Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente und Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale lineare Approximation: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
Markierung: 2017-Quelltext-Bearbeitung
 
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Box|Info|In diesem Abschnitt werden Sie sich die Grundvorstellung der Ableitung als Steigung der Tangente selbst erarbeiten. Tangenten haben Sie bereits in der Sekundarstufe 1 im Zusammenhang mit Kreisen kennengelernt. In diesem Abschnitt wird diese bereits vorhandene Vorstellung auf das analytische erweitert. Als Vorwissen sollten Sie über Kenntnisse von '''Sekanten''', '''linearer Funktionen''' und des '''Differenzenquotienten''' verfügen. Sollten die Hilfen auf dieser Seite nicht genügen, wird auf die Seite [[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Vorwissen|Vorwissen]] verwiesen.|Kurzinfo
}}[[Datei:Tangentensteigung_Bild.png|rand|571x571px]]<br />


==Die Tangente==
{{Box|Info|Für diese Grundvorstellung werden Sie verschiedene Funktionen unter die Lupe nehmen und feststellen wie sich diese in kleinen Umgebungen verhalten. Für die Bearbeitung der Aufgaben sollten Ihnen die Begriffe Sekante, lineare Funktion und Differenzenquotient geläufig sein. Falls Ihnen die Hilfestellungen zu den Aufgaben nicht genügen, steht Ihnen auf der Seite [[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Vorwissen|Vorwissen]] eine ausführlichere Zusammenfassung der benötigten Begriffe zur Verfügung.
{{Box|Aufgabe 1|a) In [[/Aufgabe 1a)/|diesem Applet]] sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten  <br/>
[[Datei:Funktion unter der Lupe.jpg]]
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
|Kurzinfo
}}
==Funktionen unter der Lupe==
{{Box|Aufgabe 1|a) Zoomen Sie vermehrt an den Punkt A. Was stellen Sie fest? Beschreiben sie Ihre Beobachtung?
{{Lösung versteckt|[[/Aufgabe 1 a)/|zum Applet]]<ggb_applet height="500" width="1000" showmenubar="true" showreseticon="true" id="e9jhefpy" />
|Applet anzeigen|Applet verbergen}}<br />
b) Was erwarten Sie, wenn Sie an den Punkt B zoomen? Überprüfen Sie Ihre Vermutung mit dem Applet. Beschreiben Sie Ihre Vermutung und was Sie festgestellt haben.
{{Lösung versteckt|[[/Aufgabe 1 b)/|zum Applet]]<ggb_applet id="dyeqwu9b" height="450"  width="1000" border="8888"></ggb_applet>
|Applet anzeigen|Applet verbergen}} <br /> c) An welchen Stellen des Funktionsgraphen würde es beim Hineinzoomen ebenfalls so aussehen wie um den Punkt B?|Arbeitsmethode
}}{{Vorlage:Lernpfad-Navigation|Wenn wir beim Hineinzoomen in einen Funktionsgraphen bemerken, dass dieser aussieht wie eine Gerade, nennen wir diese Funktion ,,lokal linear" an diesem Punkt.}}


b) Zoomen Sie in [[/Aufgabe 1b)/|diesem Applet]] in den Berührpunkt der Tangente und beschreiben Sie was  Sie sehen. <br/>
{{Box|Aufgabe 2|In dieser Aufgabe werden Sie Funktionen untersuchen in denen die lokale Linearität nicht auf Anhieb ersichtlich ist. Geben Sie im Applet die kritischen Punkte ein die Sie untersuchen möchten und überprüfen Sie die lokale Linearität durch Hineinzoomen. <br />
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
a) <math>f(x)= \sqrt{x^2}</math>          [[/Aufgabe 2a)|zum Applet]] <br />
 
b) <math>g(x)=100x^2</math>  [[/Aufgabe 2b)|zum Applet]] <br />
c) Zoomen Sie in [[/Aufgabe 1c)/|diesem Applet]] in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen. <br/>
c) <math>h(x)=|x^2-4|</math> [[/Aufgabe 2c)|zum Applet]] <br />|Arbeitsmethode
{{Lösung versteckt|1= Lösung |Merksatz}}
<br/>
d) Ergänzen Sie zu den Gemeinsamkeiten aus Aufgabe a) was Ihnen in Aufgabe b) und c) aufgefallen ist. {{Lösung versteckt|1={{Box|Die Tangente als Schmiegegerade|Die Eigenschaft der Tangente sich dem Graphen einer Funktion in einer kleinen Umgebungen anzupassen, wird als die ,,Schmiegeeigenschaft" der Tangente bezeichnet. |Merksatz}}|2=Lösung anzeigen|3=Lösung verbergen}}|Arbeitsmethode
}}
}}


