Einführung in die Differentialrechnung und Anwendungsbezogene Extremwertaufgaben: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>Tobias.Rolfes
 
Main>Hofmeier
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
Achtung: Baustelle: Lernpfad zur Einführung in die Differentialrechnung
{{Lernpfad-M|Üben, Anwenden und Veranschaulichung von Extremwertaufgaben an anwendungsbezogenen Beispielen.
*'''Voraussetzung:'''Kenntnisse über die Ableitungsfunktion und die Bestimmung von Extremwerten
*'''Zeitbedarf:''' eine Unterrichtsstunde/mehrere Unterrichtsstunden
*'''Material:''' Stift und Papier, Konzentration
}}
 
{{Kurzinfo-1|M-digital}}
 
 
 
= Extremwertaufgaben in der Anwendung =
 
==Einführung==
 
Willkommen zum Lernpfad "Anwendungsbezogene Extremwertaufgaben". Hier findet ihr Aufgaben, in denen die Bestimmung von Extremwerten anhand von Beispielen aus dem Alltag eingeübt und vertieft werden kann.
 
 
'''Kurz zur Wiederholung:'''
 
Ein Extremwert ist der größte bzw. kleinste Wert einer Funktion (in einem gewissen Bereich). Hier findest du noch die formale mathematische Definition: [[Definition Extremwerte]]. Um diesen Wert zu finden, ist es sinnvoll die Ableitung der Funktion näher zu betrachten. Diese beschreibt nämlich anschaulich die Steigung einer angelegten Tangente an der ursprünglichen Funktion. Bei einem Extremwert, ist diese Tangente waagrecht, d.h. die Ableitungsfunktion an dieser Stelle ist Null.


== Einstiegsaufgaben ==


===== Blumenvase =====
Diesen Sachverhalt kannst du dir nochmal in folgender Skizze näher anschauen:


<table>
<tr> <td> <ggb_applet width="800" height="350" filename="Einstieg.ggb" showResetIcon="true" /> </td>


In eine Vase wird gleichmäßig Wasser eingefüllt. Die Höhe des Wasserstandes in Abhängigkeit von der Zeit kann mit folgender Funktion beschrieben werden:
<td valign="centre">
<math>w(t)=0,001(t+8)^3</math>
</tr>
</table>


Mit welcher Geschwindigkeit nimmt die Wasserhöhe zum Zeitpunkt t=12 Sekunden zu?


===== Barringer-Krater =====
Du siehst hier die Funktion <math>a \cdot x^3 + b \cdot x^2 + c \cdot x + d</math>, an der du die Werte a, b, c und d verändern kannst. Wie du siehst, gibt es an bestimmten Stellen maximale und minimale Werte. Betrachte nun folgende Aspekte:


[[Datei:Meteor.jpg|400px]]


In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater.
* Welchen Einfluss haben die Parameter a, b, c und d auf die Funktion? Wo liegen die Unterschiede?
* Wo befinden sich die Maxima und Minima der Funktion
* Blende die Ableitungsfunktion ein. Welchen Zusammenhang siehst du? Wie ändert sich die Ableitung mit der Veränderung von a, b, c und d? Was erkennst du bei der Änderung von d?
* Um den Zusammenhang deutlicher zu sehen, klicke auf das Kontrollkästchen Extremwerte


Der Krater hat einen Durchmesser von etwa 1200 Meter und eine Tiefe von 180 Meter. An der flachsten Stelle kann der Kraterrand durch die folgende Funktion beschrieben werden:
<math>k(x)=0,002x^2</math> für <math>0<=x<=300</math>


''Hier kommt noch ein Koordinatensystem mit der Funktion hin''
==Wozu überhaupt Extremwerte? ==
Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. Im folgenden soll dies an drei Beispielen verdeutlicht werden. Als erstes wollen wir untersuchen, auf welchem Weg ein Ziel am schnellsten erreicht werden kann (dies ist nicht immer der direkteste Weg). Danach schauen wir uns an, wie man eine größtmögliche Schachtel aus vorgegebenen Karton basteln kann. Als letztes soll untersucht werden, in welchem Winkel man einen Ball werfen muss, um damit eine maximale Wurfweite zu erzielen.


Im Krater befindet sich ein Fahrzeug, das eine Steigung von bus zu 100% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?
Dies ist ein Ausschnitt aus einem breiten Anwendungsbereich von Extremwertaufgaben bzw. der Differentialrechnung. Denn auch in der Natur werden meist Zustände angenommen, die minimale Energie benötigen und somit über Extremwertbestimmungen ermittelt werden könne.


== Mittlere Änderungsrate ==
Nun aber zu unseren Aufgaben...


===== Blumenvase =====


In die abgebildete Vase wird gleichmäßig Wasser eingelassen. Die Tabelle stellt dar, wie sich die Wasserhöhe (gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert.
==Beispiele für anwendungsbezogene Extremwertaufgaben (mit Lösungsanleitung)==


:{| class="wikitable"
===Extremwertaufgabe mit Nebenbedingung: Der schnellste Weg===
!'''Zeit (Sekunden)''' !! '''Höhe (cm)'''
|-
| 0 || 0,51
|-
| 3 || 1,33
|-
| 6 || 2,74
|-
| 9 || 4,91
|-
| 12 || 8,00
|-
| 15 || 12,17
|-
| 18 || 17,58
|}


'''Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.'''
{{Aufgabe|
 
[[Bild:AckerStraße2.jpg|left|133px]]Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage
 
(a.) 1000m
 
(b.) 100m.
 
Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?}}
 
                            Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!
 
 
 
Ansonsten löse die Aufgabe in folgenden Schritten:
 
 
'''1. Stelle die Aufgabensituation in einer Skizze dar (Teilaufgabe a))''':
 
Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.
 
{{Lösung versteckt mit Rand|Hier  kannst die die Aufgabensituation in einer Skizze betrachten (links der y-Achse im Koordinatensystem) und nebenstehend den Graphen der zu minimierenden Funktion f in der Variablen d (rechts der y-Achse im Koordinatensystem). Indem du den Punkt D verschiebst, ändert sich d und somit auch der Funktionswert f(d), was zu dem rechten Graphen führt (grüne Spur).
 
 
 
<td> <ggb_applet width="900" height="500" filename="Ackerweb.ggb" showResetIcon="true" /> </td>
 
 
 
Bevor wir zur Extremwertberechnung kommen, hier einige Vorüberlegungen:
 
* Verschiebe den Punkt D und betrachte den nebenstehenden Graphen (grün)!
 
* Bei welchem Wert d wird der Funktionswert von f minimal? Lese den Wert näherungsweise an der x-Achse bzw. an der Anzeige der Streckenlänge d ab.
 
* Wie groß sind jeweils die Streckenlängen auf dem Acker a (braune Linie)und der Straße (rote Linie)? Wie kann man diese berechnen?
 
Notiere deine Gedanken und überprüfe diese Werte durch die genaue Berechnung des Extremwertes und somit der Streckenlängen, die auf dem Acker und der Straße zurückgelegt werden müssen.


''Bsp.''<br /> In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)


{{Aufgaben-M|1|
Berechnen Sie mit dem Taschenrechner oder PC die mittlere Änderungsrate in den angegebenen Zeitabschnitten:<br />
a) in den ersten drei Sekunden<br />
b) zwischen Sekunde 3 und 6<br />
c) zwischen Sekunde 15 und 18<br />
d) zwischen Sekunde 3 und 12<br />
e) in den ersten 18 Sekunden<br />
}}
}}
:{{Lösung versteckt|1=
a) In den ersten drei Sekunden steigt die Wasserhöhe um 1,33 cm - 0,51 cm = 0,82 cm. Pro Sekunde steigt es daher um 0,82 cm : 3 s = 2,73 cm/s.<br />
b) In den drei Sekunden von Sekunde 3 auf Sekunde 6 nimmt die Wasserhöhe um 2,74 cm - 1,33 cm = 1,41 cm zu. Die mittlere Änderungsrate ist daher 1,41 cm : 3 s = 0,471 cm/s.<br />
c) Zwischen Sekunde 15 und 18 liegen wiederum 3 Sekunden. In diesem Zeitraum steigt das Wasser um 17,58 cm - 12,17 cm = 4,17 cm. Pro Sekunde nimmt das Wasser in diesem Zeitraum daher um 4,17 cm : 3 s = 1,389 cm/s zu.<br />
d) Bei Sekunde 3 beträgt die Wasserhöhe 1,33 cm, während sie bei Sekunde 12 genau 8 cm beträgt. In diesen 9 Sekunden ist die Wasserhöhe also um 8 cm - 1,33 cm = 6,67 cm gesteigen. Die mittlere Änderungsrate zwischen Sekunde 3 und 12 beträgt daher 6,67 cm : 9 s = 0,741 cm/s.<br />
e) Das Wasser nimmt in den ersten 18 Sekunden um 17,58 cm - 0,51 cm = 17,07 cm zu. Die mittlere Änderungsrate beträgt in diesem Zeitintervall daher 17,07 cm : 18 s = 0,948 cm/s.<br />


'''2. Zielfunktion für Teilaufgabe a)''' :
Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.
{{Lösung versteckt mit Rand|Der Weg des Fußgängers setzt sich aus 2 Teilstrecken zusammen, nämlich aus einem geraden Weg über den Acker von A nach D (D liegt auf der Straße), also Strecke a (braune Linie), und dem Teilstück b (rote Linie) von D nach B auf der Straße.
* Sei d der Abstand von C (Fußpunkt des Lotes durch A auf die Straße) und D, wobei <math>0 \le d  \le 1000</math> .
* Die Länge des Weges von D nach C, also die rote Strecke b, ist 1000 - d.
* Da der Fußgänger auf dem Acker nur halb so schnell voran kommt wie auf der Straße, müssen die dort zurückzulegenden Meter doppelt gezählt werden.
Die Überlegungen führen uns zu folgender '''Zielfunktion''':
<math>f(x)=2*a+(1000-d)</math>
Diese ist zu minimieren.
}}
}}


