Planimetrie

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche

Lernvideos für den Einsatz im Mathematikunterricht von Frank Schumann (Benutzer:FSchumannCOM)
Die Videos unterliegen der Standard-YouTube-Lizenz, die GeoGebra-Dateien der CC BY-SA 3.0.

Inhaltsverzeichnis

Messen von Winkeln zwischen 0° und 180° mit dem Geodreieck

Es wird gezeigt, wie man mit Hilfe des Geodreiecks Winkel zwischen 0° und 180° messen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.

Winkelarten und Winkelweiten

Zuerst werden die Winkelarten vorgstellt und dann wird gezeigt, wie man verschiedene Winkelweiten von 0° bis 360° mit Hilfe des Geodreiecks messen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.

Ortslinien

Im Lernvideo werden die Eigenschaften der Ortslinien: Kreis, Mittelsenkrechte, Parallele, Mittelparallele und Winkelhalbierende verbal beschrieben und geometrisch in GeoGebra durch Punktspuren illustriert. Am Ende des Lernvideos wird eine Anwendungsaufgabe formuliert, bei der der Mittelpunkt eines Kreisbogens bestimmt werden soll. Die Lösung zu dieser Aufgabe findet man in einer GeoGebra-Datei.
Zusatzmaterial:

Grundkonstruktionen mit Zirkel und Lineal

Im Lernvideo werden die Grundkonstruktionen: Mittelsenkrechte, Lot fällen, Senkrechte errichten und Winkelhalbierende geometrisch und verbal beschrieben. Die Abläufe der Zirkel-Lineal-Konstruktionen werden schrittweise in GeoGebra animiert. Am Ende des Lernvideos erhalten die Schülerinnen und Schüler wertvolle Tipps für eine gute Konstruktionsbeschreibung.
Zusatzmaterial:

Konstruieren vs. Zeichnen

Im Lernvideo wird diskutiert, wann ein Bild aus einer Zeichnung (Verbinden von gezeichneten Punkten) oder aus einer echten Konstruktion hervorgeht. Die Entstehungsgeschichte von zwei Quadraten wird in GeoGebra ergründet. Dabei zeigt sich, dass das Konstruktionsprotokoll den Nachweis über die einzelnen Konstruktionsschritte liefern kann. Das Lernvideo schließt mit einem Merksatz ab.
Zusatzmaterial:

Konstruktion: Dreieck

Im Lernvideo wird das Konstruieren (Zirkel, Lineal und Geodreieck) eines Dreiecks vorgestellt. Die Lösung führt zu zwei nicht deckungsgleichen Dreiecken. Schwerpunkt des Lernvideos ist die Entwicklung der Lösung mittels einer Analyse von Schnittmengen aus Ortslinien. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
Zusatzmaterial:

Konstruktion: gleichschenkliges Dreieck

Im Lernvideo wird das Konstruieren (Zirkel und Lineal) eines gleichschenkligen Dreiecks vorgestellt. Die Eigenschaften des gleichschenkligen Dreiecks werden exemplarisch herausgearbeitet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
Zusatzmaterial:

Winkel verschieben und drehen

Im Lernvideo werden Nebenwinkel, Scheitelwinkel, Stufenwinkel und Wechselwinkel exemplarisch eingeführt. Beziehungen von Stufenwinkel bzw. Wechselwinkel werden an parallelen Geraden untersucht und entsprechende Sätze formuliert. Auch eine Umkehrung zum Stufen- und Wechselwinkelsatz wird genannt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
Zusatzmaterial:

Entdecke einen geometrischen Satz

In diesem Anleitungsvideo wird den Schülerinnen und Schülern gezeigt, wie sie ein GeoGebra-Arbeitsblatt nutzen können, um eine Vermutung über die Lage eines Punktes C zu formulieren. Der Punkt C soll ein Eckpunkt eines rechtwinkligen Dreiecks ABC sein.
Zusatzmaterial:

Beweis Satz des Thales

Im Lernvideo wird der Satz des Thales mithilfe von drei Werkzeugen in Form mathematischer Sätze schrittweise bewiesen. Wesentliche Überlegungen werden durch Dynamisierungen in GeoGebra illustriert.
Zusatzmaterial:

Einen Term für b entdecken

Was Du hier lernen kannst:

  • wie man nach dem Kongruenzsatz SsW und mithilfe des Thaleshalbkreises ein rechtwinkliges Dreieck eindeutig konstruieren kann
  • wie man mithilfe eines Funktionsgraphen den funktionalen Zusammenhang zwischen zwei Streckenlängen aufdecken kann
  • wie man einen Term zur Berechnung einer Seitenlänge eines rechtwinkligen Dreiecks aufstellen kann (ohne Beweis).

Im Lernvideo wird der Satz des Pythagoras motiviert durch die Aktion: Beschreibe für das rechtwinklige Dreieck ABC einen Term b=f(a), wenn die Hypotenuse gleich lang bleibt. Die Erkenntnis über den Term wird am Graphen von f induktiv gewonnen. Der Satz wird lediglich als Vermutung ausgesprochen und nicht bewiesen.

Beweis Satz des Pythagoras

Was Du hier lernen kannst:

  • wie man den Satz des Pythagoras in der Wenn-Dann-Form formulieren kann
  • wie man den Satz des Pythagoras mithilfe ähnlicher Dreiecke beweisen kann
  • wie man die einzelnen Beweisschritte mittels eines Beweisbaumes ordnen kann
  • wie man den Satz des Pythagoras noch anders formulieren kann.

Im Lernvideo wird der Satz des Pythagoras in der Wenn-Dann-Form vorgestellt und mittels ähnlicher Dreiecke bewiesen. Der Ablauf des Beweises wird strukturiert durch einzelne Beweisschritte, die in einem Beweisbaum dargestellt sind. Das Beweiskonzept im Ganzen wird durch den Beweisbaum transparent. Einzelne Animationen verstärken die Aussagekraft einzelner Beweisschritte. Am Ende des LV wird eine weit verbreitete Formulierung für den Satz präsentiert. Die Idee: „Beweisbaum“ geht zurück auf Prof. Werner Walsch.

Kreisteile

Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
Zusatzmaterial:

Kreistangente

Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert.
Es werden die drei Fragen:
1. Was ist eine Kreistangente?
2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt?
3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt?
beantwortet und begründet.
Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt.
Zusatzmaterial:

Satz über die Innenwinkelsumme im Dreieck (Viereck)

Im Lernvideo wird der Satz über die Innenwinkelsumme im Dreieck formuliert. Der Beweis wird in einem GeoGebra-Arbeitsblatt illustriert und angeleitet. Zu diesem Lernvideo gibt es ein Handout mit Lückentext (pdf-Datei, docx-Datei). In einem weiteren GeoGebra-Arbeitsblatt wird der Satz über die Innenwinkelsumme im Viereck motiviert.
Zusatzmaterial: