Integralrechnung/Vorüberlegungen und Integralrechnung/Ober- und Untersumme: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Integralrechnung(Unterschied zwischen Seiten)
K (69 Versionen importiert)
 
Main>Dickesen
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
==Vorüberlegungen: Vom Speziellen zum Allgemeinen==
An dieser Stelle erscheint nun eine Zusammenfassung des bisher Gelernten sinnvoll: <br>
{{blau|Auf der ersten Seite hast Du gelernt, dass der zurückgelegte Weg in einem Diagramm, in dem die Geschwindigkeit gegen die Zeit aufgetragen ist, gleich dem Flächeninhalt zwischen dem Graphen und der x-Achse ist.}}
{{Merke-M|
<br><br>
# In einem Geschwindigkeits-Zeit-Diagramm ist die während eines bestimmten Zeitintervalls zurückgelegte Strecke gleich dem Flächeninhalt innerhalb dieses Zeitintervalls, der zwischen dem Graphen der Funktion und der x-Achse liegt.
{{Frage|Aber wie kann man diesen Flächeninhalt denn nun genau bestimmen bzw. berechnen?}}
# Bei einer konstanten Funktion (z.B. konstante Geschwindigkeit) entspricht der Flächeninhalt (zurückgelegter Weg) unter dem Graphen in einem beliebigen Intervall (Anfangs- und Endzeitpunkt) einfach dem Produkt aus der Intervalllänge (Zeitdauer) und dem konstanten Funktionswert (Geschwindigkeit).
<br>
# Bei einer allgemeinen (auch nicht-konstanten) linearen Funktion entspricht der Flächeninhalt unter dem Graphen dem Mittelwert aus oberer und unterer Rechteckfläche. Dies gilt insbesondere auch für die konstante Funktion!
<div align="center">
# Im Allgemeinen kann der Flächeninhalt unter dem Graphen einer beliebigen Funktion durch viele schmale Rechtecke in der Ober- und Untersumme angenähert werden. Dabei stellt wieder die Trapezsumme eine Verbesserung der Näherung dar.
Dies ist die zentrale Frage des vorliegenden Lernpfades!
}}
</div>
<br>
<br>
Um einer Lösung näher zu kommen, fangen wir mit einfachen und sehr speziellen Graphen von Funktionen an und arbeiten uns ausgehend davon immer weiter hin zu schwierigeren und allgemeineren Graphen von Funktionen vor, damit wir am Ende eine Lösung für alle Eventualitäten in Händen halten!
Wir haben bis jetzt schon eine grundlegende Idee der Flächenbestimmung unter den Graphen von Funktionen kennengelernt. Jedoch ergibt dieses Verfahren bis jetzt nur einen Näherungswert für den Flächeninhalt. <br>
<br>
{{Kasten_blau|
{{Aufgaben-M|2|
Im Folgenden wird das Verfahren verbessert, der Flächeninhalt exakt bestimmt sowie das theoretische und praktische Fundament eines der in der gesamten Mathematik wichtigsten Verfahren verfestigt werden! <br>
Bestimme die Flächeninhalte zwischen den Graphen und der x-Achse innerhalb der angegebenen Grenzen in nachfolgenden Diagrammen. <br>
Dazu wird immer wieder auf den Funktionsumfang der freien Software Geogebra zurückgegriffen werden.
Beschreibe dabei immer Deine Vorgehensweise!
}}
}}
<br>
<br>
a) Konstante Funktion: &nbsp; <math>f(x)=5</math> &nbsp; in den Grenzen <math>x_1=2</math> und <math>x_2=6</math>
{{Aufgaben-M|3|
<br><br>
Mit Hilfe des folgenden interaktiven Java-Applets basierend auf Geogebra sollst Du einige wichtige Zusammenhänge nachvollziehen. <br>
[[Bild:const_fkt.png|zentriert|500px]]
Gezeigt ist der Graph der Funktion <math>f(x) = \frac{1}{100} \cdot x^3 + \frac{1}{50} \cdot x^2 - \frac{7}{10} \cdot x + 5</math> mit den Rechteckflächen der Ober- und Untersumme in einem Intervall [a;b].
<br>
{{Lösung versteckt|{{Lösung|Flächeninhalt: <math>A = 20.</math> <br>
Die Fläche ist rechteckig, also berechnet sich der Flächeninhalt nach der Formel <math>A = </math>  Breite <math>\cdot</math> Höhe. <br>
Die Breite ist dabei durch die Grenzen <math>x_1</math> und <math>x_2</math> festgelegt, misst also
<math>x_2 - x_1 = 6 - 2 = 4.</math> <br>
Die Höhe ist durch den (konstanten) Funktionswert <math>f(x)=5</math> festgelegt. <br>
Also: <math>A=4 \cdot 5 = 20.</math>
}}}}
<br>
b) Lineare, nicht-konstante Funktion: &nbsp; <math>f(x)= 0,5 x + 1</math> &nbsp; in den Grenzen <math>x_1=2</math> und <math>x_2=6</math>
<br><br>
[[Bild:lin_fkt.png|zentriert|500px]]
<br>
{{Lösung versteckt|{{Lösung|Flächeninhalt: <math>A = 12.</math> <br>
Die Fläche lässt sich aufteilen in einen rechteckigen Teil ( Höhe <math> = y_1 = 2,</math> Breite <math> = x_2-x_1 = 4</math> ) mit <math>A=8</math> <br>
und einen dreieckigen Teil ( Höhe <math> = y_2-y_1 = 2,</math> Grundseite <math> = x_2-x_1 = 4</math> ) mit <math>A=4</math>. <br>
Also: <math>A = A_{\mathrm{Rechteck}} + A_{\mathrm{Dreieck}} = 8 + 4 = 12.</math>
<br>
{{Merke-M|
Allgemein berechnet sich eine solche aus Rechteck- und Dreieckfläche zusammengesetzte Fläche natürlich nach der Formel <math>A = a \cdot b + \frac{1}{2} \cdot h \cdot b</math>, wenn <math>a</math> die Höhe des Rechtecks, <math>h</math> die Höhe des Dreiecks und <math>b</math> die Breite des Dreiecks bzw. Rechtecks sind. <br>
Diese Summe aus den beiden Einzelflächen kann nun interpretiert werden als der Mittelwert der  unteren Rechteckfläche (Rechteck ABCD) und der oberen Rechteckfläche (Rechteck BCEF)! <br>
Seine Fläche entspricht dem Rechteck BCGH.
[[Bild:Flaeche_mittelwert.png|zentriert|350px]]
}}
}}
}}}}
<br>
c) Ausgehend von den Aufgabenteilen a) und b) sollst Du hier nur eine Möglichkeit beschreiben, wie man die markierte Fläche zumindest näherungsweise bestimmen könnte. Dazu soll eine
Funktion dritten Grades als Beispiel für eine Funktion im Allgemeinen dienen: <math>f(x) = \frac{1}{100} \cdot x^3 + \frac{1}{50} \cdot x^2 - \frac{7}{10} \cdot x + 5</math> &nbsp; in den Grenzen -8 und 10.<br>
<br><br>
<br><br>
[[Bild:flaeche_allgemein.png|zentriert|500px]]
<center><ggb_applet height="500" width="800" showMenuBar="false" showResetIcon="true" filename="Integral1.ggb" /></center>
<br>
{{Lösung versteckt|{{Lösung|Man könnte die Fläche unter dem Graphen von <math>f</math> in viele schmale Trapeze aufteilen, deren Fläche berechnen und die gesuchte Fläche durch die Summe der Trapezflächen (''Trapezsumme'') annähern.
<br>
<br>
Das Ganze sähe dann mit <math>n = 6</math> gleich breiten Trapezstreifen folgendermaßen aus: <br>
# Verschiebe abwechselnd die Intervallgrenzen a und b (blaue Punkte auf der x-Achse) mit der Maus nach rechts und links. Beschreibe wie die Rechteckflächen der Ober- und Untersumme auf die Verschiebung der Intervallgrenzen reagieren. Was geschieht mit den Werten O, U, M und der Differenz?
[[Bild:flaeche_allgemein_summen.png|zentriert|350px]]
# Variiere jetzt die Anzahl <math>n</math> der Rechtecke durch Betätigung des Schiebereglers. Was passiert nun mit den Werten O, U, M und der Differenz? Wie und warum wird durch die Variation von <math>n</math> die Fläche unter der Kurve durch die Rechteckflächen besser oder schlechter beschrieben?
{{Merke-M|
# Gelten die Ergebnisse von 1. und 2. auch für andere (beliebige) Intervalle [a, b]? Überprüfe dies durch Verändern der Intervallgrenzen sowie der Anzahl <math>n</math> der Rechtecke.
Mathematisch sehr viel einfacher zu handhaben sind jedoch Rechteckflächen. Man unterscheidet ''Obersumme'' und ''Untersumme''. Die gesuchte Fläche liegt dann zwischen Ober- und Untersumme.
# Wie groß müsste <math>n</math> sein, damit kein Unterschied zwischen O, U und der Fläche unter dem Graphen von <math>f</math> mehr zu erwarten wäre?
<br>
[[Bild:flaeche_summen.png|zentriert|350px]]
}}
}}}}
<br><br><br>
<br><br><br>
<div align="center">
<div align="center">
[[../|<<Zurück<<]] &nbsp; &nbsp; [[../Ober- und Untersumme|>>Weiter>>]]
[[Benutzer:Dickesen/Integral2|<<Zurück<<]] &nbsp; &nbsp; [[Benutzer:Dickesen|Home]] &nbsp; &nbsp; [[Benutzer:Dickesen/Integral4|>>Weiter>>]]
</div>
</div>
<br>
{{Navigation Lernpfad Integral}}

Version vom 18. Oktober 2009, 13:30 Uhr

An dieser Stelle erscheint nun eine Zusammenfassung des bisher Gelernten sinnvoll:

Merke
  1. In einem Geschwindigkeits-Zeit-Diagramm ist die während eines bestimmten Zeitintervalls zurückgelegte Strecke gleich dem Flächeninhalt innerhalb dieses Zeitintervalls, der zwischen dem Graphen der Funktion und der x-Achse liegt.
  2. Bei einer konstanten Funktion (z.B. konstante Geschwindigkeit) entspricht der Flächeninhalt (zurückgelegter Weg) unter dem Graphen in einem beliebigen Intervall (Anfangs- und Endzeitpunkt) einfach dem Produkt aus der Intervalllänge (Zeitdauer) und dem konstanten Funktionswert (Geschwindigkeit).
  3. Bei einer allgemeinen (auch nicht-konstanten) linearen Funktion entspricht der Flächeninhalt unter dem Graphen dem Mittelwert aus oberer und unterer Rechteckfläche. Dies gilt insbesondere auch für die konstante Funktion!
  4. Im Allgemeinen kann der Flächeninhalt unter dem Graphen einer beliebigen Funktion durch viele schmale Rechtecke in der Ober- und Untersumme angenähert werden. Dabei stellt wieder die Trapezsumme eine Verbesserung der Näherung dar.


Wir haben bis jetzt schon eine grundlegende Idee der Flächenbestimmung unter den Graphen von Funktionen kennengelernt. Jedoch ergibt dieses Verfahren bis jetzt nur einen Näherungswert für den Flächeninhalt.
Vorlage:Kasten blau
Vorlage:Aufgaben-M

GeoGebra


  1. Verschiebe abwechselnd die Intervallgrenzen a und b (blaue Punkte auf der x-Achse) mit der Maus nach rechts und links. Beschreibe wie die Rechteckflächen der Ober- und Untersumme auf die Verschiebung der Intervallgrenzen reagieren. Was geschieht mit den Werten O, U, M und der Differenz?
  2. Variiere jetzt die Anzahl der Rechtecke durch Betätigung des Schiebereglers. Was passiert nun mit den Werten O, U, M und der Differenz? Wie und warum wird durch die Variation von die Fläche unter der Kurve durch die Rechteckflächen besser oder schlechter beschrieben?
  3. Gelten die Ergebnisse von 1. und 2. auch für andere (beliebige) Intervalle [a, b]? Überprüfe dies durch Verändern der Intervallgrenzen sowie der Anzahl der Rechtecke.
  4. Wie groß müsste sein, damit kein Unterschied zwischen O, U und der Fläche unter dem Graphen von mehr zu erwarten wäre?