<ggb_applet width="1355" height="606"  version="4.2" ggbBase64="UEsDBBQACAgIAHRXR0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAB0V0dDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVc2XLbRhZ9dr6iiw9TUkakesPmkZISKctyyklclsc1lYdxgUCThAUCDABKlCvfNU/zlh+b290ACBIQRVIblbEjN5Ze7j333KWbVI5+nI1DdCWSNIij4xbp4BYSkRf7QTQ8bk2zQdtu/fjDd0dDEQ9FP3HRIE7Gbnbc4h3amo+Du44aG/hwY9vYsDlvO6JvtblnkLZtEtamLrWxY5rM8+wWQrM0eB3Fv7hjkU5cT1x4IzF238eem6kpR1k2eX14eH193SkW78TJ8HA47Hdmqd9CIHiUHrfyi9cw3cKga6a6U4zJ4b9+fq+nbwdRmrmRJ1pIKjUNfvju1dF1EPnxNboO/GwEEDAbNBuJYDgCNS3OW+hQ9pqArhPhZcGVSGFs5VYpnY0nLdXNjeT7V/oKhaU+LeQHV4EvkuMW7jBqWbZhE8s0DMMiJmuhOAlElOWdSb7oYTHd0VUgrvW88krjjB0LbBCkQT8Ux62BG6agVxANEsAUJEqmcJtmN6Hou0lxPxeIHMBf6BB8E3IuMJ4GAm6Yc2DTAwvjA8PAWpTKumC8LI5DNSkBeNEfCBqqG4bQH+rC0Pc8vzX1raUagnVD8pe2/MeRN+YKhfL7uUb5g6pKrFCIVRWC2Q/kjwk/StMljUhlVQ3T7Ysuw1iuyA22/oq8giFGhtKdYorRgWyIbig0pqlfYf0M8FUN1Q3XjaH7cD2c665c9+G6D2f30LGkiS0Zt66O9F62LHGlTZakxi2WvCeBikWJUVkU1lL/qZ/akmwjPW+FdoMVTX4ft99iQQsv0LXgqm5J3q6C4cGEOjosAuFRLhBKR7JvTulMjFMpInOUUyGCDPAc0wIfMBBxoLFkoKKIGIgbcEtsZMrWQkzGJo4YspHsRxhSrmPY8A9XcctEBswlH1o6gCHGkcEQUQ7HEaCAlNMCJpRBD8NABgySqxO5LDMRN+GG2YiDgNJdLRk+GYyDe1icIkYQk2OJhaiJTIos6fKEy0hg2lJ2mJQiEyNTDgWfB3/Xvg4jbMSkNuAFkzgNSnBHIpyUVlE4BtFkmi1g54394jKLl3r7sXfZXcJauGlWXEMnyFXzlKhz10LGfHUUun0RQl1xIWmA0JUbyhih5h/EUYYKCuTPhok7GQVeeiGyDEal6Kt75b53MzE7g95pIaBaWmXyIzH1wsAP3OgzcEROISdERWJX8bnI64bh6FW8OE78i5sUiINmv4kkBpkY6zjEoMxxLAh4kKdb6Ea/4qbZsW2DcZtRCEHcAd56rmQ8czqUmNSxTcwtgjlY4CZ/RXGHOsxilFDKicEo10uLq1I1dybSAsthIl0uR1/evEu7cTh/NImDKOu5k2yaqCINtEqkUifRMBQKWxV6od7xLvvx7EKDyvRcn24mcIe1AP1hLw7jBIFDUsOADnnb163qIyUre2HVB6seuLBS4JfviUNVD9X2dat6gdm1aLmmpFCT4GKZIFWhBibXJCtisySNrJ6mUZC9L26ywLvMVSV6wC/TcR/4VjIYOpwGutbTZe3iMqS1wOUHWQV3jMLtrsQJrJR3Uwxd4uZROkmE66cjIbJGtqpMW2MrDBr0RBheVLvK6Fz0pDngqQil58URQqMLL4nDUEF7Vbn24nA6jhRXEhVtc1O5N/FUOiOoewbF/jR0u5VcKR+/VabLYzrcn+tZu/PILp9+bnzahbVSkXyAujZcmLSnxDkHUMTCgI8wv3qIiqduGMbXFxBZAjd84wdZPJdOvfoEieFTMCmtJH6fwtuP0ASJmPuRO83iXjyehCITC8GkZpqjS5GAuDpcROCx03ia6vhVDnt1NE3FBzcbnUT+RzEE5D+4MvdlQBfdteACRFMQfQwDF0KgK933n0A//dQXw0Tk/d1QbX+0A6m3uBq8ao/VVGdJPH4XXX2C2LAk6tFhoc9R6iXBRIYg1IdkfFlBxw9SF1K5Xx0HyqegheZVFmTSMRSOI2kCGONKJC3062UWg5tAOoSwI+NyKMawt0GZCj7RdCySwCudLiNq4wQyTnM1aAfnZJQEQHH/K3B5yVXnaMLrWwIU0GEycqVjkpLbIJZawyqewGw/x36+ct4vDeVGDY2DSE0zdmcyisN8/RRYmsFeFWwTzfeqWrIiz2Asd8JyCJcXN+BaXG2OB8FMlI4DmAXfgE2L1JgHygxy3yVs/lLloVket9XFeeD7IiqldSNgk7IJZLGJVBfLcDURQge6cuwE9Fcpo0KF3DZ3WulTzUq4CKoLRloM2xX3eAQzLSu+rtYwcjoLwsBNbhZdswqHF4/HbuSjSBWwZ9NI0R5CqIxns9a8hnKxJAc6RLN/77F90IZIVRwoAFwK2bnDcv2nWdF7oNfKV6hBPyjXKlBsrfaFDVHGNZRxI8p4BSWNVZRcn1VZg+s/tuc3K/vAns8KzyfsST2/wQVIswt4UEHKkUr7sz//G4bfRJDVzDeDZJjKQ74CfhcS6kxuD/b4vi78V5vYrccNRqixoQVXyQSFwSgXarSX7aNjBGaAXd/3aC9Df0f2vvLLuqQ1PxvV/exe4WxDR9s+nG3OndU2Ps/h3MMHSEK6X0yl9h5NVs9flOPvALLZh01bASmbvm42hpJWCqNUeiLOHVEl4G+VrYCSWNXRaiCrPl2qqG5PC78mUPsM48gN34MJlpLCuc4FN3IrUMsB3uocIC1aouXdi5cG0Ts6zLenZh3Pdg3QbQKY+D3SQ1K9zQqgHA+8ehjaKBm3l7NxWyZhlY3bKjEv22K4YT4evuB8vIjku0juT0CDJQiHGjhPo7bXph2LcE4sk1iccUKsA4ixTvEHW5Q7prNfA7a3GtjFoNHbkuUPEDVqLK8rrEhf1/kRYsod7MYlp3lRYfIa8NGGjI52j9Frp6/1GD1YZPSWhD7dhNCnO0ToJ+Xz6oLQ+/I8W8mVdf8TbiU/KJIssjOqMe3NJkx7syXTZB2uzmvp/NT3wcrXjTYjtfoCP1C9Vi9uz4ridrZ3ug9uv2lxe/YC3Poxat0PcXgDpe4Sc9/ouHqu4+opNExCtEznz4E8kL4kurfQvUdfiO7vqwsO0H0hd/FeC1FgXc57ax7BhXlpcwm6cdIjtjYkJfpDDsrmcYdsZsrbg2YqhvKulEVsl6BXyXqf8ogseSleuQm4ywTAk1CGhDJ3g7fWz9cvhZjIj69+jT4lbpTKLyLdHnJXoznKU9Cu4Ol0qGVghqUTM9vE5ps20QA3OPi3xvL0BaHv7xj6TVVQhdsVsLlDTG6b7CWhPdg5tPMDhGZq71wkqW8vhokbdkV2LcRyMsw3GZFOb7K+0PmtaYvmr050y1WzX6+ZuUOJYToY0OPYMJ83n5F1rHa/Dwu8L/RZNg782TYO9eL1pChegVIHaCCbjU9nT3aogFWnGCrYGti2DY4h+RnQcPJI1X+3ALCtEByqdmMIuzsEYfuxMVyBw7sH+MTkQTed22w55/it3jYZzYDdEcUWAfvprwBY+6ERW2ej+ZPOrV2dW090Yn1320aT6t5fde++7u0W28xgq00mvX2TecfHHA90sNqUjZu/ILHh7vLrsx7/VojVFMKqpTjpWAwTzGxsUmozi9kryo47jPLklXh/R1AuKnCzY2tUwZ1NTDFU4pQbpsUt8wWh6m67v3kEXP/C5A12BuR8+1iwd/WG8RlgrJWcb+cHzr1tDpzfPkWx2bzJWf+D0Sc/cX6rU3tPp/bz2woBlp84q9QP/YfFmbP3heliYPSFblUOsDXOnF/0kfNTHRytSb2HOTjakXA63DFw249zCLojaEtf3ym0n+bAf0fQH+XndruC/pYfXu3kifNw4cQ5/6Ibk2fPvfq3Vy5X57nl89bLhiNnZjvMICZxCLEtTO78NY2Xf+bM/+/PnLs0L2Aba9VlxLq1Q/ryO/0bQLGdoCQX9G+/T+PsH7+JINNXrbrYmZhVjnMbkvEDf/N73XOamlK9RaXO//zPSKynVW+XtaLlN/a7dK3fI+jVeEWejFescACylgew23+h7bFF7bE5rmw9XGvSAq7EwJZBqIHVH/Y0sp8sMv1UhJk7W4/qJztM9dMGtW7WU+t0h9U6KZjWZaiNZI64m2snNa6BSNyp/rHp05DttBC/J8XvrSX+aZP4z+MqxiKngsFAXrxe01uM3aVVt9DslKFDJEm2RsA1Gn7HTBqmsAq2sPkYhjms/ka0vC/+T1U//A9QSwcIXBv4Hz0MAABYSwAAUEsBAhQAFAAICAgAdFdHQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAB0V0dDXBv4Hz0MAABYSwAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAANUMAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />


In eine Vase wird gleichmäßig Wasser eingefüllt. Die Höhe des Wasserstandes in Abhängigkeit von der Zeit kann mit folgender Funktion beschrieben werden:
'''3. Nebenbedingung in Zielfunktion für Teilaufgabe a)''':
<math>w(t)=0,001(t+8)^3</math>
 
Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.
 
{{Lösung versteckt mit Rand|Die Länge des Weges a von A nach D ist nach Pythagoras <math>a=\sqrt{400^2+d^2}</math> .
 
Mit dieser Nebenbedingung  <math>a=\sqrt{400^2+d^2}</math> ergibt sich durch Ersetzen von a in der [[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion|Zielfunktion]]:


{{Aufgaben-M|2|
''' <math>f(d)=2*\sqrt{400^2+d^2}+ (1000-d)= min!</math>'''
Berechnen Sie mit dem Taschenrechner oder PC die mittlere Änderungsrate in den angegebenen Intervallen.
a) zwischen Sekunde 1 und 4
b) zwischen Sekunde 2 und 5
c) zwischen Sekunde 1 und 1,5
}}
}}




Beantworte die Fragen, indem du die Schieberegler für t und t1 entsprechend einstellst:<br>
'''4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):'''
Mit wie vielen cm/s ändert sich die Höhe im Schnitt im Zeitintervall zwischen 12 und 14 Sekunden?<br>
 
Mit wie vielen cm/s ändert sich die Höhe im Schnitt im Zeitintervall zwischen 12 und 13 Sekunden?<br>
Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.
Mit wie vielen cm/s ändert sich die Höhe im Schnitt im Zeitintervall zwischen 12 und 12,5 Sekunden?<br>
 
...
{{Lösung versteckt mit Rand|1=
'''Teilaufgabe a)'''
 
* Um den Extremwert der Zielfunktion bzw. den schnellsten Weg, um von A nach B zu kommen, zu bestimmen, benötigen wir die erste Ableitung dieser Funktion, die wir gleich 0 setzen, also <math>f'(d)=0</math>:
 
<math>f'(d)=(2d/\sqrt{400^2+d^2})-1=0</math>
 
* Durch Auflösen dieser Bedingung nach d erhält man als Lösung
 
<math>d=\sqrt{\frac{400^2}{3}}\approx230.94</math>
 
* Um nachzuprüfen, ob an dieser Stelle ein lokales Minimum (schnellster Weg) vorliegt, berechnen wir die zweite Ableitung der Zielfunktion f<nowiki>''</nowiki>(d) und prüfen, ob durch Einsetzen von unserer Lösung in f<nowiki>''</nowiki>(d) eine Zahl größer als 0 vorliegt, also ob f<nowiki>''</nowiki>(d)>0:
 
Es gilt <math>f''(d)=[2*\sqrt{400^2+d^2}-d^2/\sqrt{400^2+d^2}]/(400^2+d^2)</math>  
 
und somit <math>f''(\sqrt{\frac{400^2}{3}})>0</math>
 
* Die Weglänge über die Straße, also die Entfernung von Punkt D zu B, beträgt also


== Sekantensteigung ==
<math>1000-\sqrt{\frac{400^2}{3}}\approx769.04</math>.


===== Barringer-Krater =====
Die Weglänge über den Acker beträgt


<math>a=\sqrt{400^2+\sqrt{400^2/3} }\approx461.8</math>.


Die durchschnittliche Steigung des Kraters zwischen den Punkten A(x<sub>0</sub>|f(x<sub>0</sub>)) und B(x<sub>1</sub>|f(x<sub>1</sub>)) kann mit <math> m=\frac{\Delta y}{\Delta x}=\frac{f(x_1)-f(x_0)}{x_1-x_0}</math> berechnet werden. Dies enspricht der Steigung der Geraden, die durch die Punkte A und B geht. Eine soche  Gerade, die den Graphen einer Funktion in zwei Punkten scheidet, nennt man ''Sekante''. <math> m=\frac{\Delta y}{\Delta x}=\frac{f(x_1)-f(x_0)}{x_1-x_0}</math> ist dann die Sekantensteigung.
                                     
'''Teilaufgabe b)'''


{{Aufgaben-M|1|
* Wenn allerdings der Abstand zwischen B und C nur 100m beträgt, so lautet die zu minimierende Zielfunktion
Überlegen Sie, wo  in der Zeichnung folgende Größen zu finden sind:
x<sub>1</sub>-x<sub>0</sub> und f(x<sub>1</sub>)-f(x<sub>0</sub>)


''Achtung: Nicht auf den Monitor malen;-)''
<math>f(d)=2*\sqrt{400^2+d^2}+(100-d)</math>
 
 
* Die Ableitung hiervon ist die gleiche wie in Teilaufgabe a) schon betrachtet:
 
<math>f'(d)=(2d/\sqrt{400^2+d^2})-1</math>.
 
Setzt man diese Ableitung gleich 0, so hat sie für <math>0\le d\le100</math> keine Nullstelle bzw. keine Lösung. Hiermit gibt es in diesem Fall kein lokales Minimum. Die Funktion ist im Intervall [0,100] also streng monoton, weshalb der minimale Wert am Rand des Definitionsbereiches liegen muss, also entweder bei <math>d=0</math> oder bei <math>d=100</math>.
 
 
* Durch Einsetzen von d = 0 erhält man <math>f (0)=2*400+100=900</math>
 
Durch Einsetzen von d = 100 erhält man <math>f (100)=2*412+100-100=824</math>
 
Da der Funktionswert für d=100 der kleinere ist, führt folglich der kürzeste Weg von A nach B auf gerader Linie direkt über den Acker.
}}
}}


<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAOqzXEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADqs1xDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bOBL/u/spBsLi0NzFtqiX7Z7dRdwkvgLpdoHkDovb9BayRNtsZEkryYnd3X73G5KSLFt+O27dAkkoiUMO5zdPUkrrp8nIg0caxSzw2wqpqgpQ3wlc5g/ayjjpVxrKT69/aA1oMKC9yIZ+EI3spK0YnJK5bcW2jKZumP1K3XGbFcOx3Eqz7tQrLtGIpvbtpmHpCsAkZq/84Gd7ROPQduitM6Qj+yZw7EQwHiZJ+KpWe3p6qmasqkE0qA0GveokdhXAZfpxW0kvXuF0c4OedEGuqSqp/fruRk5fYX6c2L5DFeAijNnrH160npjvBk/wxNxkiAJrDZRjSNlgiEI165YCNU4VIiIhdRL2SGMcW7gVQiejUBFkts/7X8gr8HJ5FHDZI3Np1FbUqmYQQ7U0U4EgYtRPUhqS8qpls7QeGX2S0/ErwclQIAkCr2fzmeCvv0BTNRXOeUNko2FjWbJLlc9UXTaabAzZmJLGkMMNSWpIGkPSGKiqRxaznkfbSt/2YoSO+f0I1Zbfx8nUo2I96YOZ1OQcZYrZJyTWVcRVYo3PVfWc/1r4a/CO2ryQpMA1icY7Ms1YEs3StuepHSSpPpOzWeapmSvktNYwlYJvJahZwBZZiR/xW+KorxNzkaO8P4yhZXwREVu1zFdaqXtAPOS0qfkkdBRzh9GbYDa53RMw0TmsOpq5CaSJTV0DdAcgJhgm3pIGWLytg17HDgN0aACnIzoI7zAb+Meoi8ksMHEy/rSOTgkEGRlg6kCEUxmArgTCMdFJNR0pTBNMHMTZE41PoVtgWHinN8DANXKfrBMk1HEg3iN7DXQCOh9M6qBZYPH5iMF93WrwpeOUGlgqWIRPiG6NLi3dGekboHNpsnjG/HCczEHkjNzsMgnCXBdIjQFpFu5kgJqLhi9ant2jHmaIW65JgEfb4x4hGPUDP4HcIeWzQWSHQ+bEtzRJcFQMH+1H+8ZO6OQaqeOMt6B1Aj/+JQqSN4E3HvkxgBN4ar7mwCOFay1fNd7ohQ6j2GEWOqzCdX0p3wB7YBxT5B9EcUZuu+5bTjELDYjke9+bdiJqP4QBmxejVRPJpkXHjsdcZvv/QWPlXDguMMs9PF5luafebGYrCSL3dhqjCcPkvzQKeFwh1TrBTNo00AN0Hd1kKnssq1lVNbOhGnUTO60GLs2xue+RakPTTIuo+NNsYorGMVmXWW1YasNoElI39HoT5xOc6WOuIXtCc+EHEXfsVHB+8zbuBN7skRD/jR0m40hUDRgbIy7ThT/wqDAREW0xJTsPvWByK21Dl3PdTUO8U+UCegMBO2Bo0ExMl4O07clW0PCV5VSqoFEFhZoZG3PzftLUBIVoe7IVVGi9cmmppCQTk6gZGxaLgKYqc24jTJ/n97HPkpvsJmHOQyopkfQ/j0c9mhvQ/JTkmaZs1RYMrPVAI596qT2jJsfBOJbuWTB1lzpshLeyIwXE5sr6Ny5APnXpIKLZuj1Rj0m4RK9atNTSYzHVdRSM3vqPd2gJCwto1bJVtmInYiE3OOhhDnigM5tyWWxjCnGL47gDougOTxUIT8KhQdccJ8MgEhUXRhRsud9NwojGvKSV4AJOg3XthIe5l5MzaINWVa8qBvwdJv97qZ2J6alHR1icQSIssj/2BaNcPX1R8HE9QND7iMFwQX0FgLF/hYWC7YVDm9eEKVaePaXRHHpiuneBu4gpqkwIjnEhlCYRUiqNKUl9CEKcTrhgYTEzS08wBj9gpRkLd8wH8Yt/MdelIv9Ks5JQCMxHI9t3wRf5+xfu6cosn9gqx0XKPE6yJxdyknRoCVkRLnLYLjbAOnOfIqpEk9FBtGl0OCa2ZDm2wgFimIhyl2+Ipkja4Bef5F5K7iW4wDzqzSVK+XTBeQ6FvrML9J3vA3ojh17XjgL9DXrQAvIXKDJJ4Z5TgL1eAdwZc3zt/SKKSeYSI7/dF/4ZiBViZPYr4UQUNYnsnlEEy4k/fDkklmmMjUKPOSxZj/atF4SLcNslnEfrcfbHIxoxJ4dyJCZE0ccZAFViyEnn8M82JGsdwNSFAjjwC0GdrIX/fb8f00SYrC6grmjaUu2UapTDI/f7CLPkIPBtb4k1d6Q1Ty6wQCkh3dvBontli55H9LhJsmjOqTVntvxVTHkt6BfrQHd2AN05WdD1rwH6Wz/BIhlhWMDbWYf35Hd1l8zJyffJnfxwZCCbnmwOR31WeVTUo6S/VYD21gNKdgOUnAygxrEB3SYsTJei6u4QFtxTCQs5miRDs3FiobizDnO6A+b0ZDEXpfGJRGK6Du6rXcLG1Sa8v1zUOPIeZBWWEkSBp1vC8noXLK9PD8sjbaU3JLQyjt1dcOyeYCI7EpCXLH29ujSFdcub4x6ndy824Lm4eZsNW9jEkVl9uU003bBFWiFNd+VWXy6ru+HMZYU03U5JGuMgYRbPPPkZrpfY0/Tcc8ZWvOJZv8Z05BdZ4GR+gajlbRc4eW57WLJC1u/TiPqfqP/HOEj4y/t0uRIiqEEmxBaLXjLZymOJZzDoWzoY0dKhYWeVdw7W23GczpZJMzjo9Co9PDno8HAW6fLDq6xgr5jW8faeAjWPn0jmmQRNpvye5YHSkL/eeu/fRbYf8y9nJE3h/c1OqktDUbq3mlPecDflDU9JeY1F5dW1bZWnfUPayw58fldL2mO7aY+dtPbMrc/avkHtlcPmx91093E/3WWvw1PlEVV71kI7P/OvkMZ3GDivpfIuSsp72E15D6eoPF39zl3valUF7u2mPe8UtWcUXE/b2vdORX3livmOThJew4si+W+8zv3n/SUvkWFyf96+P8fipYIp8P4c2oB/JAX8A17e2Hf019/yXcCHM3woe+XfZRV2gsyUBc77ncA9p5JZLGSZRy39Mi7GHUF/9hWZ+BRKVTJ9pRMgBFEiXvhLGN8xV+zMf7s4h+6H7XTAN3plHUyFDvovUQtnFd6oZ7BBFd3OfqroLvm8YCtVPGOZcjxNdM+hU9LENsGMl38rq3h/t4Dmf8WApm2uJb6/OiLNRNclxYW7KS48pQJ+ce/8LattxRneWqdL49yby73O8XDY0U+heDhFPstyahtQJOAZdW0Qf3O5XxBPpTs4nx7ykdLxgjiids7x+1BgP/tIp2Km79C05l5GtzJYpDq52vB6ZoXBXV0f/VyWax7ZLKsf0Mpk9QBZ+bDO7K6u9zO7q40vo77l2uHqHK63rOLInBIuywfIr+BHuO9HtvNnpqHP2dXkc1v2zJV7n/9MK/DP8GN7UW1LTqj3U+CSrzm+5IvwLXSX/ivSRtXxSGBWxX9P8FCA7lN4j1ZUYK34eTq/z/6P8fX/AVBLBwiDdHRiwwkAAGQ5AABQSwECFAAUAAgICADqs1xDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAOqzXEODdHRiwwkAAGQ5AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAWwoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
===Bastelstunde: Falten einer Schachtel===
 
{{Aufgabe|
Von einem rechteckigen Karton mit Seitenlängen '''a''' und '''b''' (mit '''b''' <math>\le</math> '''a''') schneidet man an den Ecken Quadrate der Seitenlänge '''x''' aus, so dass man damit eine oben offene Schachtel falten kann. Die Schachtel besteht dabei aus der Grundfläche '''G''' und den Seitenflächen '''S1''' bis '''S4'''.
 
 
::a.) Berechne '''x''' in Abhängigkeit von '''a''' und '''b''' für den Fall, dass das Schachtelvolumen möglichst groß ist.
 
::b.) Was ergibt sich im Sonderfall '''a''' <math>=</math> '''b'''?
 
::c.) Wie groß ist das maximale Volumen für '''a''' <math>=</math> 21 und '''b''' <math>=</math> 16?}}
 
            Schreibe deine Gedanken, den Rechenweg und deine Ergebnisse auf einem Blatt Papier nieder.
      Falls du an einer Stelle nicht weiterkommst, oder du zum Schluss die Lösungen vergleichen möchtest,
                                  kannst du folgende Hinweise zu Hilfe nehmen:
 
 
Fertige zuerst eine Skizze der Aufgabenstellung an, in welche die gegebenen und gesuchten Variablen eingezeichnet werden. Dadurch sind die Zusammenhänge leichter ersichtlich.
 
{{Lösung versteckt mit Rand|Falls du die Aufgabenstellung richtig gelesen und verstanden hast, müsste deine Skizze jetzt so aussehen:
 
 
[[bild:lernpfad.jpg|left]]
 
 
 
 
 
 
 
 
Wie man im Bild (links) leicht erkennen kann, wird die längere Seite der ausgeschnittenen Schachtel mit <math> (a-2 \cdot x) </math> und die kürzere mit <math> (b-2 \cdot x) </math> bezeichnet.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Die folgende interaktive Skizze (unten) ist dazu gedacht, dass du die Zusammenhänge der Aufgabenvariablen besser erkennst und ein bisschen mit diesen "herumspielen" kannst.


<br><br>
Benutze dafür den Schieberegler. Ziehst du den Reglerpunkt nach links, werden die auszuschneidenden Quadrate kleiner, nach rechts werden sie größer. Zeitgleich verändert sich rechts neben der y-Achse das Volumen der "zusammengefalteten" Schachtel, welches als grüner Graph dargestellt wird. Außerdem wird dir zu jedem Volumen der zugehörige Wert der Quadratseitenlänge in türkis auf der x-Achse abgebildet. Als konkretes Beispiel dient ein Karton mit den Maßen 14cm x 10 cm.




:{{Lösung versteckt|1=
 
<ggb_applet width="650" height="500" version="4.0" ggbBase64="UEsDBBQACAgIAMKzXEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADCs1xDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bOBL/u/spBsLi0Nz5Ieplu2d3ETeJr0C6XSC5w+I2vYUs0TYbWdJKcmJ3t9/9hqQky5bfqRu3QBJK4pDD+c2TlNL+aTr24IFGMQv8jkJqqgLUdwKX+cOOMkkG1aby0+sf2kMaDGk/smEQRGM76SgGp2RuR7Eto6Ub5qDacNxW1XAst9pqOI2qSzSiqQO7ZVi6AjCN2Ss/+Nke0zi0HXrjjOjYvg4cOxGMR0kSvqrXHx8faxmrWhAN68NhvzaNXQVwmX7cUdKLVzjdwqBHXZBrqkrqv767ltNXmR8ntu9QBbgIE/b6hxftR+a7wSM8MjcZocBaE+UYUTYcoVCthqVAnVOFiEhInYQ90BjHFm6F0Mk4VASZ7fP+F/IKvFweBVz2wFwadRS1phnEUC3NVCCIGPWTlIakvOrZLO0HRh/ldPxKcDIUSILA69t8JvjrL9BUTYUKb4hsNGwsS3ap8pmqy0aTjSEbU9IYcrghSQ1JY0gaA1X1wGLW92hHGdhejNAxfxCh2vL7OJl5VKwnfTCXmlRQpph9QmJdRVwl1vhcVSv818Jfg3fUF4UkBa5JNNmTacaSaJa2O0/tSZLqczlbZZ6auUZOawNTKfhOgpoFbJGV+BG/JY76JjGXOcr7pzG0jK8iYrue+Uo7dQ+IR5w2NZ+EjmPuMHoLzBa3ewImOofVQDM3gbSwaWiA7gDEBMPEW9IEi7cN0BvYYYAOTeB0RAfhHWYT/xgNMZkFJk7GnzbQKYEgIwNMHYhwKgPQlUA4JjqppiOFaYKJgzh7ovEpdAsMC+/0Jhi4Ru6TDYKEOg7Ee2SvgU5A54NJAzQLLD4fMbivW02+dJxSA0sFi/AJ0a3RpaU7I30TdC5NFs+YH06SBYicsZtdJkGY6wKpMSDNw50MUAvR8EXbs/vUwwxxwzUJ8GB73CMEo0HgJ5A7pHw2jOxwxJz4hiYJjorho/1gX9sJnV4hdZzxFrRO4Me/REHyJvAmYz8GcAJPzdcceKRwreWrxhu90GEUO8xCh1W4bqzkG2APTGKK/IMozsht133LKeahAZF873uzbkTt+zBgi2K06yLZtOnE8ZjLbP8/aKycC8cF5rmHx6ss9zRarWwlQeTezGI0YZj+l0YBjyuk1iCYSVsGeoCuo5vMZI9ltWqqZjZVo2Fip9XEpTk29z1Sa2qaaREVf1otTNE4Jusya01LbRotQhqG3mjhfIIzfcg1ZE9pLvww4o6dCs5v3sbdwJs/EuK/scNkEomqAWNjxGU694ceFSYioi2mZOe+H0xvpG3ocq7bWYh3qlxAfyhgBwwNmonpcpi2fdkKGr6ynEoVNKqgUDNjY27eT1qaoBBtX7aCCq1XLi2VlGRiEjVjw2IR0FRlwW2E6fP8PvFZcp3dJMy5TyUlkv7nybhPcwNanJJ8oSnb9SUDa9/TyKdeas+oyUkwiaV7FkzdpQ4b463sSAGxubL+jQuQT106jGi2bk/UYxIu0asWLbX0WEx1FQXjt/7DLVrC0gLa9WyV7diJWMgNDvqYA+7p3KZcFtuYQtziOO6AKLrDUwXCk3Bo0DUnySiIRMWFEQVb7nfTMKIxL2kluIDTYF075WHu5fQMOqDV1MuqAX+H6f9eamdieurRMRZnkAiLHEx8wShXz0AUfFwPEPQ/YjBcUl8BYOxfY6Fge+HI5jVhipVnz2i0gJ6Y7l3gLmOKKhOCY1wIpUmElEpjSlIfghCnEy5YWMzc0hOMwfdYacbCHfNB/OJfzHWpyL/SrCQUAvPx2PZd8EX+/oV7ujLPJ7bKcZEyT5LsybmcJB1aQlaEixy28y2wzt2niCrRZHQQbRodjoktWY2tcIAYpqLc5RuiGZI2+cUnuZeSewkuMI96C4lSPl1ynqdC390H+u73Ab2RQ69rR4H+Gj1oCflzFJmkcC8owN6sAO6MOb72YRHFJAuJkd8eCv8cxCoxMvuVcCKKmkT2wCiC5cQfvhwSyzTGxqHHHJZsRvvGC8JluO0SzuPNOPuTMY2Yk0M5FhOi6JMMgBox5KQL+Gcbko0OYOpCARz4paBONsL/fjCIaSJMVhdQVzVtpXZKNcrTI/f7CLPkMPBtb4U1d6U1T8+xQCkh3d/Dovtli15E9LhJsmjOqTVntvwsprwR9PNNoDt7gO6cLOj6c4D+1k+wSEYYlvB2NuE9/V3dJ3Ny8kNyJz8cGcqmL5unoz6vPKrqUdLfOkD7mwEl+wFKTgZQ49iA7hIWZitRdfcIC+6phIUcTZKh2TyxUNzdhDndA3N6spiL0vhEIjHdBPflPmHjchveXy9qHHkPsg5LCaLA0y1hebUPllenh+WRttJbEloZx94+OPZOMJEdCcgLlr5eXZnCeuXNcZ/Tu+db8FzevM2HLW3iyLy+3CWabtkirZGmt3arL5fV23LmskaaXrckjfEkYZbPPPkZrpfYs/Tcc85WvOLZvMZ05FdZ4HRxgajlXRc4/dL2sGKFbDCgEfU/Uf+PSZDwl/fpciVEUIdMiB0WvWKytccSX8Cgb+hwTEuHht113jncbMdxOlsmzfBJp1fp4cmTDg/nkS4/vMoK9qppHW/vKVDz+IlknknQZMrvWe4pDfnrrff+bWT7Mf9yRtIU3t/spbo0FKV7qwXljfZT3uiUlNdcVl5D21V52jekvezA53e1pD22n/bYSWvP3Pms7RvUXjlsftxPdx8P0132OjxVHlG1L1po52f+VdL8DgPnlVTeeUl59/sp7/4Ulaer37nrXa6rwL39tOedovaMgutpO/veqaivXDHf0mnCa3hRJP+N17n/vLvgJTJM7yqduwoWL1VMgXcV6AD+kRTwD3h5bd/SX3/LdwEfzvCh7JV/V1XYCTJTljg/u45ZLERZBC39MC7GDcFg/hGZ+BJKVTJ1pRMgAlEi3vdLFN8xV2zMfzuvQO/Dbirg+7yyCmZCBYOXqISzKm/UM9iiiV73ME30tn1dcPwi5XiK6FWgW1LELqGMF39ra3h/v3DmP6Opa9srie+vikjz0FVJceF+iguf3TM27Jy/ZbWtOcHb6HRpmHtzcdApHg47+hkUj6bIZ1VG7QCKBDyfbozhby4Oi+GpdPu/z1qKMU/5ROl4QRxRq3D8PhTYzz/RqZrpGzStdZDRrQ0WqU4ut7ycWWNwl1dHP5Xlmkc2q8oHtDJZPEBWPWwyu8urw8zucuurqG+5driswNWORRxZUMJF+fj4FfwId4PIdv7MNPQ5u5p+7siehWrv859p/f0Zfuwsq23F+fRhClzxLcfXfA2+g+7Sf0TaqjoeCcya+N8JHgrQfQpv0YoKrBc/Tuf32X8xvv4/UEsHCDahp/6/CQAAYjkAAFBLAQIUABQACAgIAMKzXENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAwrNcQzahp/6/CQAAYjkAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABXCgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<ggb_applet width="960" height="590" filename="Schachtelfertig3.ggb" showResetIcon="true" />
 
