKs1UEs3SNtep7WWpvtJOzVxip7VCqTR8I0PNgk5UJX7Eb0mjvsrMeY3yfj+FlvFVTGzVslhppeEB8ZDLpu6T0FHMA0Zvgtnkfk/AxOCw6ujmJpAmFnUNMByAmGCYeEsaYPGyDnodKwzQoQFcjuggosNs4B+jLjqzwMTO+NM6BiUQVGSAqQMRQWUAhhKIwMQg1XSUME0wsRFXTzTehW6BYeGd3gADx8hjsk5QUMeGeI/qNdAJ6LwxqYNmgcX7IwaPdavBh45damCpYBHeIYY1hrQMZ5RvgM6tybIZ88NxMgORM3KzyyQIcy5QGhPSNNnJBDWTC1+0PLtHPZwfrjmTAPe2xyNCKOoHfgJ5QMpng8gOh8yJr2mSYKsYPtn39pWd0MklSseZbiHrBH78axQk54E3HvkxgBN4aj7mwCOFay0fNd7ohQqjWGEWKqzCdX2h3gBrYBxT1B9EcSZuu+47LjFNDYjkB997PIuofRcGbNaMVk1MNS06djzmMtv/Dzor18JxgenMw/NVNvPUm81sJEHkXj/G6MIw+S+NAgwqvWppDdNSdbNJNIPwPPKYVjUaVVUzG6pRN5uGyaev2LF58JFqs24Sq2k0TZwlGg3SwEZZnVVVLdMysaVJDN0wUqbofc6RPaG5+YOIh3ZqOr95F58F3vSRAODcDpNxJFYNmB0jblXHH3hUOInItzglO3e9YHItvUOXfd08hninygH0BgJ4wOSAQ0OBtOzJUsjwkeVSqpBRhYSauRtz83rS1ISEKHuyFFLov3JoqaUkM5OomRoWi5SmKjOBI5yfz+9jnyVX2U3CnLvUUiLlfxmPejR3odkuyRN12arNuVjrjkY+9VKPRibHwTiWAVpwdpc6bIS3siIFxOZk/RsHIJ+6dBDRbNyeWI9JuEStWvTV0mPR1WUUjN759zfoCXMDaNWyUbZiJ2Ihdzjo4SxwR6c+5bLYxknELbbjIYimO3yyQHgSDg0G5zgZBpFYcWFOwZJH3iSMaMyXtBJcwG5wXTvhie7l5ATaoFXVi4oB/4TJ/15qJ6J76tERLs8gER7ZH/tCUU5PXyz4OA8Q9D5hOpyjrwAw1i/xULC9cGjzNWGKlWc/0mgGPdHd+8CdxxQpE4ZjZgilS4SUSmdK0hiCELsTIVgYzNTTE8zCd7jWjEU45o34xc/MdamYgaVbSSgE5qOR7bvgixn8Vx7pynRGsVWOi7R5nGRPOrKTtGkJWZEuctg6a2Cdhk8RVaLJ7CDKNDscEluyGFsRADFMxEKQb4geUbTBLz7LvZTcS3CDedabmSrl07ng2Rf6s22gP/s+oDdy6HXtINBfYQTNId9Bk0kK9wwB9moCeDDm+Nq7ZRSTzEyM/HZX+KcgVoiR+a+EE1HUJLI7ZhFcTvzpyyaxnMbYKPSYw5LVaF97QTgPt13CebQaZ388ohFzcihHokM0fZwBUCWG7HQG/2xLsjIATF0QwIGfS+pkJfwf+v2YJsJldQF1RdMWslNao+yfuT9EOEsOAt/2FnjzmfTmSQcXKCWke1t4dK/