==Die Steigung einer Sekante==
{{Vorlage:Lernpfad-Navigation|Wenn man beim Hineinzoomen in einem Punkt feststellt, dass die Funktion an dieser Stelle lokal linear ist, nennen wir die Funktion an dieser Stelle differenzierbar.}}
[[Datei:Beispielbild Sekante.png|rand|459x459px]]
<br />{{Box|Aufgabe 2|a) Geben Sie die Definition einer Sekante, wie Sie sie im obigen Bild zu sehen ist an. <br/>
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}


b) Geben Sie an wie sich die Steigung <math>m</math> einer Sekante durch die Punkte <math>P(x_0|f(x_0))</math> und <math>Q(x|f(x))</math> allgemein berechnen lässt. <br/>
{{Box|Aufgabe 3|Nun werden Sie mit Hilfe des Funktionenmikroskop die Steigung einer Funktion in einem bestimmten Punkt bestimmen. <br />
{{Lösung versteckt|1=[[Datei:Differerenzenquotient Hilfe.png|rand|600x600px]]|2=Hilfe anzeigen|3=Hilfe verbergen}}
a) Zoomen Sie in [[/Aufgabe 3a)/|diesem Applet]] vermehrt in den Punkt A hinein und schieben Sie B durch Verkleinerung von h näher an A heran. Berechnen Sie mit Hilfe des Differenzenquotienten die Steigung, die der Graph ,,im" Punkt A hat so genau wie möglich. <br /> Tipp: Mit den Pfeiltasten lässt sich der Schieberegler feiner ändern.<br />
 
{{Lösung versteckt|Hier die Lösung der Rechnung{{Box|Differentialquotient|Der Differenzenquotient  <math> \frac{f(x_0+h)-f(x_0)}{h}</math> kommt der Steigung im Punkt <math>P (x_0,f(x_0))</math> beliebig nahe, je näher <math>h</math> der Null kommt.<br/>
c) Berechnen Sie in [[Aufgabe 2 b)|diesem Applet]] die Steigung der Sekante durch die Punkte P und Q. <br/>
Dieser Grenzwert des Differenzenquotienten ist der Differentialquotient <math> f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}</math>. <br/> Der Differentialquotient <math> f'(x_0) </math> wird auch als Ableitung der Funktion <math>f</math> an der Stelle <math>x_0</math> bezeichnet. |Merksatz
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
}}
|Arbeitsmethode
| Lösung anzeigen|Lösung verbergen}}
b) Welches Problem kann bei der Verschiebung von B gegen A auftreten? Was muss für die Bestimmung der Steigung gewährleistet sein?<br />
c) Betrachten Sie in [[/Aufgabe 3c)/|diesem Applet]] die Sekante durch die Punkte A und B und verschieben Sie erneut den Punkt B in Richtung A. Beschreiben Sie die Gerade die entsteht.{{Lösung versteckt|Hier die Lösung {{Box|Tangente|Die Gerade, die den Graphen von <math>f</math> am Punkt <math>P(x_0|f(x_0))</math> berührt und die gleiche Steigung wie der Graph von <math>f</math> in diesem Punkt hat, nennt man die Tangente von <math>f</math> am Punkt <math>P</math>.|Merksatz
}}
| Lösung anzeigen|Lösung verbergen}}|Arbeitsmethode
}}
}}


==Die Steigung der Tangente==
==Die Tangente als lokale lineare Approximation==
<br />{{Box|Aufgabe 3|Wir betrachten die Funktion <math>f(x)=x^3+x</math>, den festen Punkt <math>P(x_0|f(x_0))</math> mit <math>x_0=1</math>und den flexiblen Punkt <math>Q(x|f(x))</math>.  
<br />{{Box|Aufgabe 4|Wie du in den Aufgaben zuvor schon gesehen hast, lässt sich der Graph der Funktion in einer kleinen Umgebung sehr gut durch die Tangente nähern.
<br/>
Wir betrachten die Funktion <math>f(x)=0,25x^2</math>, die Tangente der Funktion am Punkt <math>P=(x_0|f(x_0)</math> mit <math>x_0=1,5</math>und die Abweichung <math>h</math> von <math>x_0</math>.
<br/>
<br/>
Nähern Sie den Punkt Q in 4 Schritten so nahe wie es das Applet zulässt dem Punkt P. <br/>
Halten Sie die Schritte in folgender Tabelle schriftlich fest. Entnehmen Sie die benötigten Werte dem Applet.


