Integralrechnung und Integralrechnung/Stammfunktion: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>Nic3381
Keine Bearbeitungszusammenfassung
 
Main>Dickesen
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
==kleine Einführung in die Integralrechnung==
==Stammfunktion==
{{Lernpfad-M|{{Kurzinfo-1|M-digital}}Der folgende Lernpfad soll eine kleine Einführung in die Integralrechnung mit den wichtigsten Grundlagen sowohl für Grund- als auch Leistungskurse der Jahrgangsstufe 12 im Fach Mathematik gegeben. <br><br>
{{Kastendesign1|
 
BORDER = #97BF87|
Der Lernpfad wurde im Rahmen der der zweiten Staatsprüfung für das Lehramt an Gymnasien und Gesamtschulen von Nicole Streil (Benutzername: Nic3381) mit Unterstützung von D.Jacobs (Benutzername:Dickesen) erstellt und im Unterricht der Jahrgangsstufe 12 eingesetzt.}}
BACKGROUND = #AADDAA|
BREITE =100%|
INHALT=
Man nennt eine Funktion <math>F(x)</math> eine '''Stammfunktion''' der Funktion <math>f(x)</math> oder
das '''unbestimmte Integral''' von <math>f(x)</math>, wenn gilt:
<div align="center">
<math>F\ '(x) = f(x)</math>
</div>
Das heißt, die Ableitung der Stammfunktion oder des unbestimmten Integrals <math>F(x)</math> ist die Funktion <math>f(x)</math>. Somit stellt das Auffinden einer Stammfunktion die Umkehrung zur Bestimmung der Ableitung einer Funktion dar und es gilt:
<div align="center">
<math>F\ (x) = \int f(x)\ \mathrm{d}x</math>
</div>
Die Integration ist die Umkehrung der Differentiation, d.h. man hat eine Funktion <math>f(x)</math> gegeben und sucht eine Funktion <math>F(x)</math>, deren Ableitung die gegebene Funktion ist.
|
BILD=Nuvola_Icon_Kate.png|
ÜBERSCHRIFT=Definition|
}}
<br>
===Beispiel===
Gesucht ist eine Stammfunktion <math>F(x)</math> zu der Funktion <math>f(x) = x^2</math>. <br>
Wir wissen, dass die Ableitung der gesuchten Funktion unsere Ausgangsfunktion sein muss. Wir wissen weiter, dass bei der Ableitung einer Potenzfunktion der Exponent als Faktor vor die Ableitung geschrieben und danach um 1 erniedrigt wird. Also gilt <br>
<math>F(x) = \frac{1}{3} \ x^3</math>, denn <math>F \ '(x) = x^2</math> und das wollten wir ja haben!
<br><br>
<br><br>
<br><br>
{{Aufgaben-M|9|
{{Kasten_blau|Du kannst Dir jederzeit die Lösungen der Aufgaben zeigen lassen die Du gerade bearbeitest, obwohl ich selbstverständlich '''{{Schrift_grün|erst nach eigenständiger Bearbeitung}}''' dazu rate! <br>
# Es gibt zu einer gegebenen Funktion <math>f(x)</math> immer unendlich viele Stammfunktionen der Form <math>F(x) + c</math> mit einer reellen Zahl <math>c</math>. Begründe diesen Satz mit Deinem mathematischen Wissen!
Zusätzlich enthalten einige Aufgaben Tipps zur Lösung. Du kannst sie benutzen, falls Du an einem Punkt nicht weiterkommst. <br>
# Bestimme eine Stammfunktion <math>F(x)</math> zu <math>f(x)= x^3</math>. Mache auf jeden Fall die Probe <math>F \ ' (x) = f(x)</math>.
Alle Aufgaben sollen im Heft schriftlich mit Angabe des Lernpfades (www-Adresse und Überschrift!) bearbeiten werden. Alle Definitionen, Ideen, etc. ebenfalls schriftlich ins Heft übernehmen!}}
}}
<br><br>
<br>
So, jetzt kann es endlich losgehen. <br> <br>
{{Aufgaben-M|1|
Eine Rangierlok wurde am Abend von Schaffner Paulsen am mittleren von drei Signale abgestellt. Dieses Signal steht mittig auf dem Rangierbahnhof "Hasenweide". Am folgenden Tag soll Lokführer Knutsen die Funktionstüchtigkeit der Lok überprüfen, indem er ein paar Rangierübungen abfährt.<br><br>
In folgender Tabelle sind die Geschwindigkeiten und die jeweiligen Zeiten angegeben.
}} <br>
'''Die Lok startet zur Zeit t = 0 am Mittleren Signal.''' <br> <br>
 
 
{| class="wikitable "
|+ Tabelle Rangierübung
|- style="background: #DDFFDD;"
! Zeit t[s]
! Geschwindigkeit v[m/s]
|-
| 0
| 0
|-
| 4
| 10
|-
| 7
| 0
|-
| 9
| 0
|-
| 12
| -6
|-
| 14
| -7
|-
| 16
| -6
|-
| 18
| 0
|-
| 20
| 0
|-
| 22
| 5
|-
| 24
| 5
|-
| 26
| 0
|-
| 28
| -3
|-
| 30
| 0
|}
 
<br>
Bearbeite die folgenden Aufgaben und begründe Deine Antwort: <br> <br>
a) '''Skizziere den Graphen der Geschwindigkeits-Zeit-Funktion der Rangierlok!'''<br>
{{Lösung versteckt|[[Datei:Nic3381_Rangierlok3.JPG|500px]]}}<br><br>
b) '''In welchen Zeitabschnitten bewegt sich die Lok vorwärts  bzw. rückwärts?''' <br>
{{Lösung versteckt|{{Lösung|Bewegung vorwärts wenn der Graph oberhalb der x-Achse liegt für &nbsp;
<math>0 \leq t \leq 7</math> &nbsp; und &nbsp; <math>20 \leq t \leq 25.</math> <br> <br>
Bewegung rückwärts wenn der Graph unterhalb der x-Achse liegt für &nbsp;
<math>9 \leq t \leq 18</math> &nbsp; und &nbsp; <math>26 \leq t \leq 30.</math>
}}}}<br><br>
c)''' Wann hat die Lok die größte Geschwindigkeitvorwärts bzw. rückwärts erreicht?''' <br>
{{Lösung versteckt|{{Lösung|Größte Geschwindigkeit vorwärts am Hochpunkt des Graphen für <math>t = 4.</math> <br>
Größte Geschwindigkeit rückwärts am Tiefpunkt des Graphen für <math>t = 14.</math>
}}}}<br><br>
d) '''Wann wird die Lok schneller, wann wird sie langsamer?''' <br>
{{Lösung versteckt|{{Lösung|
Bewegung '''vorwärts''': <br>
Lok wird schneller bei positiver Steigung des Graphen: <math>0 \leq t \leq 4 \ ; \ 20 \leq t \leq 22</math> <br>
Lok wird langsamer bei negativer Steigung des Graphen: <math>4 \leq t \leq 7 \ ; \ 22 \leq t \leq 25</math>
<br><br>
Bewegung '''rückwärts''': <br>
Lok wird schneller bei negativer Steigung des Graphen: <math>9 \leq t \leq 14 \ ; \ 26 \leq t \leq 28</math> <br>
Lok wird langsamer bei positiver Steigung des Graphen: <math>14 \leq t \leq 18 \ ; \ 28 \leq t \leq 30</math>
}}}}<br><br>
e)''' Gib eine Schätzung für die Breite des Rangierbahnhofes an unter der Voraussetzung, dass die Lok zum  Zeitpunkt t = 7 das Endsignal und somit die Grundstücksgrenze erreicht hat.''' <br>
{{Lösung versteckt|{{Lösung|
{{Lösung versteckt|{{Lösung|
Strecke vom mittleren Signal bis zu den beiden Rändern jeweils ca. 35m. <br>
# Es gibt immer unendlich viele Stammfunktionen der Form <math>F(x) + c</math> einer gegebenen Funktion <math>f(x)</math>, da die Ableitung einer solchen Stammfunktion immer wieder <math>f(x)</math> ergibt. Konstanten werden ja zu null abgeleitet.
Somit ergibt sich eine Grundstücksbreite von ca. 70m.
# Es ist z.B. <math>F(x) = \frac{1}{4} \ x^4</math>, i.A. aber <math>F(x)=\frac{1}{4} \ x^4 + c</math>
}}}}
}}}}
f)''' Im letzten Aufgabenteil hast Du ausgehend von der von der Lok zurückgelegten Strecke die Bahnhofsbreite geschätzt. Woran kann man die zurückgelegte Strecke in obigem Diagramm erkennen?''' <br>
<br>
{{Lösung versteckt|{{Lösung|
Im Applet unten wird Dir ein grafisches Beispiel einer Funktion <math>f(x)</math> und zweier Stammfunktionen <math>F(x)</math> und <math>G(x) = F(x) + c</math> gezeigt. <br>
Die zurückgelegte Strecke zeigt sich im Diagramm als Fläche zwischen dem Graphen und der x-Achse. <br> Dabei ist die zurückgelegte Strecke vorwärts die Fläche zwischen dem Graphen und der x-Achse ''oberhalb'' der x-Achse und die zurückgelegte Strecke rückwärts ist die Fläche zwischen dem Graphen und der x-Achse ''unterhalb'' der x-Achse!
Verschiebe dabei zuerst die Funktion <math>f(x)</math> mit der Maus in alle möglichen Richtungen und beobachte, wie sich die Stammfunktionen verändern. <br>
}}}}<br><br>
Verschiebe in einem zweiten Schritt die Konstante <math>c</math> auf der y-Achse und abwechselnd die Ausgangsfunktion. Beobachte die Veränderung.
g) '''Befindet sich die Lok nach 30 Sekunden vor oder hinter dem mittleren Signal?''' <br>
<br>
{{Lösung versteckt|{{Lösung|
<br>
Da der Flächeninhalt zwischen dem Graphen und der x-Achse ''oberhalb'' der x-Achse etwas größer ist als derjenige ''unterhalb'' der x-Achse, befindet sich die Lok vor dem mittleren Signal.
<br>
}}}}
<div align="center">
<br><br><br>
<ggb_applet height="380" width="440" useLocalJar="true" showResetIcon="true" filename="stammfkt_daniel.ggb" />
</div>
<br>
Applet auf geogebra.org: [https://www.geogebra.org/m/dxttP6y9 Link]
<br>
<br>
===Verfeinertes Beispiel von oben===
Wir haben jetzt gesehen, dass es unendlich viele Stammfunktionen zu einer gegebenen Funktion gibt, da die addierte Konstante bei der Ableitung wieder verschwindet. Also müssen wir das Ergebnis des Beispiels von oben etwas erweitern. <br>
Im Allgemeinen gilt dann für <math>f(x)=x^2</math>: <br>
<math>F(x)=\frac{1}{3} \ x^3+c</math>
<br><br><br>
<br><br><br>
<div align="center">
<div align="center">
[[Benutzer:Nic3381|Home]] &nbsp; &nbsp; [[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung2|>>Weiter>>]]
[[../Bestimmung der Flächeninhaltsfunktion|<<Zurück<<]] &nbsp; &nbsp; [[../Aufgaben|>>Weiter>>]]
</div>
</div>
<br>
<br>
{{Kastendesign1|
{{Navigation Lernpfad Integral}}
BORDER = cornflowerblue|
BACKGROUND = cornflowerblue|
BREITE =100%|
INHALT=
[[Benutzer:Nic3381|Home]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung2|Eine kleine Einführung in die Integralrechnung 1]] &nbsp; &#124;  &nbsp;[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung3|eine kleine Einführung in die Integralrechnung 2]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung4|Eine kleine Einführung in die Integralrechnung 3]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung5|Bestimmtes Integral]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung6|Flächeninhaltsfunktion]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung6a|Bestimmung der Flächeninhaltsfunktion]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung7|Stammfunktion]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung8|Aufgaben]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung9|Hauptsatz]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung10|Integrationsregeln]] &nbsp; &#124; &nbsp;
[[Benutzer:Nic3381/eine kleine Einführung in die Integralrechnung11|Aufgaben II]]
|
BILD=Erioll_world.png‎|24px|
ÜBERSCHRIFT=<div align="center">Navigation</div>|
}}
 