s0bOIHnaSLLpz6s2ZLz+LK68EvbMKdGcL0J2jBV1/DtDf+QkukhGGObydVXhP/lC3mTm5+C5zJz8eGciiJ4v9UZ+uPCrqQaa/ZYD2VgNKtgOUPBeg+vL1xF6AYpe4JeZLG/EMXebVcP908bgQbXeLdOEeS7rIUSYZyo0jS9FnqzCnW2BOjxZzsWQ+kgxNV8F9sU06uViH99dLzwfemyzDUoIo8HRLWF5ug+Xl8WF5oC32momujGN3Gxy7x4OjcejDircsfe+6cA7rlnfNPS7vdtYAOr+rmzab292R6cJzk3S6Zu+0xJru0jMAOazumsOYJdZ0z0rWGHsZM38Yyg93vcR+TA9Ep2rF25/VY0xbfpUBTmYHiCxvOsDJU/vDghGyfp9G1P9M/T/HQcLf66fDlRBBDTIjNhj0gs6Wnlc8gUNf08GIlk4Tz5ZF52C1H8dpb5k1g72OtdJTlb1OFaeZLj/VylbyFdM63KZUoObxo8p8KkGXKb+AuaM05O+9Pvg3ke3H/JMaKVN4sbMVdWkqSjddM+QNtyNveEzkNebJq2ubkqd9Q+xlJ0F/qCX22HbssaNmz9z4EO4bZK+cNj9tx92n3bjL3pOn5BFVe9KVdv4yoEIa32HivJTkdUrk3W1H3t0xkqer33noXSxbgXvbsecdI3tGIfS0jWPvW6KPT3hL1y3+dhT6z0ihtj57fn+ZM429yxJx4XbEhce0ZJnfLXzLtC05tVgZdOlW+/ztTicX2Ozg++4bOklQj9xq/4Pvlv91+5ZvtJE/QJOgggZCG25PQdbCK3h5Zd/Q337PR/nxBB/KWvl30R49QUXKnNadDvDmUsw+n2uwWFgy6wHpR7cxMtKffqAqvrFUlcz30g4QgCgRXxJJAN8zV5zs/Y6gnXL4PhbUTz9XqJjpWwOtuZPPLc0VKSUXaw6kl/jbxeXBD6I48ahmgbs9opP1XyJkJ1DhpXqy0usuLnfzuou1x++HT5CHc7uLU7j8uBkLZIaEt+UTs9fwI9z2I9v5K2PoS3Y1+dKWNZKwlK8vf+ENTxdf4Mf2PG0LjuR2I3DBe+2v+epvA+7Sf8tYSx3PBGZVN9JUgOFTeHGwnkB+fltgcHh72r49TRnAuFkVPJ3ubth3Frxz2eCjgqdc1x8udjqn0N0wdvjZfgF64f6vhlkcwBr0u2e7od9d933pt5y5uqdwVkJ/s9eJnpwNw9JseL56Fpx9nXh+NN/LVPLtTr2p5Tue4jn77l/NZK66G9J3y5Bes76dRXrBuu+5ka6n6IovG7UnA7oEc634Lxf8Pvvf3Df/B1BLBwhuulJfCwoAADg8AABQSwECFAAUAAgICACLtFxDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAIu0XENuulJfCwoAADg8AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAowoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
}}
 
<br><br>
 
{{Aufgaben-M|6|
Gegeben ist wieder die Funktion f mit <math> f(x)=x^2</math>.
 
Berechnen Sie für <math>h = 0,1</math> (<math>h= 0,01</math> und <math>h = 0,001</math>) die Steigung der Sekanten für <math>x_0= 1</math> und <math>x_1= 1+h </math>. (Verwenden Sie die Tabellenfunktion Ihres Taschenrechners; Schreiben Sie dazu <math>h=0,1^n}</math> mit n gleich 0, 1, 2, 3,...)
 
''Wer das Thema Folgen hatte, kann hier in seiner Variante des Lernpfads ändern.''
 
Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1;1). Vergleichen Sie mit den Ergbnissen der vorherigen Aufgaben.
}}
 
:{{Lösung versteckt|1=
Die Sekantensteigung ist <math>m=\frac{(1+h)^2-1^2}{h}=\frac{(1+0,1^n)^2-1}{0,1^n}</math>.
Dies muss für verschiedene n ausgerechnet werden. (Bei der Tabellenfunktion des Taschenrechners muss statt n als Variable x gewählt werden.)
 
}}
 
 
 
:{| class="wikitable"
!'''n''' !! '''h'''  !!'''x<sub>1</sub>''' !!'''Sekantensteigung m'''
|-
| 0 || 1|| 2 || 3
|-
| 1 || 0,1 || 1,1 || 2,1
|-
| 2 || 0,01 || 1,01 || 2,01
|-
| 3 || 0,001 || 1,001 || 2,001
|-
| 4 || 0,0001 || 1,0001 || 2,0001
|-
| 5 || 0,00001 || 1,00001 || 2,00001
|}
 
 
{{Aufgaben-M|7|
* ''das gleiche mit einer anderen Funktion''
* ''irgendwas zur zeitlichen und inhaltlichen Differenzierung''
}}
 
== Differenzenquotient ==
 
{{Aufgaben-M|1|
Eräutern Sie die Vorgehensweise im Abschnitt "mittlere und momentane Änderungsrate" und im Abschnitt "Sekanten- und Tangentensteigung". Vergleichen Sie dabei die Vorgehensweisen und arbeiten Sie Gemeinsamkeiten heraus.
}}
 
Plenumsphase?
Möglicher Inhalt:
Verbindung zwischen durchschnittlicher Änderungsrate, Sekantenssteigung und Differenzenquotient (allgemeine Beschreibung für die beiden Konzepte) herstellen.
 
== Differentialquotient ==
 
{{Kastendesign1|
BORDER = #97BF87|
BACKGROUND = #AADDAA|
BREITE =100%|
INHALT= Der Differentialquotient  f'(x<sub>0 </sub>) ist definiert als Grenzwert eines Differenzenquotienten
 
Differentialquotient  <math> f'(x_0) = lim_{x_1\to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}</math>
 
Der Differentialquotient  f'(x<sub>0</sub>)  wird auch als ''Ableitung der Funktion f an der Stelle  x<sub>0</sub>'' bezeichnet.
|
BILD=Nuvola_Icon_Kate.png|
ÜBERSCHRIFT=Information|
}}
 
 
Der Differentialquotient f'(x<sub>0 </sub>)
 
* beschreibt die momentane Änderungsrate der Funktion f an der Stelle  x<sub>0 </sub> und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen  x<sub>0</sub> und  x<sub>1</sub> den Wert  x<sub>1</sub> immer mehr dem Wert  x<sub>0</sub> annnährt,
* beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x<sub>0</sub>|f(x<sub>0</sub>)) und entsteht, wenn man in Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten  A(x<sub>0</sub>|f(x<sub>0</sub>)) und  B(x<sub>1</sub>|f(x<sub>1</sub>)) den Punkt  B(x<sub>1</sub>|f(x<sub>1</sub>)) immer mehr dem Punkt  A(x<sub>0</sub>|f(x<sub>0</sub>)) annähert.
 
<br><br>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIACq1XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAqtVxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb/W/bNhr+ufsrCGEYGlwckxT11dkdkjbJFUjXAckdhlt7gyzRthpZUiU5sbv1f7+XpGTLlr8Tp26vaEJJpEi+z/N+kWJav4wGIbrjaRbEUVsjJ1hDPPJiP4h6bW2Ydxu29svLH1o9Hvd4J3VRN04Hbt7WmGgZ+G3NNZmjM6PbsDzfaTDP9BuO5VkNn1BCcdd1mKlrCI2y4EUU/+oOeJa4Hr/2+nzgXsWem8uB+3mevGg27+/vT8qhTuK01+z1OiejzNcQTDPK2lpx8QK6m3npXpfNKcak+fvbK9V9I4iy3I08riEhwjB4+cOz1n0Q+fE9ug/8vA8CUxvk6POg1wehHMvUUFO0SgCRhHt5cMczeLdyK4XOB4kmm7mRqH+mrlA4kUdDfnAX+Dxta/iE6ky3DA3FacCjvGhBipGaZR+tu4Dfq87ElRyHaSiP47Djin7Q338jiilGx6IgqqBQmKaqwuoZ1lVBVcFUYag2TL3OVFOm2jDVhgFRd0EWdELe1rpumAFwQdRNgbTJfZaPQy7nUzyYykyOQaYs+AyNdQyoKqThOcbH4seEHyYqmrNCksqoeTrcctBySEJNuvmY9EGS6ivlpMYSOc0VgyrBNxLUqIwJQ8n/8qc2or5KzPkR1f3DBjTZk4jYapa20irMA2V90bZQn5wPMmEwuoMMR+g9QQYYh2mBmhuIOFBYFIE5IGIgZsAtsZEpSgvpFlQwpCMbiXZER9I6DBt+MUt2ZiIDOhNPLTBKRGAghgwdEWlUDIEpIWmYYKRUhxaGgQx4SQxPqOhCNxEz4U63EYM5Cpu0CDTU4UW4h+Ep0gnSxcvEQtREpuiPMGHrpi2mDl1SZGJkEtEhmDWYtDJnaG8jXUhTerMgSob5DETewC8v8ziZcAGtwSFNnZ1yUDO+8FkrdDs8hPhwLZhE6M4NhUXIgbpxlKOJQapnvdRN+oGXXfM8h7cy9NG9c6/cnI8uoHVWji3benGU/ZbG+as4HA6iDCEvDvFkznFIKtd0Mmu40SsVrFphVCrMyrW1cNwYatAw4zB+nGZlc9f334gWU9cASL6LwvFZyt3bJA5mxWg1Zahp8aEXBn7gRv8GZRWjCFzQNPIIf1VGHstxypnEqX89zkCF0eg/PI3BAMwTnWCHEZtgAyKJpaFxUaObJw62wJvbOsWWAzWZ5wrbow7UEFO3MKGWTU0Ghjku6qCXE4PqFB7rtmUa2FJD87sJRe6IT6TvpcKyC8nFzZvsLA6nj6T8r9wkH6YyaQDnmAqhTqNeyKWOSHcLEdm77cSja6UcuurrZpzAHVYT6PQk7gh8AzUgXvaKsqNK2UbMbNIKyzZYtsCltgX+pJ44VLaQZUeVshWor5paISkpxSS4HCbIpEfD2ozdSN0X4X0YBflVeZMH3m0hKVHtfx0OOnyiQbNdkkfqstWc07DWLU8jHhYKDUwO42Gm7LOi6z73ggHcqooCEFeQ9S+YgHrq817Ky3mHMh1TcMlaXFXV2mPZ1UUaD95EdzegCXMTaDXLWbYyLw0SoXCoA0Hglk91yg8yF2KIX31PWCCI7olYAfDkAhqwzWHej1OZcIFLgVIY3ihJeSYyWgUugm4grR0JP/d8dITaaPTf5/RI9spDPoCkDOVSEbvDSPY/YaUr0zwBP4o7H8EJzrFWwRXqlygmcsOk74pMsIAodMc8nQFNdvc29uehBKakvOAPEqUJCedKh/LCdFAC3UnLq0xmquA5+N5byDAzaYWTl8TFPwPf5zLuKm1SUEioBwM38lEk4/ZvwsC1aRxxscBFyTzMyyenqpPi1Rqy0ktMYDtdA+vUaqqoEqqcgiwLp7BPbMlibKXeZ2gkl0uYGAZhlBqQPjsWeLWxegwe26AGcQxq68TW0Ge1uFKLC4GF8IMzsVM9nTOnh7Jytg0rZ98HK1QsTcfFEvXRcb8Cy5qD/RTkJQXWM+i7q9EXRjoB193N0xhkJk6K212xnyLYoCeOY9oOs5iNmUVMm0lEMTy2GbMNy2KWY2BqFQA74p9BbJNYpk4Na1cnBEnIp0i9kqngFwySMPCCfDUp12GczLPi1ugYrKYjGg54GngTxAeyQ0BoWCpM3dybNdLKVc1KkzF0yZpgay5CkJWcvet2M54LiphyNQ1KF1Jay3MeHgbepRBpe3HkhgtM4EyZwOgUkpwa7p0tzKBTN4NZRPcbcSs2QAo3ggs3Qid9PZlar4T8dBXk3haQewcL+YL4+sQMvIlyyLkBkznwvVXgj/7E24Rd0XyXwCs2W3qq6Kji4RQsyWgaeC+xdBm6ndXoku3QJQeDbpmZ7AnOTdzFeCGm/hbuwj8Ud4FLNEnFXczl3YfksM9WMcC3YIAfLAPs6WPkMh/CV6F9vo0HOV8H99M5ELzXpc0yKBWGEk6/BuXFNlBeHB6UT7JYXxPo6qheboPq5eGgSp8S1ddB8Xl3YaS7rC/HO6K9f7oG3Pl14PS1ufXgguXwxj53zWJriWiXS3ca1Bwv1+z3LBHt8mxetAUbALuLNr8fK/aXw9wdF3uy00nI70+rZ1y8+RWmO5qdLqjDptMd7VVxFkw36HZ5yqPPPPo0jHNx6KCYu0IPNVEp0QYSLOhsw32RR7CDa94b8No+59kyC++tVv+s6K2UrfegPbdi9+ZB+51Vz7lky01F+oYB9boFDRwTO0zX97THJuEMxe7qJGaBZtW/It1ynoiPd++im9SNMnEsSLWpfJ3aitPCtRWruxlW+9ux2j8gVhfFwSqrEC+xSaEB1h1smOZmtNJviNdym+pPXOM12I7X4BviVdQz0yTModCOMGx8p7zWffDH7Vj9uBur5QGBglaC6WMuCpZ86Gio7THmYEJsi4lDFN+ZF75QrJ7WWL3djtXbQ2R10ebm/4exni9bN4Tb0RoeIq20dLr2ZrtPh0JcPXG/4aNcrCtkrv6TSLd/fv9aZOpo9P64/f4YkqMGBNL3x6iN4Jdqgf6Bnl+5N/z3PyYrkw9H8FDVqt+LEv0cBtPmRt5tX/Ex6Q0yKcssasXBwgwWJt3pITx5kAxrJV9FBwBBmsvDEQrGt4EvtxX+OD1Glx8240AsRescjCUH3efAwlFDFPgIraHi8mw3Ki7XHcXYf66zPyIuj9FZjYhNvJjIIZcuEqLtPFn0FT0Z3TLtwPvaVf/a8eiixmKyHYvJVzeTjRfw3zKJS3YjV9pj4QFfvd5pRxJee9o9M+F1YdBFobeNQD4kAu9KX//q9W6+vhD1oa7oISe/9ufrAbRjAd+HyvDTQ0wNo/h+SJ2dFHCpGykoOV/zcWqJ8p1fPPH+slADGHRRzgEqpzIOVKYcq3Tw/GI3HTxf+2HuW044zo/RxYaZH5kh4XV97/sF+hG976au91fJ0JfyavSlrWpmUsQvfxVZ+xf0Y3uetgWb67sRuO6My35PBGxAXfHHX2uZU+mQyRzHgkW5RW1KbccpT804TDcwxrpli792sZzqR8Xl3uPGjXpLN7DqZ6Y/rXYaM0cxPu2Ge3kAVCEv7x7l1K7clKQ2MzDDDrircttj78djwGh2PKb7qYb/YN0Br9pB3eKI14zDrkHRXM3UI5/UfeSjuIu9FZ3xVoWa8yjLedAbRj3U/clN4uxn6Yemvgfg2sXF0K+u6gvchEUMAxumrjs6KHSRTJxQoB4b2BR7eZatL/MSzeqfFIn78k/PX/4PUEsHCFV70NjKCgAAFz8AAFBLAQIUABQACAgIACq1XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAKrVcQ1V70NjKCgAAFz8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABiCwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br><br />
 
{{Protokollieren|}}Schreiben Sie die Definition des Differentialquotienten zusammen mit einer Skizze in Ihr Heft.
 
<br>
 
{{Aufgaben-M|17|
Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.
}} 
 
 
Andere Schreibweise:
 
Statt den Wert x<sub>1</sub> immer mehr dem Wert x<sub>0</sub> anzunähern, können wir auch die Differenz der beiden Werte <math> h=x_1-x_0</math> immer kleiner werden lassen.
 
{{Aufgaben-M|18|
Ersetzen Sie in der Definition des Differentialquotienten  den Wert x<sub>1</sub> durch x<sub>0</sub>+h.
}}
 
:{{Lösung versteckt|1=
<math> f'(x_0)=lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}</math>
 
<br><br>
 
Dies nennt man die ''h-Schreibweise'' des Differentialquotienten.
 
<br><br>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAGu1XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABrtVxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb+2/bthb+ufsrCGEYGiyOSYp6dXaHpE2yAuk6ILkXw117B1mibTWypEhyYnfr/34PScmWLb8TJ+nusEYPHpE833cefLn182gQolueZkEctTVyhDXEIy/2g6jX1oZ5t2FrP7/+rtXjcY93Uhd143Tg5m2NCcnAb2uuyRydGd2G5flOg3mm33Asz2r4hBKKu67DTF1DaJQFr6L4V3fAs8T1+KXX5wP3IvbcXDbcz/PkVbN5d3d3VDZ1FKe9Zq/XORplvoagm1HW1oqbV1DdzEd3uhSnGJPm7+8vVPWNIMpyN/K4hoQKw+D1dy9ad0Hkx3foLvDzPihMbdCjz4NeH5RyLFNDTSGVACIJ9/LglmfwbeVRKp0PEk2KuZEof6HuUDjRR0N+cBv4PG1r+IjqTLcMDcVpwKO8kCBFS82yjtZtwO9UZeJOtsM0lMdx2HFFPejvvxHFFKNDcSHqQuFimqoIq3dYVxeqLkxdDCXD1OdMiTIlw5QMA6JugyzohLytdd0wA+CCqJsCaZPnLB+HXPaneDHVmRyCTlnwBYR1DKgqpOE9xofinwn/mChozipJKq3m6XDLRssmCTXp5m3Se2mqr9STGkv0NFc0qhTfSFGj0iY0Jf+X/2ot6qvUnG9RPd+vQZM9ioqtZukrrcI9UNYXsoX55HyQCYfRHWQ4wu4JMsA5TAvM3EDEgYtFEbgDIgZiBjwSG5niaiHdggKGdGQjIUd0JL3DsOEPs2RlJjKgMvHWAqdEBBpiyNARkU7FELgSko4JTkp1kDAMZMBHonlCRRW6iZgJT7qNGPRR+KRFQFCHD+EZmqdIJ0gXHxMLUROZoj7ChK+btug6VEmRiZFJRIXg1uDSyp1B3ka60KaMZkGUDPMZiLyBX97mcTLhAqQhIE2DnQpQM7HwRSt0OzyE/HApmETo1g2FR8iGunGUo4lDqne91E36gZdd8jyHrzL02b11L9ycj85AOivblrJeHGW/pXH+Jg6HgyhDyItDPOlzHJLKPZ30Gh70SgGrFhiVArNyby1sN4YSNMw4tB+nWSnu+v47ITENDYDkhygcn6TcvU7iYFaNVlOmmhYfemHgB270bzBW0YrABU0zj4hXZeaxHKfsSZz6l+MMTBiN/sPTGByAHkHYxjqjlmURSi0NjYsSUz8yTIfaxCGOTkWAyTxX+B48HBGdMGLDN5ZjMkg/46KMYPvIJBbFBsOWYxtQJpvmtxOK3BGfaN9LhWcXmouHd9lJHE5fSf3fuEk+TOWgAYJjKpQ6jnohlzYiwy1kZO+6E48ulXHoqq6rcQJPWHWg05O4I4gN1IAO94prR12ljOjZRApLGSwlcGltgT8pJw6VEvLaUVcpBearulZoSko1CS6bCTIZ0bA24zfS9kV6H0ZBflE+5IF3XWhKlPyvw0GHTyxotkryQFW2mnMW1rrmacTDwqCByWE8zJR/Vmzd514wgEdVUADiCrL+BR1Qb33eS3nZ71AOxxRcshRXTbX2WlZ1lsaDd9HtFVjCXAdazbKXrcxLg0QYHOpAErjmU5vyg8yFHOJXvxMeCKp7IlcAPLmABnxzmPfjVA64IKTAVTjeKEl5Jka0ClwE1cCwdiTi3MvRAWqj0X9f0gNZKw/5AAZlKJeG2B1Gsv4JK105zBPwo7jzGYLgHGsVXKF8iWEiN0z6rhgJFhCF7pinM6DJ6t7H/jyUwJTUF+JBoiwh4VzZUF64DkqgOul5lc5MDTyH2HsNI8xMeuHkI3HzS+D7XOZdZU0KCgn1YOBGPopk3v5NOLg2zSMuFrgonYd5+eZYVVJ8WkNWRokJbMdrYJ16TRVVQlVQkNciKOwTW7IYW2n3GRrJ6RImhkEYpQYMnx0LotpYvdYJNqhBHIPaOrE19EVNrtTkQmAh4uBM7lRv59zpvqycbMPKyT+DFSqmpuNiivrguF+AZ83Bfgz6kgLrGfTd1egLJ52A6+4WaQwykyfF467YTxFs0CPHMW2HWczGzCKmzSSiGF7bjNmGZTHLMbAYikiAHfGfQWwYVpg6NaxdgxAMQm4i9Ummkl8wSMLAC/LVpFyGcTLPilujY7Cajmg44GngTRAfyAoBoWFpMHV3b9ZIK2c1K13G0CVrgq25DEFWcvah2814LihiKtQ0KF1IaW2cc/808CGFTNuLIzdc4AInygVGxzDIqeHe2cINOnU3mEV0vxm34gOkCCO4CCN0UtejmfVKyI9XQe5tAbn3bCFfkF8fmYF3UQ5jbsBkDnxvFfijP/E2aVeI75J4xWJLT1066nJ/CpaMaBp4L7l0Gbqd1eiS7dAlT4Wuvmxkci84oUKYbIshknwH1vNj//5hZLwQa3+LMOI/lzCCS5RJJYzMjcefUyA/WcUA34IB/mwZYI+fO5fFFr4K7dNtIsvpbiP2fYRtvNcpzzIoFYYSTr8G5dk2UJ49PygfZRK/JgHWUT3fBtXzHePBPmCljwnr26DY912Y6s7r8/SOkPeP16A7P0GcfjY3UVwwT9446K6ZhS1R7XzpEoTq4/mahaAlqp2fzKu2YGVgd9XmF2rFwnOYu+NisXbaCbkxtbrHxZdP0N3RbHfBHDbt7mivhrOgu0G3y1MefeHRzTDOxWmEou8KPdREpUYbaLCgsg0XTB7ADy55b8BrC6Anyzy8t9r8s6K2UrfevRbjimWdey2EViPnkrU4leobBpTrFgg4JnaYru9p8U3CGYpl10nSAsuqby9dc56IXb0P0VXqRpk4L6RkKttWW3FahLZi2jfDan87VvvPiNVFebDKKuRLbFIQwLqDDdPcjFb6DfFarl/9iWu8BtvxGnxDvIpyZpqEORTkCMPGP5TXegz+vB2rn3djtTw5UNBKMH3IWcGSHZCGWjdjDibEtphB9Z0X4J8pq2eK1eMaq9fbsXr9HFldtOr5/+Gsp8vmDeF2tIbPkVZaBl17s+Wnb4k4kTaXjoui7ciLnpA8umWkxftaSXxqFzyrsZhsx2LyjEZBa+Ys3zKJSxZgVvpjsTLw5u1OizDw2ZOvLy010qKPp2uWe5eodnq21wWbWdWu3Ki3dLhaPzp1s1qjmZ2Xm918rzwHolSRTw9yeEdOQajNDMywA1iWg5y974bx0a6ndW5q+A/W7fPWzusUO70z1lSDormaqQc+sPPAJ3LqS3pXfJTTYhHvB7EO91Nh5jzKch70hlEPdX9wkzj76SXEqIO2EkI/IoAL/qpH9XfRql8O9WuzjT21qUPkSHN5/BGpAYNpWDB2t7Ch28yyTVKcjDrCFqW6oWMHxu+6zqobDetBJTOgvq0vdr5C36OP3dT1/vr4ViyaovHX8m70ta1Kui/l9vxBQ94cfP2r/xV9P6Xg5YV7xX//Y8FK6qeDXbhZd9Jhv/u/QSbVmU2kxW9CMvDU7uQnQPInAFgro8ZSXpnjWDADs6hNqe045dkJh+kGBse2bGw5luVsRyyk0yqz/Tb6eIjmKZmk3t2IKFL29ltvc2Pq+xzn3ICO8ucsa/mQeL0PfLkP9weY8iGCcc6nSvPTk4kNo9j8p85mhIgNkyohQMcqTo7Pd+PkeMF26Aah/yGnqPuj5PgQnS+hg5qSDt3cjA2x21Zho4xtHw/bHw/nwhlaw9T5yW5Mna87iL7/qcz+mDo/RCefNqMCRseLqADMSyJQycQqGk7PdqPhdMGpjI2C2DfBw+khOqvx0Kz+yEg8lz9Gf/0/UEsHCMMt92XWCgAAKT8AAFBLAQIUABQACAgIAGu1XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAa7VcQ8Mt92XWCgAAKT8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABuCwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br> <br>
 
