Die Parameter der Normalform: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
K (Seitenzahl)
K
Zeile 22: Zeile 22:
  
  
{{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (S. 6) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
+
{{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (S. 4) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
  
 
   
 
   
Zeile 33: Zeile 33:
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
  
'''b)''' Zeichne die drei Graphen und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
+
'''b)''' Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
  
  
Zeile 71: Zeile 71:
 
=='''Der Parameter b'''==
 
=='''Der Parameter b'''==
  
{{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. 20) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
+
{{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. 10) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
  
 
   
 
   
Zeile 82: Zeile 82:
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
  
'''b)''' Zeichne die zwei Graphen und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
+
'''b)''' Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
  
  
Zeile 92: Zeile 92:
  
  
{{Aufgaben|5|'''Für diese Aufgabe benötigst du deinen Hefter (S. 22) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].
+
{{Aufgaben|5|'''Für diese Aufgabe benötigst du deinen Hefter (S. 11) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].
  
 
'''a)'''
 
'''a)'''
Zeile 126: Zeile 126:
  
 
=='''Der Parameter c'''==
 
=='''Der Parameter c'''==
{{Aufgaben|6|'''Für diese Aufgabe benötigst du deinen Hefter (S. 23) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
+
{{Aufgaben|6|'''Für diese Aufgabe benötigst du deinen Hefter (S. 11) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
  
 
   
 
   
Zeile 137: Zeile 137:
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
  
'''b)''' Zeichne die zwei Graphen und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
+
'''b)''' Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
  
  
Zeile 167: Zeile 167:
 
{{Aufgaben|8|
 
{{Aufgaben|8|
  
'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
+
'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 4) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
  
 
Notiere die folgenden Merksätze in deine Merkliste und ergänze sie durch Beispiele, die dir die Aussagen veranschaulichen.
 
Notiere die folgenden Merksätze in deine Merkliste und ergänze sie durch Beispiele, die dir die Aussagen veranschaulichen.

Version vom 16. August 2017, 16:03 Uhr


In diesem Kapitel stellen sich die Paramter der Normalform quadratischer Funktionen vor. Du kannst herausfinden,
1. wie man Parabeln strecken, stauchen und spiegeln kann,
2. welchen Einfluss die Parameter der Normalform auf das Aussehen und die Lage der Parabel haben und
3. wie du das an den Funktionstermen erkennen kannst.


Inhaltsverzeichnis

Strecken, Stauchen und Spiegeln

Nuvola apps important.svg   Achtung:

Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel die Parameter der Scheitelpunktform. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt "Der Parameter b".


Stift.gif   Aufgabe 1

Für diese Aufgabe benötigst du deinen Hefter (S. 4) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=2x^2,          (2) y=\frac{1}{2}x^2     und     (3) y=-x^2

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).

b) Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel f(x)=x^2, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst den Schieberegler a betätigen und dadurch den Graph g(x) verändern. Was passiert?



Stift.gif   Aufgabe 2

In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.



Stift.gif   Aufgabe 3

Knobelaufgabe


Maehnrot.jpg
Merke:

Multipliziert man y=x^2 mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. y=ax^2 (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Der Parameter b

Stift.gif   Aufgabe 4

Für diese Aufgabe benötigst du deinen Hefter (S. 10) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=x^2+3x,          (2) y=x^2-3x

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

b) Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel f(x)=x^2, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst den Schieberegler b betätigen und dadurch den Graph g(x) verändern. Was passiert?



Stift.gif   Aufgabe 5

Für diese Aufgabe benötigst du deinen Hefter (S. 11) und einen Partner Notizblock mit Bleistift Partnerarbeit.

a)

b) Überlege dir einen Tipp für deinen Partner, wie er die passenden Terme beim Pferderennen herausfinden kann. Notiere den Tipp in deinem Hefter.

c) Vergleiche deinen Tipp mit dem deines Partners an dich.


Maehnrot.jpg
Merke:

Addiert man den Ausdruck bx zu y=ax^2, wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für y=ax^2+bx gilt:

Für a>0:

b>0: Die Parabel wird nach links und unten verschoben.

b<0: Die Parabel wird nach rechts und unten verschoben.

Für a<0:

b>0: Die Parabel wird nach rechts und oben verschoben.

b<0: Die Parabel wird nach links und oben verschoben.


Der Parameter c

Stift.gif   Aufgabe 6

Für diese Aufgabe benötigst du deinen Hefter (S. 11) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=x^2+3x+2,          (2) y=x^2+3x-2

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

b) Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel f(x)=x^2, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst die Schieberegler a, b und c betätigen und dadurch den Graph g(x) verändern. Was passiert?


Stift.gif   Aufgabe 7

Welchen Wert hat der Parameter c? Trage deine Lösung wie in dem Beispiel ein:

Beispiel


Maehnrot.jpg
Merke:

Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel y=ax^2+bx+c an. Es gilt für:

c>0: Die Parabel wird nach oben verschoben.

c<0: Die Parabel wird nach unten verschoben.


Zusammenfassung der wichtigsten Inhalte

Stift.gif   Aufgabe 8


Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 4) Notizblock mit Bleistift.

Notiere die folgenden Merksätze in deine Merkliste und ergänze sie durch Beispiele, die dir die Aussagen veranschaulichen.


Maehnrot.jpg
Merke:

Multipliziert man y=x^2 mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. y=ax^2 (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Maehnrot.jpg
Merke:

Addiert man den Ausdruck bx zu y=ax^2, wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für y=ax^2+bx gilt:

Für a>0:

b>0: Die Parabel wird nach links und unten verschoben.

b<0: Die Parabel wird nach rechts und unten verschoben.

Für a<0:

b>0: Die Parabel wird nach rechts und oben verschoben.

b<0: Die Parabel wird nach links und oben verschoben.


Maehnrot.jpg
Merke:

Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel y=ax^2+bx+c an. Es gilt für:

c>0: Die Parabel wird nach oben verschoben.

c<0: Die Parabel wird nach unten verschoben.


Ausblick

Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form y=ax^2+bx+c. Diese Form heißt Normalform.

Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.


Pfeil Hier geht's weiter.png




Erstellt von: Elena Jedtke (Diskussion)