 
Für welches '''x''' bastelt man die Schachtel mit dem größten Volumen?
 
 
Versuche es durch Ausprobieren und Ablesen!
 
}}
}}


<br>


In der Graphik der Lösung der vorherigen Aufgabe kann man den Punkt B bewegen, indem man mit der Maus auf ihn zeigt und bei gedrückter linker Maustaste die Maus bewegt.
'''Lösungsweg zu Teilaufgabe a.)'''


<br>
Nun gilt es, mit Hilfe der Variablen in der Skizze die Formel für das Schachtel-Volumen aufzustellen. Weißt du noch, wie man das Volumen eines Quaders berechnet?


{{Aufgaben-M|2|
{{Lösung versteckt mit Rand|Wie du dich vielleicht erinnerst, berechnet man das Volumen eines Quaders mit dem Merksatz "Länge mal Breite mal Höhe". Hier in unserem Fall lautet die Formel also:
Nähern sie den Punkt B immer dem Punkt A. Beschreiben Sie Ihre Beobachtungen.
 
 
<math> \begin{matrix} V(x) &=& (a-2x) \cdot (b-2x) \cdot x \\ \ &=&(ab-2ax-2bx+4x^2) \cdot x \\ \ &=&4x^3-2ax^2-2bx^2+abx \end{matrix} </math>
}}
}}


:{{Lösung versteckt|1= Die beiden Schnittpunkte der Sekante nähern sich immer mehr einander an. Wenn der Punkt B mit dem Punkt  A zusammenfällt, gibt es nur noch einen Schnittpunkt der Geraden mit dem Graphen der Funktion.  
Jetzt bilden wir die erste Ableitung der Volumenformel '''V(x)''' und setzen diese gleich Null, um "Kandidaten" für Extrempunkte zu bekommen.


{{Kasten_blau|
{{Lösung versteckt mit Rand|<math> \begin{matrix} V^\prime(x) &=&12x^2-4ax-4bx+ab \\ \ &=&12x^2-4(a+b)x+ab  \end{matrix} \qquad \qquad \stackrel{!}{=} \ 0 </math>
Die Gerade ist dann keine Sekante (die einen Graphen ja in zwei Punkten schneiden muss) mehr. Man nennt dies Gerade ''Tangente an den Graphen der Funktion f im Punkt A''. Die Steigung der Tangenten gibt die Steigung des Graphen der Funktion im Berührpunkt an.


''Weitere Erläuterung des Begriffs Tangente.''


Mit Hilfe der "Mitternachtsformel" erhalten wir maximal 2 mögliche Extremstellen (da dies ein Polynom zweiten Grades ist):
<math> \begin{matrix} x_{1,2} &=&\frac {4(a+b)\pm \sqrt{16(a+b)^2-4 \cdot 12 \cdot ab}}{24} \\ \ &=&\frac{4a+4b \pm \sqrt{16a^2+32ab+16b^2-48ab}}{24} \\ \ &=&\frac{4a+4b \pm \sqrt{16a^2-16ab+16b^2}}{24} \\ \ &=&\frac{4a+4b \pm 4\sqrt{a^2-ab+b^2}}{24} \\ \ &=&\frac{a+b \pm \sqrt{a^2-ab+b^2}}{6}\end{matrix} </math>
:<math> \Rightarrow \qquad x_1 =\frac{a+b+ \sqrt{a^2-ab+b^2}}{6} \quad , \quad x_2 =\frac{a+b- \sqrt{a^2-ab+b^2}}{6}</math>
}}
}}


Für welchen unserer Extremstellen-"Kandidaten" das Schachtelvolumen maximal wird, sehen wir nun durch sukzessives Einsetzen der erhaltenen Punkte in die zweite Ableitung der Volumenformel '''V(x)'''.
{{Lösung versteckt mit Rand|<math> {V^\prime}^\prime (x) = 24x-4a-4b </math>
:<math> \Rightarrow </math>
:::<math> {V^\prime}^\prime (x_1) = 4(a+b+ \sqrt{a^2-ab+b^2})-4a-4b =4 \sqrt{a^2-ab+b^2} \qquad > \ 0 \qquad \Rightarrow \quad x_1 \ ist \ Minimum </math>
:::<math> {V^\prime}^\prime (x_2) = 4(a+b- \sqrt{a^2-ab+b^2})-4a-4b =-4 \sqrt{a^2-ab+b^2} \quad < \ 0 \qquad \Rightarrow \quad x_2 \ ist \ Maximum </math>
'''Ergebnis:''' Nach Herausschneiden von Quadraten der Seitenlänge '''<math>x_2</math>''' an den Ecken des Kartons besitzt die gefaltete Schachtel das größtmögliche Volumen!
}}
}}


'''Lösungsweg zu Teilaufgabe b.)'''
Für den Sonderfall '''<math> a = b </math>''' ersetzen wir also nun die Variable '''b''' durch die Variable '''a''', was bedeutet, dass unser Karton jetzt quadratisch ist. Dadurch erhalten wir sofort zwei neue Lösungen für die Seitenlänge '''x''' der herauszuschneidenden Quadrate.
{{Lösung versteckt mit Rand|<math> x_{1,2} = \frac{2a \pm \sqrt{a^2-a^2+a^2}}{6} = \frac{2a \pm a}{6} </math>
:<math> \Rightarrow </math>
:::<math> x_1 = \frac{a}{2} \quad \Rightarrow \quad Fuer \ diesen \ Fall \ gibt \ es \ keine \ Schachtel, \ da \ (a-2x_1)=0 </math>
:::<math> x_2 = \frac{a}{6} \quad \Rightarrow \quad {V^\prime}^\prime (x_2) = 24 \left( \frac{a}{6} \right) -4a-4a = -4a \quad < \ 0 \qquad \Rightarrow \quad x_2 \ ist \ Maximum </math>


<br><br>


{{Aufgaben-M|3|
'''Ergebnis:''' Die Schachtel hat die Kanten '''a/6''', '''4a/6''' und '''4a/6'''. Das ist das Verhältnis '''<math> 1 \ : \ 4 \ : \ 4 </math>'''.
Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit <math> f(x)=x^2</math> gezeichnet.
* Zeichnen Sie die Sekante durch die Punkte A(1;f(1)) und B(2;f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.
* Zeichnen Sie ebenso die Sekante durch die Punkte A(1;f(1)) und C(1,5;f(1,5)) und bestimmen Sie aus der Zeichnung ihre Steigung.
* Zeichnen Sie (näherungsweise) die Tangente an den Graphen im Punkt A(1;1) ein und bestimmen Sie ihre Steigung aus der Zeichnung.
}}
}}


:{{Lösung versteckt|1=
'''Lösungsweg zu Teilaufgabe c.)'''
* Die Steigung ist (ungefähr) 3.
 
* Die Steigung ist (ungefähr) 2,5.
Zum Schluß haben wir noch zwei konkrete Werte für unsere Kartonseitenlängen gegeben, nämlich '''<math> a = 21 </math>''' und '''<math> b = 16 </math>'''. Wie groß ist hierfür das maximale Volumen '''<math>V_\mathrm{max} (x) </math>'''?
* Die Steigung ist (ungefähr) 2.
 
{{Lösung versteckt mit Rand|Dazu setzen wir zunächst '''a''' und '''b''' in die Formel unseres Maximums aus Teilaufgabe a.) ein:
 
 
<math>x = \frac{a+b- \sqrt{a^2-ab+b^2}}{6} = \frac{37- \sqrt{441-336+256}}{6} = \frac{37-19}{6} = 3 </math>
 
 
Jetzt wissen wir, welche Länge die Quadrate haben, die wir an den Ecken des Kartons ausschneiden müssen. Mit diesem Wert lässt sich schließlich '''<math>V_\mathrm{max} (x) </math>''' berechnen:
 
 
<math> V_\mathrm{max} (x) = (21-6) \cdot (16-6) \cdot 3 = 15 \cdot 10 \cdot 3 = 450 </math>.
 
 
 
 
 
'''Skizze zur Veranschaulichung:'''
 
 
Dies ist ein interaktives Koordinatensystem, in dem man durch Einstellen der Kartonseitenlängen '''a''' und '''b''' das Volumen der Schachtel durch die Funktion '''f''' in Abhängigkeit von '''x''' angezeigt bekommt. Auf der x-Achse ist die Seitenlänge der auszuschneidenden Quadrate und auf der y-Achse das Schachtelvolumen angegeben.  
 
Vorgehensweise: Mit Hilfe der Schieberegler stellt man die gewünschten Seitenlängen des Kartons ein. Dadurch verändert sich der Graph der Funktion '''f'''. Im höchsten Punkt der nach unten geöffneten Parabel ist dann das maximale Volumen der erzeugten Schachtel angegeben. Senkrecht unterhalb dieses Punktes auf der x-Achse lässt sich dann leicht der Wert '''x''' ablesen, für den das maximale Schachtelvolumen erreicht wird. Die zweite Nullstelle des Graphen neben der Nullstelle '''<math> x = 0 </math>''' zeigt an, ab welcher Größe der auszuschneidenden Quadrate keine Schachtel mehr gefaltet werden kann. Der restliche Verlauf des Graphen ab der zweiten Nullstelle ist irrelevant.
 
 
<ggb_applet width="400" height="300" filename="VolumenSkizze.ggb" showResetIcon="true" />
}}
}}


=== Der schräge Wurf ===
{{Aufgabe|
Nun wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. }}
'''1. Skizze:'''


<br><br>
Als erstes solltest du eine Skizze von einem Wurf nach schräg oben anfertigen. Wo befindet sich dabei der entscheidende Winkel <math>\alpha</math>? Was sind die entscheidenden Größen?
 
 
''Falls du nicht weiterkommst, findest du hier die Skizze des Wurfes:''{{Lösung versteckt|Skizze:
 
<ggb_applet width="400" height="250" filename="schraeger_Wurf4.ggb" showResetIcon="true" />
 
 
 
Als feste Größe ist die Abwurfgeschwindigkeit <math>\vec v_{0}</math> anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel <math>\alpha</math>.}}
 
Entscheidend ist nun die Zerlegung der Bewegung in eine x- und eine y-Komponente. Versuche zunächst, die Geschwindigkeit an Hand der Skizze in diese Komponenten zu zerlegen.
 
{{Lösung versteckt mit Rand|Die Größen <math> v_{x} </math> und <math> v_{y} </math> lassen sichmit Hilfe von <math>\alpha</math> wie folgt bestimmen:
 
<math> v_{x}=v_{0} \cdot cos(\alpha) </math> und
 
<math> v_{y}=v_{0} \cdot sin(\alpha) </math>


{{Aufgaben-M|4|
Wir betrachten witerhin die Funktion f mit <math>f(x)=x^2</math>.
* Bestimmen Sie  rechnerisch für die Werte <math>x_0=1</math> und <math>x_1=1</math> mit Hilfe der obigen Formel die Steigung der Sekante durch die Punkte A(1;f(1)) und B(2;f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.
* Näheren Sie nun die Steigung der Tangenten im Punkt A(1;1) an den Graphen besser an, indem Sie für x<sub>1</sub> einen Wert wählen, der näher an x<sub>0</sub> liegt. Vergleichen Sie mit Ihrem Ergebnis aus der vorherigen Aufgabe.
* Überlegen Sie, wie man einen möglichst genauen Wert für die Steigung der Tangenten erhalten kann.
}}
}}


:{{Lösung versteckt|1=
'''2. Physikalische Formeln'''
* Die Steigung ist <math>m=\frac{4-1}{2-1}=3</math>.
 
