Worksheet

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche

Druckversion

Definition Restklassen

Es sei  a \ \in \ \mathbb{Z} und  m \ \in \ \mathbb{N}.
Jede Menge Fehler beim Parsen(Syntaxfehler): \overline {a} := \big{ x \in \mathbb{Z}| x \equiv a\ mod\ m \big }

bezeichnet man als Restklasse modulo m. 
Jedes x \in \overline {a} heißt Repräsentant von \overline {a}.

Die Menge aller Restklassen modulo m bezeichnet man als R_m.

Beispiel:
Fehler beim Parsen(Syntaxfehler): R_5 = \big {\overline {0},\overline {1},\overline {2},\overline {3},\overline {4}\big} = \Big { \big {...-5,0,5,10,...}, \big {-4,1,6,...},...\Big }
Fehler beim Parsen(Syntaxfehler): R_7 = {



Satz zur Restklassen

Vervollständige den Beweis und notiere die jeweiligen Begründungen.

Seien a,b \in \mathbb {Z} und m \in \mathbb {N}.
Dann gilt:a \equiv b\ mod\ m \Leftrightarrow \overline {a} = \overline {b}

Beweis in zwei Richtungen:

"\Rightarrow" (die eine Richtung)

Es gilt nach Voraussetzung a \equiv b\ mod\ m
Zu zeigen: \overline {a} = \overline {b}.
Um die Gleichheit zweier Mengen zu zeigen, benutzt man oft die Antisymmetrie der Teilmengen-Relation. Man zeigt also
(1) \overline {a} \subseteq \overline {b} und (2) \overline {b} \subseteq \overline {a}

zu (1): zeige \overline {a} \subseteq \overline {b}
Sei x \in \overline {a}, dann gilt x \equiv a\ mod\ m (Definition Restklasse).
Außerdem gilt a \equiv b\ mod\ m (_____________________________)
\Rightarrow x \equiv b\ mod\ m (_____________________________)
\Rightarrow x \in \overline {b} (_____________________________)
\Rightarrow \overline {a} \subseteq \overline {b} (_____________________________)

zu (2): zeige \overline {b} \subseteq \overline {a}








"\Leftarrow" (Rückrichtung)

Es gelte: \overline {a} = \overline {b}
zu zeigen: a \equiv b\ mod\ m

a \in \overline {a} \Rightarrow a \in \overline {b} \Rightarrow a \equiv b \ mod \ m

b \in \overline {b} \Rightarrow



Kongruenz als Äquivalenzrelation

Satz: Kongruenz modulo m ist eine Äquivalenzrelation.

zu zeigen: Die Kongruenzrelation ist...
(1) reflexiv: \forall a \in \mathbb {Z}:  a \equiv b\ mod\ m
(2) symmetrisch: \forall a,b \in \mathbb {Z} :  a \equiv b\ mod\ m \Rightarrow b \equiv a\ mod\ m
(3) transitiv: \forall a,b,c \in \mathbb {Z} :  a \equiv b\ mod\ m \ \wedge \ b \equiv c\ mod\ m 
\Rightarrow a \equiv c\ mod\ m

Trage hier die zugehörigen Beweise ein.




























Rechnen mit Kongruenzen

Satz: Seien a,b,c,d \in \mathbb {Z} und m \in \mathbb{N} mit a \equiv b\ mod\ m\ \wedge\ c \equiv d\ mod\ m dann gilt...


(1) a+c \equiv b+d\ mod\ m

Beweis:
m|(a-b) \wedge m|(c-d)
\Rightarrow m|(a-b)+(c-d)
\Rightarrow m|a+c-b-d
\Rightarrow m|(a+c)-(b+d)


Führe die Beweise zu (2) und (3)

(2) a-c \equiv b-d\ mod\ m

Beweis:





(3) a \cdot c \equiv b\cdot d\ mod\ m

Beweis:






Fragen

Hast du noch Fragen? Notiere sie dir hier, damit du sie in deiner Lerngruppe, in der Übungsstunde oder in der nächsten Plenumssitzung klären kannst!