Die Parameter der Normalform: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Aufgabe 1 überarbeitet)
K
Zeile 32: Zeile 32:
  
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
 +
  
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 +
  
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[Quadratische Funktionen erkunden/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a\cdot x^2</math> verändert.
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[Quadratische Funktionen erkunden/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a\cdot x^2</math> verändert.
  
 
<iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/eK5MmMmb/width/700/height/500/border/888888" width="700px" height="500px" style="border:0px;"> </iframe>  
 
<iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/eK5MmMmb/width/700/height/500/border/888888" width="700px" height="500px" style="border:0px;"> </iframe>  
 +
 
<popup name="Lösung">Richtige Vermutungen können wie folgt lauten:
 
<popup name="Lösung">Richtige Vermutungen können wie folgt lauten:
  
Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor <math>2</math> immer verdoppelt werden. Der zugehörige y-Wert wird dadurch größer.
+
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler''', da die quadrierten x-Werte (x<sup>2</sup) durch den Vorfaktor 2 immer verdoppelt werden. Der zugehörige y-Wert wird dadurch größer.
  
Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor <math>1/2</math> immer halbiert werden. Der zugehörige y-Wert wird dadurch kleiner.
+
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter''', da die quadrierten x-Werte (x<sup>2</sup>) durch den Vorfaktor 1/2 immer halbiert werden. Der zugehörige y-Wert wird dadurch kleiner.
  
Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''umgedreht''', da die quadrierten x-Werte (<math>x^2</math>) durch den Vorfaktor <math>-1</math> immer negative Werte annehmen. Der y-Wert ist also immer negativ.}}
+
3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''umgedreht''', da die quadrierten x-Werte (x<sup>2</sup>) durch den Vorfaktor -1 immer negative Werte annehmen. Der y-Wert ist also immer negativ.</popup>}}
  
  

Version vom 19. April 2018, 14:47 Uhr


In diesem Kapitel stellen sich die Paramter der Normalform quadratischer Funktionen vor. Du kannst herausfinden,
1. wie man Parabeln strecken, stauchen und spiegeln kann,
2. welchen Einfluss die Parameter der Normalform auf das Aussehen und die Lage der Parabel haben und
3. wie du das an den Funktionstermen erkennen kannst.


Inhaltsverzeichnis

Strecken, Stauchen und Spiegeln

Nuvola apps important.svg   Achtung:

Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel die Parameter der Scheitelpunktform. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt "Der Parameter b".


Stift.gif   Aufgabe 1

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=2 \cdot x^2,          (2) y=\frac{1}{2} \cdot x^2     und     (3) y=-x^2 ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).


b) Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel f(x)=x^2 grau eingezeichnet, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast. Du kannst verschiedene Werte für "a=" eingeben. Dadurch wird der grüne Graph g(x)=a\cdot x^2 verändert.


Stift.gif   Aufgabe 2

In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.



Stift.gif   Aufgabe 3

Knobelaufgabe


Stift.gif   Aufgabe 4


Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.

Nuvola apps kig.png   Merke:

Multipliziert man y=x^2 mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. y=ax^2 (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.

Der Parameter b

Stift.gif   Aufgabe 5

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 10) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=x^2+3x,          (2) y=x^2-3x ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

b) Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel f(x)=x^2, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst den Schieberegler b betätigen und dadurch den Graph g(x) verändern. Was passiert?



Stift.gif   Aufgabe 6

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11) und einen Partner Notizblock mit Bleistift Partnerarbeit.

a)

b) Überlege dir einen Tipp für deinen Partner, wie er die passenden Terme beim Pferderennen herausfinden kann. Notiere den Tipp in deinem Hefter.

c) Vergleiche deinen Tipp mit dem deines Partners an dich.


Stift.gif   Aufgabe 7


Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 4) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.

Nuvola apps kig.png   Merke:

Addiert man den Ausdruck bx zu y=ax^2, wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für y=ax^2+bx gilt:

Für a>0:

b>0: Die Parabel wird nach links und unten verschoben.

b<0: Die Parabel wird nach rechts und unten verschoben.

Für a<0:

b>0: Die Parabel wird nach rechts und oben verschoben.

b<0: Die Parabel wird nach links und oben verschoben.


Der Parameter c

Stift.gif   Aufgabe 8

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=x^2+3x+2,          (2) y=x^2+3x-2 ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

b) Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel f(x)=x^2, die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst die Schieberegler a, b und c betätigen und dadurch den Graph g(x) verändern. Was passiert?


Stift.gif   Aufgabe 9

Welchen Wert hat der Parameter c? Trage deine Lösung wie in dem Beispiel ein:

Beispiel


Stift.gif   Aufgabe 10


Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 4) Notizblock mit Bleistift.

Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.

Nuvola apps kig.png   Merke:

Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel y=ax^2+bx+c an. Es gilt für:

c>0: Die Parabel wird nach oben verschoben.

c<0: Die Parabel wird nach unten verschoben.


Zusammenfassung der wichtigsten Inhalte

Hier sind die Merksätze, die dir auf dieser Seite begegnet sind noch einmal gesammelt dargestellt:


Nuvola apps kig.png   Merke:

Multipliziert man y=x^2 mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. y=ax^2 (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Nuvola apps kig.png   Merke:

Addiert man den Ausdruck bx zu y=ax^2, wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für y=ax^2+bx gilt:

Für a>0:

b>0: Die Parabel wird nach links und unten verschoben.

b<0: Die Parabel wird nach rechts und unten verschoben.

Für a<0:

b>0: Die Parabel wird nach rechts und oben verschoben.

b<0: Die Parabel wird nach links und oben verschoben.


Nuvola apps kig.png   Merke:

Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel y=ax^2+bx+c an. Es gilt für:

c>0: Die Parabel wird nach oben verschoben.

c<0: Die Parabel wird nach unten verschoben.


Ausblick

Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form y=ax^2+bx+c. Diese Form heißt Normalform.

Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.


Pfeil Hier geht's weiter.png




Erstellt von: Elena Jedtke (Diskussion)