* Wählt man <math> x_1=1,5</math>, so ergibt sich <math>m=2,5</math>.
Wir wollen allerdings die Flugweite und Flughöhe, nicht die jeweiligen Geschwindigkeiten betrachten. Erinnerst du dich, wie die Ortskomponenten in der Physik mit den Geschwindigkeitskomponenten zusammenhängen? Schreibe die entsprechenden Gleichungen auf!
* Wenn man x<sub>1</sub> sehr dicht an 1 wählt, ist die Näherung recht genau.
{{Kasten_blau|
Die Idee bei der Annäherung der Tangente durch Sekanten ist es, den Wert x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern. Dann ergibt die Steigung der Sekanten eine immer bessere Näherung für die Tangentensteigung.
}}


}}
{{Lösung versteckt mit Rand|Der Ort des Wurfobjekts ergibt sich aus dem Anfangsort, der Geschwindikeit in die jeweilige Richtung mal die entsprechende Zeit und die Geschwindigkeitsänderungen (welche über die Beschleunigung ausgedrückt werden) mal die quadratische Zeit:


<br><br>
<math> x(t)=x_{0}+v_{0} \cdot t + \frac{1}{2} \cdot a_{0} \cdot t^2 </math>


Dies müssen wir nun in x- und y-Richtung ausdrücken. In x-Richtung bleibt die Geschwindigkeit (wenn wir die Reibung vernachlässigen) über die ganze Strecke konstant und wir starten am Anfangspunkt 0:


<math> x(t)=v_{x} \cdot t = v_{0} \cdot cos(\alpha) \cdot t</math>


Anstatt x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern, kann man auch die Differenz <math>h=\Delta x=x_1-x_0</math> klein werden lassen. Es ist dann <math> x_1=x_0+h</math>.
In y-Richtung starten wir ebenfalls am Anfangspunkt 0, allerdings nimmt die Geschwindigkeit mit der Erdbeschleunigung g ab:


{{Aufgaben-M|5|
<math> y(t)=v_{y} \cdot t - 1/2 \cdot g \cdot t^2 = v_{0} \cdot sin(\alpha) \cdot t - 1/2 \cdot g \cdot t^2</math>
Überlegen Sie, wo in der folgenden Zeichnung die Größen h, x<sub>0</sub>+h, f(x<sub>0</sub>+h)
f(x<sub>0</sub>+h)-f(x<sub>0</sub>) zu finden sind.
}}
}}


<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAK60XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACutFxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bRhL+nP6KAVEc4oslcfkmKSelkB1bDeA0Bew7FFfnCopcSRtTJEtStpw2//1md0mKEvUuK1EM2F6SO7uz8zwzsy+kWz9NRh7c0yhmgd9WSFVVgPpO4DJ/0FbGSb/SUH5680NrQIMB7UU29INoZCdtxeCSzG0rtmU0dcPsV+qO26wYjuVWmnWnXnGJRjS1bzcNS1cAJjF77Qe/2CMah7ZDr50hHdlXgWMnQvEwScLXtdrDw0M1U1UNokFtMOhVJ7GrAA7Tj9tKevEau5tp9KALcU1VSe2391ey+wrz48T2HaoAN2HM3vzwovXAfDd4gAfmJkM0WGugHUPKBkM0qlm3FKhxqRARCamTsHsaY9vCrTA6GYWKELN9Xv9CXoGX26OAy+6ZS6O2olY13dDrpgJBxKifpBIk1VTL+mjdM/ogO+NXQo+hQBIEXs/m/cDff4Omaiqc8oLIQsPCsmSVKp+puiw0WRiyMKWMIZsbUtSQMoaUMZCoexaznkfbSt/2YgSO+f0IScvv4+TRo2I86YOpzeQUbYrZZxTWVURVIo3PVfWU/1r4a/CK2qyRpKA1icZbKs1UEs3SNtep7WWpvtJOzVxip7VCqTR8I0PNgk5UJX7Eb0mjvsrMeY3yfj+FlvFVTGzVslhppeEB8ZDLpu6T0FHMA0Zvgtnkfk/AxOCw6ujmJpAmFnUNMByAmGCYeEsaYPGyDnodKwzQoQFcjuggosNs4B+jLjqzwMTO+NM6BiUQVGSAqQMRQWUAhhKIwMQg1XSUME0wsRFXTzTehW6BYeGd3gADx8hjsk5QUMeGeI/qNdAJ6LwxqYNmgcX7IwaPdavBh45damCpYBHeIYY1hrQMZ5RvgM6tybIZ88NxMgORM3KzyyQIcy5QGhPSNNnJBDWTC1+0PLtHPZwfrjmTAPe2xyNCKOoHfgJ5QMpng8gOh8yJr2mSYKsYPtn39pWd0MklSseZbiHrBH78axQk54E3HvkxgBN4aj7mwCOFay0fNd7ohQqjWGEWKqzCdX2h3gBrYBxT1B9EcSZuu+47LjFNDYjkB997PIuofRcGbNaMVk1MNS06djzmMtv/Dzor18JxgenMw/NVNvPUm81sJEHkXj/G6MIw+S+NAgwqvWppDdNSdbNJNIPwPPKYVjUaVVUzG6pRN5uGyaev2LF58JFqs24Sq2k0TZwlGg3SwEZZnVVVLdMysaVJDN0wUqbofc6RPaG5+YOIh3ZqOr95F58F3vSRAODcDpNxJFYNmB0jblXHH3hUOInItzglO3e9YHItvUOXfd08hninygH0BgJ4wOSAQ0OBtOzJUsjwkeVSqpBRhYSauRtz83rS1ISEKHuyFFLov3JoqaUkM5OomRoWi5SmKjOBI5yfz+9jnyVX2U3CnLvUUiLlfxmPejR3odkuyRN12arNuVjrjkY+9VKPRibHwTiWAVpwdpc6bIS3siIFxOZk/RsHIJ+6dBDRbNyeWI9JuEStWvTV0mPR1WUUjN759zfoCXMDaNWyUbZiJ2Ihdzjo4SxwR6c+5bLYxknELbbjIYimO3yyQHgSDg0G5zgZBpFYcWFOwZJH3iSMaMyXtBJcwG5wXTvhie7l5ATaoFXVi4oB/4TJ/15qJ6J76tERLs8gER7ZH/tCUU5PXyz4OA8Q9D5hOpyjrwAw1i/xULC9cGjzNWGKlWc/0mgGPdHd+8CdxxQpE4ZjZgilS4SUSmdK0hiCELsTIVgYzNTTE8zCd7jWjEU45o34xc/MdamYgaVbSSgE5qOR7bvgixn8Vx7pynRGsVWOi7R5nGRPOrKTtGkJWZEuctg6a2Cdhk8RVaLJ7CDKNDscEluyGFsRADFMxEKQb4geUbTBLz7LvZTcS3CDedabmSrl07ng2Rf6s22gP3se0Bs59Lp2EOivMILmkO+gySSFe4YAezUBPBhzfO3dMopJZiZGfrsr/FMQK8TI/FfCiShqEtkdswguJ/70ZZNYTmNsFHrMYclqtK+9IJyH2y7hPFqNsz8e0Yg5OZQj0SGaPs4AqBJDdjqDf7YlWRkApi4I4MDPJXWyEv4P/X5ME+GyuoC6omkL2SmtUfbP3B8inCUHgW97C7z5THrzpIMLlBLSvS08ulf26FlEDztJFt059ebMl7+JK68EvbMKdGcL0J2jBV3/FqC/8xNcJCMMc3g7q/Ce/KFuM3Ny8V3mTn48MpBFTxb7oz5deVTUg0x/ywDtrQaUbAcoWefFB0NUX76g2AtR7BL3xHxtI56hz7wa7p8vHhfC7W6RL9xjyRc5yiRDuXFkOfpsFeZ0C8zp0WIu1sxHkqLpKrgvtsknF98smyxF/ECbk2VYShAFnm4Jy8ttsLw8PiwPtMdeM9OVcexug2P3eHA0Dn1a8ZalL14XzmHd8ra5x+XdzhpA57d102Zz2zsyXXlukk7XbJ6WWNNdegggh9VdcxqzxJruWckaYy9j5k9D+emul9iP6YnoVK14/bN6jGnLrzLAyewAkeVNBzh5an9YMELW79OI+p+p/+c4SPiL/XS4EiKoQWbEBoNe0NnSA4sncOhrOhjR0nHi2bLoHKz24zjtLbNmsNe5Vnqsstex4jTT5cda2Uq+YlqH25UK1Dx+VplPJegy5Tcwd5SG/MXXB/8msv2Yf1MjZQpvdraiLk1F6a5rhrzhduQNj4m8xjx5dW1T8rTviL3sKOgPtcQe2449dtTsmRufwn2H7JXT5qftuPu0G3fZi/KUPKJqT7rSzt8GVEjjGSbOS0lep0Te3Xbk3R0jebr6zEPvYtkK3NuOPe8Y2TMKoadtHHvfE318wlu6bvG3o9D/hhRq67Pn88ucaexdlogLtyMuPKYly/xu4XumbcmpxcqgS7fa5293OrnAZgffd9/QSYJ65Fb7H3y3/K/bt3yjjfwBmgQVNBDacHsKshZewcsr+4b+9ns+yo8n+FDWyr+L9ugJKlLmtO50gDeXYvb5XoPFwpJZD0i/uo2Rkf70C1XxkaWqZL6XdoAARIn4lEgC+J654mTvdwTtlMP3saB++r1CxUzfGmjNnXxuaa5IKblYcyC9xN8uLg9+EMWJRzUL3O0Rnaz/EiE7gQov1ZOVXndxuZvXXaw9fj98gjyc212cwuXHzVggMyS8LZ+YvYYf4bYf2c5fGUNfsqvJl7askYSlfH35C294uvgCP7bnaVtwJLcbgWtfbB/21d8G3KX/l7GWOp4JzKpupKkAw6fw4mA9gfz8tsDg8Pa0fXuaMoBxsyp4Ot3dsO/s+M7lKRf2hwuezil0NwwefrhfwF74/6thFgiwBv7u2W7wdxd8Yfp8clf3FM5K8G/2QtGT82FYmg/PV8+Dsy8Uz3dbOR/ik5lKvuOpN7V801M8at/9w5nMWXeD+m4Z1GuWuLNQL1j6fZ3PvZYjXU/RFV83ak8GdAnmWvHfLvh99v+5b/4PUEsHCP7QjyIQCgAAPDwAAFBLAQIUABQACAgIAK60XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgArrRcQ/7QjyIQCgAAPDwAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACoCgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<br><br>


