Lösung zu Lösungsweg zu Teilaufgabe c

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche

Dazu setzen wir zunächst a und b in die Formel unseres Maximums aus Teilaufgabe a.) ein:


x = \frac{a+b- \sqrt{a^2-ab+b^2}}{6} = \frac{37- \sqrt{441-336+256}}{6} = \frac{37-19}{6} = 3


Jetzt wissen wir, welche Länge die Quadrate haben, die wir an den Ecken des Kartons ausschneiden müssen. Mit diesem Wert lässt sich schließlich V_\mathrm{max} (x) berechnen:


 V_\mathrm{max} (x) = (21-6) \cdot (16-6) \cdot 3 = 15 \cdot 10 \cdot 3 = 450 .



Skizze zur Veranschaulichung:


Dies ist ein interaktives Koordinatensystem, in dem man durch Einstellen der Kartonseitenlängen a und b das Volumen der Schachtel durch die Funktion f in Abhängigkeit von x angezeigt bekommt. Auf der x-Achse ist die Seitenlänge der auszuschneidenden Quadrate und auf der y-Achse das Schachtelvolumen angegeben.

Vorgehensweise: Mit Hilfe der Schieberegler stellt man die gewünschten Seitenlängen des Kartons ein. Dadurch verändert sich der Graph der Funktion f. Im höchsten Punkt der nach unten geöffneten Parabel ist dann das maximale Volumen der erzeugten Schachtel angegeben. Senkrecht unterhalb dieses Punktes auf der x-Achse lässt sich dann leicht der Wert x ablesen, für den das maximale Schachtelvolumen erreicht wird. Die zweite Nullstelle des Graphen neben der Nullstelle  x = 0 zeigt an, ab welcher Größe der auszuschneidenden Quadrate keine Schachtel mehr gefaltet werden kann. Der restliche Verlauf des Graphen ab der zweiten Nullstelle ist irrelevant.



Zur Aufgabe zurück
< Mathematik-digital/Anwendungsbezogene Extremwertaufgaben#Bastelstunde: Falten einer Schachtel