Present Perfect/How long …? und Quadratische Funktionen erforschen/Die Parameter der Scheitelpunktform: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Present Perfect(Unterschied zwischen Seiten)
K (1 Version importiert)
 
K (23 Versionen importiert)
 
Zeile 1: Zeile 1:
Das [[../|Present Perfect]] beschreibt Handlungen, die bis in die Gegenwert andauern oder ein Auswirkung auf sie haben. Wenn man den Anfang dieser Handlungen näher beschreiben will, muss man passende Zeitangaben verwenden:


[[Datei:Since for.png|250px|rechts|Infografik: Present Perfect since for]]
{{Quadratische Funktionen erforschen}}


'''Since''' steht vor einer Zeitangabe, die einen Zeitpunkt bezeichnet:


: ''It <span style="color:red;font-weight:bold;">hasn't rained</span> in the Sahara desert <span style="display:inline-block;background:red;color:white;padding:0.2em 0.5em;border-radius:0.5em;font-weight:bold;">since</span> 1989.''
{| {{Bausteindesign6}}
| In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst


'''For''' steht vor einer Zeitangabe, die einen Zeitraum bezeichnet:
:1. herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,


: ''It <span style="color:red;font-weight:bold;">hasn't rained</span> in our town <span style="display:inline-block;background:red;color:white;padding:0.2em 0.5em;border-radius:0.5em;font-weight:bold;">for</span> two weeks.''
:2. entdecken, welche Parameter es in der [[Quadratische Funktionen erforschen/Die Scheitelpunktform|Scheitelpunktform]] quadratischer Funktionen gibt.  


{{Achtung|Die Signalwörter ''since'' und ''for'' können auch im [[Englisch/Grammatik/Tenses/Past Perfect|Past Perfect]] verwendet werden, ''for'' auch im [[Englisch/Grammatik/Tenses/Past Simple|Past Simple]].}}
Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.


== Interactive Exercises ==
|}


=== Since or for ===
<div class="lueckentext-quiz" lang="en">
Put in since or for!


1. Many people have been out of work ''for (???)'' many years.
=='''Quadratische Funktionen verändern'''==
Wenn du dir die Bilder von der Seite [[Quadratische Funktionen erforschen/Quadratische Funktionen im Alltag|Quadratische Funktionen im Alltag]] noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x<sup>2</sup>) variiert und es entstehen die unterschiedlichsten Parabeln.  


2. Many people have been out of work ''since (???)'' then.


3. She's been teaching at our school ''since (???)'' 2001.
{|
|[[Datei:Golden-gate-bridge-388917 640.jpg|rahmenlos|Golden Gate Brücke|380px]]||[[Datei:Planten un Blomen.JPG|rahmenlos|Lichtspiele|360px]]
|-
|[[Datei:Turret-arch-1364314 1280.jpg|rahmenlos|Bergmassiv Parabel|380px]]||[[Datei:Elbphilharmonie Hamburg.JPG|rahmenlos|Elbphilharmonie|320px]]
|}


4. They've been going to that school ''for (???)'' four months now.
Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.  


5. How long have you been playing the guitar, Tom? - Only ''since (???)'' September, dad.


6. We usually have a concert in summer. We've been doing that ''for (???)'' six years now, I think.
{{Video}} [http://www.dlr.de/portaldata/1/resources//webcast/dlr_parabelfluege_320x240.mp4 Video: Parabelflug des DLR]


7. She's been hoping to get into the school band ''since (???)'' last term.


8. The school band hasn't been playing well ''for (???)'' months now!
Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der {{pdf-extern|http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/publikationen/Broschuere_Parabelflug_lowres.pdf|Broschüre}} des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16&nbsp;(31) angucken.
</div>


[[Kategorie:Englisch]]
 
[[Kategorie:Englisch Grammatik]]
=='''Strecken, Stauchen und Spiegeln'''==
[[Kategorie:Interaktive Übungen/Englisch]]
 
{{SORTIERUNG:{{SUBPAGENAME}}}}
{{Achtung-blau
|Titel=
|Text=Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel [[Quadratische Funktionen erforschen/Die Parameter der Normalform|die Parameter der Normalform]]. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt '''"Verschiebung in x-Richtung"'''.}}
 
 
{{Aufgaben|1|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=2x^2</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=\frac{1}{2}x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;und&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3) <math>y=-x^2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[Quadratische Funktionen erkunden/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a\cdot x^2</math> verändert.
 
<iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/eK5MmMmb/width/700/height/500/border/888888" width="700px" height="500px" style="border:0px;"> </iframe>
<popup name="Lösung">Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler'''.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter'''.
 
3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''"umgedreht"'''.</popup>}}
 
 
{{Aufgaben|2|In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
 
<iframe src="https://learningapps.org/watch?v=pysv88tea18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<popup name="Lösung">Wenn a kleiner Null ist (a<0), dann ist die Parabel nach unten geöffnet.
Wenn a größer Null ist (a>0), dann ist die Parabel nach oben geöffnet.
Wenn a zwischen minus Eins und Eins liegt (-1<a<1), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.
Wenn a kleiner als minus Eins (a<-1) oder größer als Eins ist (a>1), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.</popup>}}
 
 
{{Aufgaben|3|'''Knobelaufgabe'''
 
Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.
 
<iframe src="//LearningApps.org/watch?v=pcssvbrfj16" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="false"></iframe>}}
 
 
{{Aufgaben|4|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.}}
{{Merke-blau|
Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.}}
 
 
=='''Verschiebung in x-Richtung'''==
 
 
{{Aufgaben|5|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 5) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1)  <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=(x+2)^2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[Quadratische Funktionen erkunden/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>d=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=(x-d)^2</math> verändert.
 
<iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/grh32PSP/width/700/height/500/border/888888" width="700px" height="500px" style="border:0px;"> </iframe>
<popup name="Lösung">Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach rechts verschoben'''.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach links verschoben'''.</popup>}}
 
 
{{Aufgaben|6|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
 
Fabians Vermutung darüber, wie sich der Graph einer Funktion verändert, wenn man zu dem x‑Wert etwas addiert oder subtrahiert steht im Widerspruch zu seinen Beobachtungen in dem Applet. Merle versucht diesen vermeintlichen Widerspruch mit Hilfe einer Tabelle zu erklären.
 
'''a)''' Lies dir die Unterhaltung von Fabian und Merle durch und versuche die Begründung nachzuvollziehen.
 
 
[[Datei:Verschiebung horizontal.JPG|rahmenlos|Gespräch horizontale Verschiebung|750px]]
 
'''b)''' Erstelle geschickt ohne zu rechnen eine Tabelle für die Funktion <math>y=(x+3)^2</math>.
 
<popup name="Lösung">
Die Tabelle für <math>y=(x+3)^2</math> sieht wie folgt aus:
 
{| class="wikitable float left"
|- style="background-color:#FFFFFF"
 
| style="width:3em"|'''x'''||style="text-align:center"|-6 ||style="text-align:center"|-5 ||style="text-align:center"|-4 ||style="text-align:center"|-3 ||style="text-align:center"|-2 ||style="text-align:center"|-1 ||style="text-align:center"|0 ||style="text-align:center"|1 ||style="text-align:center"|2
 
|-
| style="width:3em"|'''y'''||style="text-align:center"|9 || style="text-align:center"|4||style="text-align:center"|1 ||style="text-align:center"|0 ||style="text-align:center"|1 ||style="text-align:center"|4 ||style="text-align:center"|9 ||style="text-align:center"|16 ||style="text-align:center"|25
 
|}</popup>
}}
 
 
{{Aufgaben|7|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.}}
{{Merke-blau|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:
 
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.
 
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.}}
 
 
=='''Verschiebung in y-Richtung'''==
 
 
{{Aufgaben|8|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=x^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=x^2-3</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[Quadratische Funktionen erkunden/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>e=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=x^2+e</math> verändert.
 
<iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/HcpKPj4G/width/700/height/550/border/888888" width="700px" height="550px" style="border:0px;"> </iframe>
<popup name="Lösung">Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''nach oben verschoben'''.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''nach unten verschoben'''.</popup>}}
 
 
{{Aufgaben|9|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 7-8) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
 
Graphen zeichnen einmal „verkehrt herum”: Bei dieser Aufgabe sind die Funktionsgraphen und Terme bereits gezeichnet bzw. angegeben. Was fehlt, sind die passenden Koordinatensysteme.
 
'''a)''' Zeichne in deinem Hefter die passenden Koordinatensysteme für '''drei''' der quadratischen Funktionen:
 
[[Datei:Koordinatensystem finden.PNG|rahmenlos|850px|Funktionen für Aufgabe]]
 
<popup name="Lösung">[[Datei:Koordinatensystem finden Lösungsteil 1.PNG|rahmenlos|800px|Lösungsteil 1]][[Datei:Koordinatensystem finden Lösungsteil 2.PNG|rahmenlos|800px|Lösungsteil 2]][[Datei:Koordinatensystem finden Lösungsteil 3.PNG|rahmenlos|800px|Lösungsteil 3]]</popup>
 
'''b)''' Wenn du das Koordinatensystem für die Funktion <math>(1)  y=0,5\cdot x^2+2</math> gezeichnet hast, wie kommst du dann ganz einfach auf das Koordinatensystem der Funktion <math>(4)  y=0,5\cdot x^2+5</math>? Formuliere einen Tipp.
 
<popup name="Lösung">Das Koordinatensystem von (4) ist um genau drei Einheiten nach unten verschoben.</popup>}}
 
 
{{Aufgaben|10|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 8) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
 
Lucio hat noch ein Problem bei der Unterscheidung von Termen in der Form <math>f(x)=x^2+9</math> und <math>f(x)=(x+3)^2</math>. Lies dir die folgende Unterhaltung durch. Führe sie anschließend in deinem Hefter fort, indem du dir eine Antwort auf Lucios Problem überlegst.
 
[[Datei:Lucio, Fabian Binomische Formel.png|rahmenlos|Unterhaltung zu typischem Fehler|600px]]
 
 
<popup name="Lösung"> <math>f(x)=(x+3)^2=(x+3)(x+3)=x^2+3x+3x+9=x^2+6x+9</math> (1. Binomische Formel)</popup>}}
 
 
{{Aufgaben|11|
 
'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.}}
{{Merke-blau|
Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:
 
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
 
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.}}
 
 
=='''Zusammenfassung der wichtigsten Inhalte'''==
 
 
{| {{Bausteindesign6}}
| Hier sind die Merksätze, die dir auf dieser Seite begegnet sind noch einmal gesammelt dargestellt:
 
|}
 
{{Merke-blau|
Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.}}
 
{{Merke-blau|
Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:
 
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.
 
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.}}
 
{{Merke-blau|
Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:
 
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
 
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.}}
 
 
[[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|100px]]
 
Die auf dieser Seite gewonnen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische Funktionen der Form <math>y=a(x-d)^2+e</math>. Diese Form heißt '''Scheitelpunktform''', da die Parameter d und e die Koordinaten des Scheitelpunktes <math>S(d|e)</math> der Parabel angeben.
 
Auf der [[Quadratische Funktionen erforschen/Die Scheitelpunktform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[Quadratische Funktionen erforschen/Übungen|Übungen]].
 
 
 
[[Datei:Pfeil Hier geht's weiter.png|rahmenlos|rechts|link=Quadratische Funktionen erforschen/Die Scheitelpunktform]]
 
 
 
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]])

Version vom 12. November 2018, 14:56 Uhr


In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
1. herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,
2. entdecken, welche Parameter es in der Scheitelpunktform quadratischer Funktionen gibt.

Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.


Quadratische Funktionen verändern

Wenn du dir die Bilder von der Seite Quadratische Funktionen im Alltag noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x2) variiert und es entstehen die unterschiedlichsten Parabeln.


Golden Gate Brücke Lichtspiele
Bergmassiv Parabel Elbphilharmonie


Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.


Vorlage:Video Video: Parabelflug des DLR


Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der Vorlage:Pdf-extern des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16 (31) angucken.


Strecken, Stauchen und Spiegeln

Vorlage:Achtung-blau


Aufgabe 1
{{{2}}}



Aufgabe 2
{{{2}}}



Aufgabe 3

Knobelaufgabe

Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.



Aufgabe 4


Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.

Vorlage:Merke-blau


Verschiebung in x-Richtung

Aufgabe 5
{{{2}}}



Aufgabe 6
x



Aufgabe 7


Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.

Vorlage:Merke-blau


Verschiebung in y-Richtung

Aufgabe 8
{{{2}}}



Aufgabe 9
{{{2}}}



Aufgabe 10
{{{2}}}



Aufgabe 11


Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.

Vorlage:Merke-blau


Zusammenfassung der wichtigsten Inhalte

Hier sind die Merksätze, die dir auf dieser Seite begegnet sind noch einmal gesammelt dargestellt:

Vorlage:Merke-blau

Vorlage:Merke-blau

Vorlage:Merke-blau


Ausblick

Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktionen der Form . Diese Form heißt Scheitelpunktform, da die Parameter d und e die Koordinaten des Scheitelpunktes der Parabel angeben.

Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.


Pfeil Hier geht's weiter.png




Erstellt von: Elena Jedtke (Diskussion)