:{{Lösung versteckt|1=
'''3. Nebenbedingung formulieren'''
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAIu0XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACLtFxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bRhL+nP6KAVEc4oslcfkmKSelkB1bDeA0Bew7FFfnCopcSRtTJEtStpw2//1md0mKEvUuK1YC2F6SO7uz8zwzsy+kWz9NRh7c0yhmgd9WSFVVgPpO4DJ/0FbGSb/SUH5680NrQIMB7UU29INoZCdtxeCSzG0rtmU0dcPsV+qO26wYjuVWmnWnXnGJRjS1bzcNS1cAJjF77Qe/2CMah7ZDr50hHdlXgWMnQvEwScLXtdrDw0M1U1UNokFtMOhVJ7GrAA7Tj9tKevEau5tp9KALcU1VSe2391ey+wrz48T2HaoAN2HM3vzwovXAfDd4gAfmJkM0WGugHUPKBkM0qlm3FKhxqRARCamTsHsaY9vCrTA6GYWKELN9Xv9CXoGX26OAy+6ZS6O2olY13dDrpgJBxKifpBIk1VTL+mjdM/ogO+NXQo+hQBIEXs/m/cDff4Omaiqc8oLIQsPCsmSVKp+puiw0WRiyMKWMIZsbUtSQMoaUMZCoexaznkfbSt/2YgSO+f0IScvv4+TRo2I86YOpzeQUbYrZZxTWVURVIo3PVfWU/1r4a/CK2qyRpKA1icZbKs1UEs3SNtep7WWpvtJOzVxip7VCqTR8I0PNgk5UJX7Eb0mjvsrMeY3yfj+FlvFVTGzVslhppeEB8ZDLpu6T0FHMA0Zvgtnkfk/AxOCw6ujmJpAmFnUNMByAmGCYeEsaYPGyDnodKwzQoQFcjuggosNs4B+jLjqzwMTO+NM6BiUQVGSAqQMRQWUAhhKIwMQg1XSUME0wsRFXTzTehW6BYeGd3gADx8hjsk5QUMeGeI/qNdAJ6LwxqYNmgcX7IwaPdavBh45damCpYBHeIYY1hrQMZ5RvgM6tybIZ88NxMgORM3KzyyQIcy5QGhPSNNnJBDWTC1+0PLtHPZwfrjmTAPe2xyNCKOoHfgJ5QMpng8gOh8yJr2mSYKsYPtn39pWd0MklSseZbiHrBH78axQk54E3HvkxgBN4aj7mwCOFay0fNd7ohQqjWGEWKqzCdX2h3gBrYBxT1B9EcSZuu+47LjFNDYjkB997PIuofRcGbNaMVk1MNS06djzmMtv/Dzor18JxgenMw/NVNvPUm81sJEHkXj/G6MIw+S+NAgwqvWppDdNSdbNJNIPwPPKYVjUaVVUzG6pRN5uGyaev2LF58JFqs24Sq2k0TZwlGg3SwEZZnVVVLdMysaVJDN0wUqbofc6RPaG5+YOIh3ZqOr95F58F3vSRAODcDpNxJFYNmB0jblXHH3hUOInItzglO3e9YHItvUOXfd08hninygH0BgJ4wOSAQ0OBtOzJUsjwkeVSqpBRhYSauRtz83rS1ISEKHuyFFLov3JoqaUkM5OomRoWi5SmKjOBI5yfz+9jnyVX2U3CnLvUUiLlfxmPejR3odkuyRN12arNuVjrjkY+9VKPRibHwTiWAVpwdpc6bIS3siIFxOZk/RsHIJ+6dBDRbNyeWI9JuEStWvTV0mPR1WUUjN759zfoCXMDaNWyUbZiJ2Ihdzjo4SxwR6c+5bLYxknELbbjIYimO3yyQHgSDg0G5zgZBpFYcWFOwZJH3iSMaMyXtBJcwG5wXTvhie7l5ATaoFXVi4oB/4TJ/15qJ6J76tERLs8gER7ZH/tCUU5PXyz4OA8Q9D5hOpyjrwAw1i/xULC9cGjzNWGKlWc/0mgGPdHd+8CdxxQpE4ZjZgilS4SUSmdK0hiCELsTIVgYzNTTE8zCd7jWjEU45o34xc/MdamYgaVbSSgE5qOR7bvgixn8Vx7pynRGsVWOi7R5nGRPOrKTtGkJWZEuctg6a2Cdhk8RVaLJ7CDKNDscEluyGFsRADFMxEKQb4geUbTBLz7LvZTcS3CDedabmSrl07ng2Rf6s22gP/s+oDdy6HXtINBfYQTNId9Bk0kK9wwB9moCeDDm+Nq7ZRSTzEyM/HZX+KcgVoiR+a+EE1HUJLI7ZhFcTvzpyyaxnMbYKPSYw5LVaF97QTgPt13CebQaZ388ohFzcihHokM0fZwBUCWG7HQG/2xLsjIATF0QwIGfS+pkJfwf+v2YJsJldQF1RdMWslNao+yfuT9EOEsOAt/2FnjzmfTmSQcXKCWke1t4dK/s0bOIHnaSLLpz6s2ZLz+LK68EvbMKdGcL0J2jBV1/DtDf+QkukhGGObydVXhP/lC3mTm5+C5zJz8eGciiJ4v9UZ+uPCrqQaa/ZYD2VgNKtgOUPBeg+vL1xF6AYpe4JeZLG/EMXebVcP908bgQbXeLdOEeS7rIUSYZyo0jS9FnqzCnW2BOjxZzsWQ+kgxNV8F9sU06uViH99dLzwfemyzDUoIo8HRLWF5ug+Xl8WF5oC32momujGN3Gxy7x4OjcejDircsfe+6cA7rlnfNPS7vdtYAOr+rmzab292R6cJzk3S6Zu+0xJru0jMAOazumsOYJdZ0z0rWGHsZM38Yyg93vcR+TA9Ep2rF25/VY0xbfpUBTmYHiCxvOsDJU/vDghGyfp9G1P9M/T/HQcLf66fDlRBBDTIjNhj0gs6Wnlc8gUNf08GIlk4Tz5ZF52C1H8dpb5k1g72OtdJTlb1OFaeZLj/VylbyFdM63KZUoObxo8p8KkGXKb+AuaM05O+9Pvg3ke3H/JMaKVN4sbMVdWkqSjddM+QNtyNveEzkNebJq2ubkqd9Q+xlJ0F/qCX22HbssaNmz9z4EO4bZK+cNj9tx92n3bjL3pOn5BFVe9KVdv4yoEIa32HivJTkdUrk3W1H3t0xkqer33noXSxbgXvbsecdI3tGIfS0jWPvW6KPT3hL1y3+dhT6z0ihtj57fn+ZM429yxJx4XbEhce0ZJnfLXzLtC05tVgZdOlW+/ztTicX2Ozg++4bOklQj9xq/4Pvlv91+5ZvtJE/QJOgggZCG25PQdbCK3h5Zd/Q337PR/nxBB/KWvl30R49QUXKnNadDvDmUsw+n2uwWFgy6wHpR7cxMtKffqAqvrFUlcz30g4QgCgRXxJJAN8zV5zs/Y6gnXL4PhbUTz9XqJjpWwOtuZPPLc0VKSUXaw6kl/jbxeXBD6I48ahmgbs9opP1XyJkJ1DhpXqy0usuLnfzuou1x++HT5CHc7uLU7j8uBkLZIaEt+UTs9fwI9z2I9v5K2PoS3Y1+dKWNZKwlK8vf+ENTxdf4Mf2PG0LjuR2I3DBe+2v+epvA+7Sf8tYSx3PBGZVN9JUgOFTeHGwnkB+fltgcHh72r49TRnAuFkVPJ3ubth3Frxz2eCjgqdc1x8udjqn0N0wdvjZfgF64f6vhlkcwBr0u2e7od9d933pt5y5uqdwVkJ/s9eJnpwNw9JseL56Fpx9nXh+NN/LVPLtTr2p5Tue4jn77l/NZK66G9J3y5Bes76dRXrBuu+5ka6n6IovG7UnA7oEc634Lxf8Pvvf3Df/B1BLBwhuulJfCwoAADg8AABQSwECFAAUAAgICACLtFxDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAIu0XENuulJfCwoAADg8AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAowoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
}}
Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels <math> \alpha </math>. Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.
 
''Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.''
 
Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:


<br><br>
{{Lösung versteckt mit Rand|Störend ist bei uns noch die Variable t. Wir interessieren uns ja nur für den Zeitpunkt, an dem der Ball/Stein oder ähnliches wieder auf dem Boden aufkommt. Dies ist genau der Zeitpunkt, bei dem unsere zweite Ortsfunktion y(t) (also die Höhe) wieder 0 ist. Als Funktion:


{{Aufgaben-M|6|
<math> y(x)=v_{y}(t) \cdot t - \frac{1}{2} \cdot g \cdot t^2 = v_{0}(t) \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 =0 </math>
Gegeben ist wieder die Funktion f mit <math> f(x)=x^2</math>.


Berechnen Sie für <math>h = 0,1</math> (<math>h= 0,01</math> und <math>h = 0,001</math>) die Steigung der Sekanten für <math>x_0= 1</math> und <math>x_1= 1+h </math>. (Verwenden Sie die Tabellenfunktion Ihres Taschenrechners; Schreiben Sie dazu <math>h=0,1^n}</math> mit n gleich 0, 1, 2, 3,...)
um t zu elimieren, müssen wir diese Gleichung nach t auflösen. Etwas anders sortiert lässt sich die Gleichung auch schreiben als


''Wer das Thema Folgen hatte, kann hier in seiner Variante des Lernpfads ändern.''
<math> 0 = \underbrace{- \frac{1}{2} \cdot g}_{a} \cdot t^2 + \underbrace{v_{0}(t) \cdot sin(\alpha)}_{b} \cdot t = a \cdot t^2 + b \cdot t = 0</math>


Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1;1). Vergleichen Sie mit den Ergbnissen der vorherigen Aufgaben.
Dies ist eine einfache quadratische Gleichung, die sich mit der Mitternachtsformel lösen lässt:
}}


:{{Lösung versteckt|1=
<math> t_{1/2}=\frac{-v_{0} \cdot sin(\alpha)\pm \sqrt{v_{0}^2 \cdot sin(\alpha)^2+4 \cdot \frac{1}{2}\cdot 0}}{-g} </math>
Die Sekantensteigung ist <math>m=\frac{(1+h)^2-1^2}{h}=\frac{(1+0,1^n)^2-1}{0,1^n}</math>.
Dies muss für verschiedene n ausgerechnet werden. (Bei der Tabellenfunktion des Taschenrechners muss statt n als Variable x gewählt werden.)


}}


<math> \qquad =\frac{-v_{0} \cdot sin(\alpha) \pm v_{0} \cdot sin(\alpha)}{-g} </math>




:{| class="wikitable"
<math> \Rightarrow t_{1} = 0 \qquad und \qquad t_{2} = \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g} </math>
!'''n''' !! '''h'''  !!'''x<sub>1</sub>''' !!'''Sekantensteigung m'''
|-
| 0 || 1|| 2 || 3
|-
| 1 || 0,1 || 1,1 || 2,1
|-
| 2 || 0,01 || 1,01 || 2,01
|-
| 3 || 0,001 || 1,001 || 2,001
|-
| 4 || 0,0001 || 1,0001 || 2,0001
|-
| 5 || 0,00001 || 1,00001 || 2,00001
|}


Wir erinnern uns, dass <math> t_{1} </math> und <math> t_{2} </math> jeweils die Zeiten sind, an denen die Höhe des Wurfobjekts 0 ist. Dies ist logischerweise zur Zeit 0 der Fall, was unserer Lösung <math> t_{1} </math> entspricht. Die für uns interessante Lösung ist allerdings <math> t_{2} </math>, also die Zeit, wenn das Wurfobjekt nach dem Wurf wieder am Boden ist.


{{Aufgaben-M|7|
* ''das gleiche mit einer anderen Funktion''
* ''irgendwas zur zeitlichen und inhaltlichen Differenzierung''
}}
}}


== Differenzenquotient ==
'''4. Nebenbedingung einsetzen und Funktion aufstellen'''


Reflexionsaufgabe: Gemeisamkeiten herausarbeiten als Vorbereitung der Plenumsphase
Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch die für die Aufgabe wesentlichen Größen ausdrücken und in die Zielfunktion einsetzen.


Plenumsphase?
{{Lösung versteckt mit Rand|Mit der Information über t können wir t nun in unserer Ortsfunktion <math> x(t,\alpha) </math> elimieren.
Möglicher Inhalt:
Verbindung zwischen durchschnittlicher Änderungsrate, Sekantenssteigung und Differenzenquotient (allgemeine Beschreibung für die beiden Konzepte) herstellen.


== Differentialquotient ==
<math> x(t_{2},\alpha)= v_{0} \cdot cos(\alpha) \cdot t_{2} = v_{0} \cdot cos(\alpha) \cdot \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g}= \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha)=x(\alpha) </math>


{{Kastendesign1|
Somit hängt unsere Wurfweite wie gewollt nur noch vom Abwurfwinkel <math> \alpha </math> ab. In der Skizze kannst du zusätzlich die Abwurfgeschwindigkeit <math> v_{0} </math> variieren, die wir in der Berechnung zunächst einmal als fest voraussetzen.
BORDER = #97BF87|
BACKGROUND = #AADDAA|
BREITE =100%|
INHALT= Der Differentialquotient  f'(x<sub>0 </sub>) ist definiert als Grenzwert eines Differenzenquotienten


Differentialquotient  <math> f'(x_0) = lim_{x_1\to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}</math>
Skizze:
 
<ggb_applet width="400" height="250" filename="wurfweite2.ggb" showResetIcon="true" />


Der Differentialquotient  f'(x<sub>0</sub>)  wird auch als ''Ableitung der Funktion f an der Stelle  x<sub>0</sub>'' bezeichnet.
|
BILD=Nuvola_Icon_Kate.png|
ÜBERSCHRIFT=Information|
}}
}}


'''5. Bestimmung des Extremwerts (maximale Wurfweite)'''
Du hast nun eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von <math> x(\alpha)</math>.
Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von <math> \alpha </math> abhängt, musst du jetzt natürlich nach <math> \alpha </math> ableiten. Versuche, die Nullstelle zu bestimmen.
{{Lösung versteckt mit Rand|Die Funktion
<math> x(\alpha) = \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha) </math> soll maximiert werden.
Erste Ableitung:


Der Differentialquotient f'(x<sub>0 </sub>)
<math>  x'(\alpha)= \frac{2 \cdot v_{0}^2}{g} (-sin(\alpha) \cdot sin(\alpha)+cos(\alpha)cos(\alpha))\qquad \qquad (Produktregel) </math>  


* beschreibt die momentane Änderungsrate der Funktion f an der Stelle  x<sub>0 </sub> und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen  x<sub>0</sub> und  x<sub>1</sub> den Wert  x<sub>1</sub> immer mehr dem Wert  x<sub>0</sub> annnährt,
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (cos(\alpha)^2 - sin(\alpha)^2) </math>
* beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x<sub>0</sub>|f(x<sub>0</sub>)) und entsteht, wenn man in Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten  A(x<sub>0</sub>|f(x<sub>0</sub>)) und  B(x<sub>1</sub>|f(x<sub>1</sub>)) den Punkt  B(x<sub>1</sub>|f(x<sub>1</sub>)) immer mehr dem Punkt  A(x<sub>0</sub>|f(x<sub>0</sub>)) annähert.