{{untersuchen|}} Vergleichen Sie die beiden Applets und untersuchen Sie die Veränderungen.
}}
<br /><br />
{{Aufgaben-M|19|
Bearbeiten Sie nun folgende Aufgaben:
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue1.htm Übung1]
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue2.htm Übung 2]
}}
<br>
 
 
 
{{Aufgaben-M|8|
''Rohfassung'' Betrachte noch einmal die beiden Einstiegsaufgaben:
* Was waren die Problemstellungen?
* Was waren die ersten Lösungsansätze?
* Wie sieht die mathematische Lösung aus?
}}
 
== Ableitungsfunktion ==
 
 
 
[http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/07_ableitung.htm Ableitungsfunktion]
''Applet als Link übernehmen?Passt doch eigentlich so.''
 
Kontext plus Übung
 
''Diagnoseinstrument''

Aktuelle Version vom 24. April 2022, 10:10 Uhr

Lernpfad

Im bisherigen Mathematikunterricht wurden bereits vielfach Funktionen und deren Wertetabellen und Graphen betrachtet. Allerdings wurde das Änderungsverhalten von Funktionen bisher nur eingeschränkt untersucht, obwohl es eine essentielle Eigenschaft von Funktionen ist.

Am Ende des 17. Jahrhunderts gingen Gottfried Wilhelm Leibniz und Isaac Newton der mathematischen Bestimmung des Änderungsverhaltens von Funktionen genauer nach und entwickelten Ideen, auf deren Grundlage die Differentialrechnung entwickelt wurde. Die Differentialrechnung war ein wichtiger Baustein in der Weiterentwicklung der Mathematik und der Naturwissenschaften und ist heute eine unverzichtbare Methode in der Mathematik.

Im folgenden Lernpfad lernen Sie die Ideen von Leibniz und Newton kennen. Sie lernen dabei die grundlegenden Begriffe der Differentialrechnung wie mittlere und momentane Änderungsrate, Steigung, Sekante, Tangente, Differenzenquotient, Differentialquotient und Ableitung kennen.

Zur erfolgreichen Bearbeitung sollten Sie vertraut mit der Theorie der linearen Funktionen sein. Sie sollten insbesondere wissen, was die Steigung einer linearen Funktion ist und wie man sie bestimmt.

Zur Dokumentation Ihres Lernprozesses sollen Sie die Aufgaben des Lernpfades in einer Mappe oder einem Heft nachvollziehbar aufschreiben.

Mathematik-digital


Die didaktischen Gestaltungselemente dieses Lernpfad werden im Abschnitt 8 des Buchs Medienvielfalt im Mathematikunterricht, Jürgen Roth, Evelyn Süss-Stepancik, Heike Wiesner (Hrsg.), Springer Spektrum 2015, ISBN 978-3-658-06448-8 beschrieben.

Autoren: Jochen Dörr, Tobias Rolfes, Dirk Schmerenbeck, Roland Weber