[[Kategorie:eine kleine Einführung in die Integralrechnung]]

Version vom 8. November 2016, 16:41 Uhr

Stammfunktion

Vorlage:Kastendesign1

Beispiel

Gesucht ist eine Stammfunktion zu der Funktion .
Wir wissen, dass die Ableitung der gesuchten Funktion unsere Ausgangsfunktion sein muss. Wir wissen weiter, dass bei der Ableitung einer Potenzfunktion der Exponent als Faktor vor die Ableitung geschrieben und danach um 1 erniedrigt wird. Also gilt
, denn und das wollten wir ja haben!

Vorlage:Aufgaben-M


Im Applet unten wird Dir ein grafisches Beispiel einer Funktion und zweier Stammfunktionen und gezeigt.
Verschiebe dabei zuerst die Funktion mit der Maus in alle möglichen Richtungen und beobachte, wie sich die Stammfunktionen verändern.
Verschiebe in einem zweiten Schritt die Konstante auf der y-Achse und abwechselnd die Ausgangsfunktion. Beobachte die Veränderung.


GeoGebra


Applet auf geogebra.org: Link

Verfeinertes Beispiel von oben

Wir haben jetzt gesehen, dass es unendlich viele Stammfunktionen zu einer gegebenen Funktion gibt, da die addierte Konstante bei der Ableitung wieder verschwindet. Also müssen wir das Ergebnis des Beispiels von oben etwas erweitern.
Im Allgemeinen gilt dann für :




Vorlage:Navigation Lernpfad Integral