<br><br>
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (1-2sin(\alpha)^2) \stackrel{!}{=} 0 \qquad \qquad (sin(x)^2+cos(x)^2=1)</math>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIACq1XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAqtVxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb/W/bNhr+ufsrCGEYGlwckxT11dkdkjbJFUjXAckdhlt7gyzRthpZUiU5sbv1f7+XpGTLlr8Tp26vaEJJpEi+z/N+kWJav4wGIbrjaRbEUVsjJ1hDPPJiP4h6bW2Ydxu29svLH1o9Hvd4J3VRN04Hbt7WmGgZ+G3NNZmjM6PbsDzfaTDP9BuO5VkNn1BCcdd1mKlrCI2y4EUU/+oOeJa4Hr/2+nzgXsWem8uB+3mevGg27+/vT8qhTuK01+z1OiejzNcQTDPK2lpx8QK6m3npXpfNKcak+fvbK9V9I4iy3I08riEhwjB4+cOz1n0Q+fE9ug/8vA8CUxvk6POg1wehHMvUUFO0SgCRhHt5cMczeLdyK4XOB4kmm7mRqH+mrlA4kUdDfnAX+Dxta/iE6ky3DA3FacCjvGhBipGaZR+tu4Dfq87ElRyHaSiP47Djin7Q338jiilGx6IgqqBQmKaqwuoZ1lVBVcFUYag2TL3OVFOm2jDVhgFRd0EWdELe1rpumAFwQdRNgbTJfZaPQy7nUzyYykyOQaYs+AyNdQyoKqThOcbH4seEHyYqmrNCksqoeTrcctBySEJNuvmY9EGS6ivlpMYSOc0VgyrBNxLUqIwJQ8n/8qc2or5KzPkR1f3DBjTZk4jYapa20irMA2V90bZQn5wPMmEwuoMMR+g9QQYYh2mBmhuIOFBYFIE5IGIgZsAtsZEpSgvpFlQwpCMbiXZER9I6DBt+MUt2ZiIDOhNPLTBKRGAghgwdEWlUDIEpIWmYYKRUhxaGgQx4SQxPqOhCNxEz4U63EYM5Cpu0CDTU4UW4h+Ep0gnSxcvEQtREpuiPMGHrpi2mDl1SZGJkEtEhmDWYtDJnaG8jXUhTerMgSob5DETewC8v8ziZcAGtwSFNnZ1yUDO+8FkrdDs8hPhwLZhE6M4NhUXIgbpxlKOJQapnvdRN+oGXXfM8h7cy9NG9c6/cnI8uoHVWji3benGU/ZbG+as4HA6iDCEvDvFkznFIKtd0Mmu40SsVrFphVCrMyrW1cNwYatAw4zB+nGZlc9f334gWU9cASL6LwvFZyt3bJA5mxWg1Zahp8aEXBn7gRv8GZRWjCFzQNPIIf1VGHstxypnEqX89zkCF0eg/PI3BAMwTnWCHEZtgAyKJpaFxUaObJw62wJvbOsWWAzWZ5wrbow7UEFO3MKGWTU0Ghjku6qCXE4PqFB7rtmUa2FJD87sJRe6IT6TvpcKyC8nFzZvsLA6nj6T8r9wkH6YyaQDnmAqhTqNeyKWOSHcLEdm77cSja6UcuurrZpzAHVYT6PQk7gh8AzUgXvaKsqNK2UbMbNIKyzZYtsCltgX+pJ44VLaQZUeVshWor5paISkpxSS4HCbIpEfD2ozdSN0X4X0YBflVeZMH3m0hKVHtfx0OOnyiQbNdkkfqstWc07DWLU8jHhYKDUwO42Gm7LOi6z73ggHcqooCEFeQ9S+YgHrq817Ky3mHMh1TcMlaXFXV2mPZ1UUaD95EdzegCXMTaDXLWbYyLw0SoXCoA0Hglk91yg8yF2KIX31PWCCI7olYAfDkAhqwzWHej1OZcIFLgVIY3ihJeSYyWgUugm4grR0JP/d8dITaaPTf5/RI9spDPoCkDOVSEbvDSPY/YaUr0zwBP4o7H8EJzrFWwRXqlygmcsOk74pMsIAodMc8nQFNdvc29uehBKakvOAPEqUJCedKh/LCdFAC3UnLq0xmquA5+N5byDAzaYWTl8TFPwPf5zLuKm1SUEioBwM38lEk4/ZvwsC1aRxxscBFyTzMyyenqpPi1Rqy0ktMYDtdA+vUaqqoEqqcgiwLp7BPbMlibKXeZ2gkl0uYGAZhlBqQPjsWeLWxegwe26AGcQxq68TW0Ge1uFKLC4GF8IMzsVM9nTOnh7Jytg0rZ98HK1QsTcfFEvXRcb8Cy5qD/RTkJQXWM+i7q9EXRjoB193N0xhkJk6K212xnyLYoCeOY9oOs5iNmUVMm0lEMTy2GbMNy2KWY2BqFQA74p9BbJNYpk4Na1cnBEnIp0i9kqngFwySMPCCfDUp12GczLPi1ugYrKYjGg54GngTxAeyQ0BoWCpM3dybNdLKVc1KkzF0yZpgay5CkJWcvet2M54LiphyNQ1KF1Jay3MeHgbepRBpe3HkhgtM4EyZwOgUkpwa7p0tzKBTN4NZRPcbcSs2QAo3ggs3Qid9PZlar4T8dBXk3haQewcL+YL4+sQMvIlyyLkBkznwvVXgj/7E24Rd0XyXwCs2W3qq6Kji4RQsyWgaeC+xdBm6ndXoku3QJQeDbpmZ7AnOTdzFeCGm/hbuwj8Ud4FLNEnFXczl3YfksM9WMcC3YIAfLAPs6WPkMh/CV6F9vo0HOV8H99M5ELzXpc0yKBWGEk6/BuXFNlBeHB6UT7JYXxPo6qheboPq5eGgSp8S1ddB8Xl3YaS7rC/HO6K9f7oG3Pl14PS1ufXgguXwxj53zWJriWiXS3ca1Bwv1+z3LBHt8mxetAUbALuLNr8fK/aXw9wdF3uy00nI70+rZ1y8+RWmO5qdLqjDptMd7VVxFkw36HZ5yqPPPPo0jHNx6KCYu0IPNVEp0QYSLOhsw32RR7CDa94b8No+59kyC++tVv+s6K2UrfegPbdi9+ZB+51Vz7lky01F+oYB9boFDRwTO0zX97THJuEMxe7qJGaBZtW/It1ynoiPd++im9SNMnEsSLWpfJ3aitPCtRWruxlW+9ux2j8gVhfFwSqrEC+xSaEB1h1smOZmtNJviNdym+pPXOM12I7X4BviVdQz0yTModCOMGx8p7zWffDH7Vj9uBur5QGBglaC6WMuCpZ86Gio7THmYEJsi4lDFN+ZF75QrJ7WWL3djtXbQ2R10ebm/4exni9bN4Tb0RoeIq20dLr2ZrtPh0JcPXG/4aNcrCtkrv6TSLd/fv9aZOpo9P64/f4YkqMGBNL3x6iN4Jdqgf6Bnl+5N/z3PyYrkw9H8FDVqt+LEv0cBtPmRt5tX/Ex6Q0yKcssasXBwgwWJt3pITx5kAxrJV9FBwBBmsvDEQrGt4EvtxX+OD1Glx8240AsRescjCUH3efAwlFDFPgIraHi8mw3Ki7XHcXYf66zPyIuj9FZjYhNvJjIIZcuEqLtPFn0FT0Z3TLtwPvaVf/a8eiixmKyHYvJVzeTjRfw3zKJS3YjV9pj4QFfvd5pRxJee9o9M+F1YdBFobeNQD4kAu9KX//q9W6+vhD1oa7oISe/9ufrAbRjAd+HyvDTQ0wNo/h+SJ2dFHCpGykoOV/zcWqJ8p1fPPH+slADGHRRzgEqpzIOVKYcq3Tw/GI3HTxf+2HuW044zo/RxYaZH5kh4XV97/sF+hG976au91fJ0JfyavSlrWpmUsQvfxVZ+xf0Y3uetgWb67sRuO6My35PBGxAXfHHX2uZU+mQyRzHgkW5RW1KbccpT804TDcwxrpli792sZzqR8Xl3uPGjXpLN7DqZ6Y/rXYaM0cxPu2Ge3kAVCEv7x7l1K7clKQ2MzDDDrircttj78djwGh2PKb7qYb/YN0Br9pB3eKI14zDrkHRXM3UI5/UfeSjuIu9FZ3xVoWa8yjLedAbRj3U/clN4uxn6Yemvgfg2sXF0K+u6gvchEUMAxumrjs6KHSRTJxQoB4b2BR7eZatL/MSzeqfFIn78k/PX/4PUEsHCFV70NjKCgAAFz8AAFBLAQIUABQACAgIACq1XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAKrVcQ1V70NjKCgAAFz8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABiCwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />


<br><br />
<math> \Leftrightarrow 2 \cdot sin(\alpha)^2 = 1 \qquad \Leftrightarrow sin(\alpha) = \pm \frac{1}{\sqrt{2}} </math>


{{Protokollieren|}}Schreiben Sie die Definition des Differentialquotienten zusammen mit einer Skizze in Ihr Heft.
<math> \Leftrightarrow \qquad \alpha = \pm 45^\circ </math>


<br>
Die negative Lösung entspräche dem Abwurf in 45° nach unten in den Boden, also eine nichtpraktische Lösung.


{{Aufgaben-M|17|
<math> \Rightarrow \qquad \alpha = 45^\circ </math>
Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.
}} 


Zur Überprüfung, ob es sich tatsächlich um ein Maximum handelt, sollten wir noch die 2. Ableitung überprüfen:


Andere Schreibweise:
<math> x''(\alpha) = - \frac{8 \cdot sin(\alpha) \cdot cos(\alpha)}{g} < 0 \qquad \qquad \alpha \approx 45^\circ </math>


Statt den Wert x<sub>1</sub> immer mehr dem Wert x<sub>0</sub> anzunähern, können wir auch die Differenz der beiden Werte <math> h=x_1-x_0</math> immer kleiner werden lassen.  
Somit handelt es sich tatsächlich um ein Maximum und die Wurfweite wird bei <math> \alpha = 45^\circ </math> maximal.


{{Aufgaben-M|18|
Ersetzen Sie in der Definition des Differentialquotienten  den Wert x<sub>1</sub> durch x<sub>0</sub>+h.
}}
}}
'''6. Untersuchung der Flughöhe'''
Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.
Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei <math> \alpha=0^\circ </math>, also den Wurf senkrecht nach oben, sein Maximum haben wird.
Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.
{{Lösung versteckt mit Rand|Wir müssen die Ableitung der Funktion y(t) wieder gleich 0 setzen, um die Extremwerte der Funktion herauszufinden und diese Werte dann mithilfe der 2. Ableitung überprüfen:


:{{Lösung versteckt|1=
<math> y(t)= v_{0} \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 </math>
<math> f'(x_0)=lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}</math>


<br><br>
<math> y'(t)= v_{0} \cdot sin(\alpha) - \frac{1}{2} \cdot g \cdot 2 \cdot t \stackrel{!}{=} 0</math>


Dies nennt man die ''h-Schreibweise'' des Differentialquotienten.
<math> \Rightarrow t_{max} = \frac{ v_{0} \cdot sin(\alpha)}{g} </math>


<br><br>
Einsetzen in y(t):
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAGu1XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABrtVxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb+2/bthb+ufsrCGEYGiyOSYp6dXaHpE2yAuk6ILkXw117B1mibTWypEhyYnfr/34PScmWLb8TJ+nusEYPHpE833cefLn182gQolueZkEctTVyhDXEIy/2g6jX1oZ5t2FrP7/+rtXjcY93Uhd143Tg5m2NCcnAb2uuyRydGd2G5flOg3mm33Asz2r4hBKKu67DTF1DaJQFr6L4V3fAs8T1+KXX5wP3IvbcXDbcz/PkVbN5d3d3VDZ1FKe9Zq/XORplvoagm1HW1oqbV1DdzEd3uhSnGJPm7+8vVPWNIMpyN/K4hoQKw+D1dy9ad0Hkx3foLvDzPihMbdCjz4NeH5RyLFNDTSGVACIJ9/LglmfwbeVRKp0PEk2KuZEof6HuUDjRR0N+cBv4PG1r+IjqTLcMDcVpwKO8kCBFS82yjtZtwO9UZeJOtsM0lMdx2HFFPejvvxHFFKNDcSHqQuFimqoIq3dYVxeqLkxdDCXD1OdMiTIlw5QMA6JugyzohLytdd0wA+CCqJsCaZPnLB+HXPaneDHVmRyCTlnwBYR1DKgqpOE9xofinwn/mChozipJKq3m6XDLRssmCTXp5m3Se2mqr9STGkv0NFc0qhTfSFGj0iY0Jf+X/2ot6qvUnG9RPd+vQZM9ioqtZukrrcI9UNYXsoX55HyQCYfRHWQ4wu4JMsA5TAvM3EDEgYtFEbgDIgZiBjwSG5niaiHdggKGdGQjIUd0JL3DsOEPs2RlJjKgMvHWAqdEBBpiyNARkU7FELgSko4JTkp1kDAMZMBHonlCRRW6iZgJT7qNGPRR+KRFQFCHD+EZmqdIJ0gXHxMLUROZoj7ChK+btug6VEmRiZFJRIXg1uDSyp1B3ka60KaMZkGUDPMZiLyBX97mcTLhAqQhIE2DnQpQM7HwRSt0OzyE/HApmETo1g2FR8iGunGUo4lDqne91E36gZdd8jyHrzL02b11L9ycj85AOivblrJeHGW/pXH+Jg6HgyhDyItDPOlzHJLKPZ30Gh70SgGrFhiVArNyby1sN4YSNMw4tB+nWSnu+v47ITENDYDkhygcn6TcvU7iYFaNVlOmmhYfemHgB270bzBW0YrABU0zj4hXZeaxHKfsSZz6l+MMTBiN/sPTGByAHkHYxjqjlmURSi0NjYsSUz8yTIfaxCGOTkWAyTxX+B48HBGdMGLDN5ZjMkg/46KMYPvIJBbFBsOWYxtQJpvmtxOK3BGfaN9LhWcXmouHd9lJHE5fSf3fuEk+TOWgAYJjKpQ6jnohlzYiwy1kZO+6E48ulXHoqq6rcQJPWHWg05O4I4gN1IAO94prR12ljOjZRApLGSwlcGltgT8pJw6VEvLaUVcpBearulZoSko1CS6bCTIZ0bA24zfS9kV6H0ZBflE+5IF3XWhKlPyvw0GHTyxotkryQFW2mnMW1rrmacTDwqCByWE8zJR/Vmzd514wgEdVUADiCrL+BR1Qb33eS3nZ71AOxxRcshRXTbX2WlZ1lsaDd9HtFVjCXAdazbKXrcxLg0QYHOpAErjmU5vyg8yFHOJXvxMeCKp7IlcAPLmABnxzmPfjVA64IKTAVTjeKEl5Jka0ClwE1cCwdiTi3MvRAWqj0X9f0gNZKw/5AAZlKJeG2B1Gsv4JK105zBPwo7jzGYLgHGsVXKF8iWEiN0z6rhgJFhCF7pinM6DJ6t7H/jyUwJTUF+JBoiwh4VzZUF64DkqgOul5lc5MDTyH2HsNI8xMeuHkI3HzS+D7XOZdZU0KCgn1YOBGPopk3v5NOLg2zSMuFrgonYd5+eZYVVJ8WkNWRokJbMdrYJ16TRVVQlVQkNciKOwTW7IYW2n3GRrJ6RImhkEYpQYMnx0LotpYvdYJNqhBHIPaOrE19EVNrtTkQmAh4uBM7lRv59zpvqycbMPKyT+DFSqmpuNiivrguF+AZ83Bfgz6kgLrGfTd1egLJ52A6+4WaQwykyfF467YTxFs0CPHMW2HWczGzCKmzSSiGF7bjNmGZTHLMbAYikiAHfGfQWwYVpg6NaxdgxAMQm4i9Ummkl8wSMLAC/LVpFyGcTLPilujY7Cajmg44GngTRAfyAoBoWFpMHV3b9ZIK2c1K13G0CVrgq25DEFWcvah2814LihiKtQ0KF1IaW2cc/808CGFTNuLIzdc4AInygVGxzDIqeHe2cINOnU3mEV0vxm34gOkCCO4CCN0UtejmfVKyI9XQe5tAbn3bCFfkF8fmYF3UQ5jbsBkDnxvFfijP/E2aVeI75J4xWJLT1066nJ/CpaMaBp4L7l0Gbqd1eiS7dAlT4Wuvmxkci84oUKYbIshknwH1vNj//5hZLwQa3+LMOI/lzCCS5RJJYzMjcefUyA/WcUA34IB/mwZYI+fO5fFFr4K7dNtIsvpbiP2fYRtvNcpzzIoFYYSTr8G5dk2UJ49PygfZRK/JgHWUT3fBtXzHePBPmCljwnr26DY912Y6s7r8/SOkPeP16A7P0GcfjY3UVwwT9446K6ZhS1R7XzpEoTq4/mahaAlqp2fzKu2YGVgd9XmF2rFwnOYu+NisXbaCbkxtbrHxZdP0N3RbHfBHDbt7mivhrOgu0G3y1MefeHRzTDOxWmEou8KPdREpUYbaLCgsg0XTB7ADy55b8BrC6Anyzy8t9r8s6K2UrfevRbjimWdey2EViPnkrU4leobBpTrFgg4JnaYru9p8U3CGYpl10nSAsuqby9dc56IXb0P0VXqRpk4L6RkKttWW3FahLZi2jfDan87VvvPiNVFebDKKuRLbFIQwLqDDdPcjFb6DfFarl/9iWu8BtvxGnxDvIpyZpqEORTkCMPGP5TXegz+vB2rn3djtTw5UNBKMH3IWcGSHZCGWjdjDibEtphB9Z0X4J8pq2eK1eMaq9fbsXr9HFldtOr5/+Gsp8vmDeF2tIbPkVZaBl17s+Wnb4k4kTaXjoui7ciLnpA8umWkxftaSXxqFzyrsZhsx2LyjEZBa+Ys3zKJSxZgVvpjsTLw5u1OizDw2ZOvLy010qKPp2uWe5eodnq21wWbWdWu3Ki3dLhaPzp1s1qjmZ2Xm918rzwHolSRTw9yeEdOQajNDMywA1iWg5y974bx0a6ndW5q+A/W7fPWzusUO70z1lSDormaqQc+sPPAJ3LqS3pXfJTTYhHvB7EO91Nh5jzKch70hlEPdX9wkzj76SXEqIO2EkI/IoAL/qpH9XfRql8O9WuzjT21qUPkSHN5/BGpAYNpWDB2t7Ch28yyTVKcjDrCFqW6oWMHxu+6zqobDetBJTOgvq0vdr5C36OP3dT1/vr4ViyaovHX8m70ta1Kui/l9vxBQ94cfP2r/xV9P6Xg5YV7xX//Y8FK6qeDXbhZd9Jhv/u/QSbVmU2kxW9CMvDU7uQnQPInAFgro8ZSXpnjWDADs6hNqe045dkJh+kGBse2bGw5luVsRyyk0yqz/Tb6eIjmKZmk3t2IKFL29ltvc2Pq+xzn3ICO8ucsa/mQeL0PfLkP9weY8iGCcc6nSvPTk4kNo9j8p85mhIgNkyohQMcqTo7Pd+PkeMF26Aah/yGnqPuj5PgQnS+hg5qSDt3cjA2x21Zho4xtHw/bHw/nwhlaw9T5yW5Mna87iL7/qcz+mDo/RCefNqMCRseLqADMSyJQycQqGk7PdqPhdMGpjI2C2DfBw+khOqvx0Kz+yEg8lz9Gf/0/UEsHCMMt92XWCgAAKT8AAFBLAQIUABQACAgIAGu1XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAa7VcQ8Mt92XWCgAAKT8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABuCwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />


<br> <br>
<math> y(t_{max})= v_{0} \cdot sin(\alpha) \frac{v_{0} \cdot sin(\alpha)}{g} - \frac{1}{2} \cdot g \frac{v_{0}^2 \cdot sin(\alpha)^2}{g^2} </math>


{{untersuchen|}} Vergleichen Sie die beiden Applets und untersuchen Sie die Veränderungen.
<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{g} - \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>
}}
 
<br /><br />
<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>
{{Aufgaben-M|19|
 
Bearbeiten Sie nun folgende Aufgaben:
Einsetzen von <math> \alpha_{max}=45^\circ </math>
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue1.htm Übung1]
 
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue2.htm Übung 2]
<math> y(t_{max})= \frac{v_{0}^2}{4g} </math>
}}
 
<br>
Zuletzt noch die Überprüfun der 2. Ableitung:


<math> y''(t_{max})= -g < 0 </math>


Somit handelt es sich um ein Maximum und wir haben die Flughöhe für beliebige Anfangsgeschwindigkeiten bestimmt.


{{Aufgaben-M|8|
''Rohfassung'' Betrachte noch einmal die beiden Einstiegsaufgaben:
* Was waren die Problemstellungen?
* Was waren die ersten Lösungsansätze?
* Wie sieht die mathematische Lösung aus?
}}
}}


== Ableitungsfunktion ==
Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!
 






[http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/07_ableitung.htm Ableitungsfunktion]
{{mitgewirkt|
''Applet als Link übernehmen?Passt doch eigentlich so.''
* [[Benutzer:Joerg Stadlinger|Jörg Stadlinger]]
* [[Benutzer:MatThe|Matthias Then]]
* [[Benutzer:Hofmeier|Mareike Hofmeier]]}}


Kontext plus Übung


''Diagnoseinstrument''
[[Kategorie:Extremwerte]]
[[Bild:Beispiel.jpg]]

Version vom 6. Februar 2009, 14:26 Uhr

Vorlage:Lernpfad-M

Vorlage:Kurzinfo-1


Extremwertaufgaben in der Anwendung

Einführung

Willkommen zum Lernpfad "Anwendungsbezogene Extremwertaufgaben". Hier findet ihr Aufgaben, in denen die Bestimmung von Extremwerten anhand von Beispielen aus dem Alltag eingeübt und vertieft werden kann.


Kurz zur Wiederholung:

Ein Extremwert ist der größte bzw. kleinste Wert einer Funktion (in einem gewissen Bereich). Hier findest du noch die formale mathematische Definition: Definition Extremwerte. Um diesen Wert zu finden, ist es sinnvoll die Ableitung der Funktion näher zu betrachten. Diese beschreibt nämlich anschaulich die Steigung einer angelegten Tangente an der ursprünglichen Funktion. Bei einem Extremwert, ist diese Tangente waagrecht, d.h. die Ableitungsfunktion an dieser Stelle ist Null.


Diesen Sachverhalt kannst du dir nochmal in folgender Skizze näher anschauen:

GeoGebra


Du siehst hier die Funktion , an der du die Werte a, b, c und d verändern kannst. Wie du siehst, gibt es an bestimmten Stellen maximale und minimale Werte. Betrachte nun folgende Aspekte:


  • Welchen Einfluss haben die Parameter a, b, c und d auf die Funktion? Wo liegen die Unterschiede?
  • Wo befinden sich die Maxima und Minima der Funktion
  • Blende die Ableitungsfunktion ein. Welchen Zusammenhang siehst du? Wie ändert sich die Ableitung mit der Veränderung von a, b, c und d? Was erkennst du bei der Änderung von d?
  • Um den Zusammenhang deutlicher zu sehen, klicke auf das Kontrollkästchen Extremwerte


Wozu überhaupt Extremwerte?

Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. Im folgenden soll dies an drei Beispielen verdeutlicht werden. Als erstes wollen wir untersuchen, auf welchem Weg ein Ziel am schnellsten erreicht werden kann (dies ist nicht immer der direkteste Weg). Danach schauen wir uns an, wie man eine größtmögliche Schachtel aus vorgegebenen Karton basteln kann. Als letztes soll untersucht werden, in welchem Winkel man einen Ball werfen muss, um damit eine maximale Wurfweite zu erzielen.

Dies ist ein Ausschnitt aus einem breiten Anwendungsbereich von Extremwertaufgaben bzw. der Differentialrechnung. Denn auch in der Natur werden meist Zustände angenommen, die minimale Energie benötigen und somit über Extremwertbestimmungen ermittelt werden könne.

Nun aber zu unseren Aufgaben...


Beispiele für anwendungsbezogene Extremwertaufgaben (mit Lösungsanleitung)

Extremwertaufgabe mit Nebenbedingung: Der schnellste Weg

Aufgabe


AckerStraße2.jpg
Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage

(a.) 1000m

(b.) 100m.

Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?
                            Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!


Ansonsten löse die Aufgabe in folgenden Schritten:


1. Stelle die Aufgabensituation in einer Skizze dar (Teilaufgabe a)):

Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.

Vorlage:Lösung versteckt mit Rand

2. Zielfunktion für Teilaufgabe a) :

Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.

Vorlage:Lösung versteckt mit Rand


3. Nebenbedingung in Zielfunktion für Teilaufgabe a):

Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.

Vorlage:Lösung versteckt mit Rand


4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):

Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.

Vorlage:Lösung versteckt mit Rand

Bastelstunde: Falten einer Schachtel

Aufgabe

Von einem rechteckigen Karton mit Seitenlängen a und b (mit b a) schneidet man an den Ecken Quadrate der Seitenlänge x aus, so dass man damit eine oben offene Schachtel falten kann. Die Schachtel besteht dabei aus der Grundfläche G und den Seitenflächen S1 bis S4.


a.) Berechne x in Abhängigkeit von a und b für den Fall, dass das Schachtelvolumen möglichst groß ist.
b.) Was ergibt sich im Sonderfall a b?
c.) Wie groß ist das maximale Volumen für a 21 und b 16?
           Schreibe deine Gedanken, den Rechenweg und deine Ergebnisse auf einem Blatt Papier nieder. 
      Falls du an einer Stelle nicht weiterkommst, oder du zum Schluss die Lösungen vergleichen möchtest, 
                                 kannst du folgende Hinweise zu Hilfe nehmen:


Fertige zuerst eine Skizze der Aufgabenstellung an, in welche die gegebenen und gesuchten Variablen eingezeichnet werden. Dadurch sind die Zusammenhänge leichter ersichtlich.

Vorlage:Lösung versteckt mit Rand


Lösungsweg zu Teilaufgabe a.)

Nun gilt es, mit Hilfe der Variablen in der Skizze die Formel für das Schachtel-Volumen aufzustellen. Weißt du noch, wie man das Volumen eines Quaders berechnet?

Vorlage:Lösung versteckt mit Rand

Jetzt bilden wir die erste Ableitung der Volumenformel V(x) und setzen diese gleich Null, um "Kandidaten" für Extrempunkte zu bekommen.

Vorlage:Lösung versteckt mit Rand

Für welchen unserer Extremstellen-"Kandidaten" das Schachtelvolumen maximal wird, sehen wir nun durch sukzessives Einsetzen der erhaltenen Punkte in die zweite Ableitung der Volumenformel V(x).

Vorlage:Lösung versteckt mit Rand

Lösungsweg zu Teilaufgabe b.)

Für den Sonderfall ersetzen wir also nun die Variable b durch die Variable a, was bedeutet, dass unser Karton jetzt quadratisch ist. Dadurch erhalten wir sofort zwei neue Lösungen für die Seitenlänge x der herauszuschneidenden Quadrate.

Vorlage:Lösung versteckt mit Rand

Lösungsweg zu Teilaufgabe c.)

Zum Schluß haben wir noch zwei konkrete Werte für unsere Kartonseitenlängen gegeben, nämlich und . Wie groß ist hierfür das maximale Volumen ?

Vorlage:Lösung versteckt mit Rand

Der schräge Wurf

Aufgabe
Nun wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht.

1. Skizze:

Als erstes solltest du eine Skizze von einem Wurf nach schräg oben anfertigen. Wo befindet sich dabei der entscheidende Winkel ? Was sind die entscheidenden Größen?


Falls du nicht weiterkommst, findest du hier die Skizze des Wurfes:

Skizze:

GeoGebra


Als feste Größe ist die Abwurfgeschwindigkeit anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel .

Entscheidend ist nun die Zerlegung der Bewegung in eine x- und eine y-Komponente. Versuche zunächst, die Geschwindigkeit an Hand der Skizze in diese Komponenten zu zerlegen.

Vorlage:Lösung versteckt mit Rand

2. Physikalische Formeln

Wir wollen allerdings die Flugweite und Flughöhe, nicht die jeweiligen Geschwindigkeiten betrachten. Erinnerst du dich, wie die Ortskomponenten in der Physik mit den Geschwindigkeitskomponenten zusammenhängen? Schreibe die entsprechenden Gleichungen auf!

Vorlage:Lösung versteckt mit Rand


3. Nebenbedingung formulieren

Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels . Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.

Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.

Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:

Vorlage:Lösung versteckt mit Rand

4. Nebenbedingung einsetzen und Funktion aufstellen

Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch die für die Aufgabe wesentlichen Größen ausdrücken und in die Zielfunktion einsetzen.

Vorlage:Lösung versteckt mit Rand

5. Bestimmung des Extremwerts (maximale Wurfweite)

Du hast nun eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von .

Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von abhängt, musst du jetzt natürlich nach ableiten. Versuche, die Nullstelle zu bestimmen.

Vorlage:Lösung versteckt mit Rand

6. Untersuchung der Flughöhe

Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.

Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei , also den Wurf senkrecht nach oben, sein Maximum haben wird. Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.

Vorlage:Lösung versteckt mit Rand

Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!



Vorlage:Mitgewirkt Datei:Beispiel.jpg