{{Lösung versteckt|[[/Aufgabe 3 a)|zum Applet]] <ggb_applet id="tgks8yyz" width="400" height="310" /> |2=Tabelle und Applet anzeigen|3=Tabelle und Applet verbergen}}
a) Für welche Werte von h lassen sich die Werte der Funktion durch die der Tangente gut annähern? Entscheiden Sie mit Hilfe [[/Aufgabe 4 a)/|des Applets]] und interpretieren Sie die rote Strecke.<br/>
|Arbeitsmethode
b) Bestimmen Sie die Gleichung der Tangente mit Hilfe des Differentialquotienten.<br/>
c) Bestimmen Sie durch Berechnung des Approximationsfehlers einen h-Wert für eine ,,gute" und ein h-Wert für eine ,,schlechte" Näherung durch die Tangente.|Arbeitsmethode
}}<br />
{{Box|Aufgabe 5|Bestimmen Sie durch Addition der farbigen Strecken die allgemeine Gleichung zur Berechnung der Werte für <math>f(x_0+h)</math>. Nutzen Sie als Hilfe das folgende Applet. <br/>{{Lösung versteckt|[[Datei:Approximation_farbliche_Strecken.png|rand|571x571px]]
|Graphik anzeigen|Graphik verbergen}}|Arbeitsmethode
}}
}}
{| class="wikitable"
{{Box|Aufgabe 6|Lassen Sie nun den Approximationsfehler für kleine h außer Acht und betrachten die Näherungsfunktion <math> f(x_0+h) =f(x_0)+f'(x_0)*h</math> Stellen Sie die Gleichung nach <math>f'(x)</math> um. Was fällt Ihnen auf?|Arbeitsmethode
|+
Tabelle: Aufgabe 3
!
!<math>x-x_0</math>
!<math>f(x)-f(x_0)</math>
!<math>\frac{f(x)-f(x_0)}{x-x_0}</math>
|-
|Schritt 1
|
|
|
|-
|Schritt 2
|
|
|
|-
|Schritt 3
|
|
|
|-
|Schritt 4
|
|
|
|}
<br/>
{{Box|Aufgabe 4|
a) Beschreiben Sie die in Aufgabe 3 neu entstandene Gerade.
b) Wie müssen sie 
{{Lösung versteckt|Applets|Applets anzeigen|Applets verbergen}}
|Arbeitsmethode
}}
}}
<br />
<br />

Version vom 14. August 2019, 13:39 Uhr


Info

Für diese Grundvorstellung werden Sie verschiedene Funktionen unter die Lupe nehmen und feststellen wie sich diese in kleinen Umgebungen verhalten. Für die Bearbeitung der Aufgaben sollten Ihnen die Begriffe Sekante, lineare Funktion und Differenzenquotient geläufig sein. Falls Ihnen die Hilfestellungen zu den Aufgaben nicht genügen, steht Ihnen auf der Seite Vorwissen eine ausführlichere Zusammenfassung der benötigten Begriffe zur Verfügung. Funktion unter der Lupe.jpg

Funktionen unter der Lupe

Aufgabe 1

a) Zoomen Sie vermehrt an den Punkt A. Was stellen Sie fest? Beschreiben sie Ihre Beobachtung?


b) Was erwarten Sie, wenn Sie an den Punkt B zoomen? Überprüfen Sie Ihre Vermutung mit dem Applet. Beschreiben Sie Ihre Vermutung und was Sie festgestellt haben.


c) An welchen Stellen des Funktionsgraphen würde es beim Hineinzoomen ebenfalls so aussehen wie um den Punkt B?


Aufgabe 2

In dieser Aufgabe werden Sie Funktionen untersuchen in denen die lokale Linearität nicht auf Anhieb ersichtlich ist. Geben Sie im Applet die kritischen Punkte ein die Sie untersuchen möchten und überprüfen Sie die lokale Linearität durch Hineinzoomen.
a) zum Applet
b) zum Applet

c) zum Applet


Aufgabe 3

Nun werden Sie mit Hilfe des Funktionenmikroskop die Steigung einer Funktion in einem bestimmten Punkt bestimmen.
a) Zoomen Sie in diesem Applet vermehrt in den Punkt A hinein und schieben Sie B durch Verkleinerung von h näher an A heran. Berechnen Sie mit Hilfe des Differenzenquotienten die Steigung, die der Graph ,,im" Punkt A hat so genau wie möglich.
Tipp: Mit den Pfeiltasten lässt sich der Schieberegler feiner ändern.

Hier die Lösung der Rechnung

Differentialquotient

Der Differenzenquotient kommt der Steigung im Punkt beliebig nahe, je näher der Null kommt.

Dieser Grenzwert des Differenzenquotienten ist der Differentialquotient .
Der Differentialquotient wird auch als Ableitung der Funktion an der Stelle bezeichnet.

b) Welches Problem kann bei der Verschiebung von B gegen A auftreten? Was muss für die Bestimmung der Steigung gewährleistet sein?

c) Betrachten Sie in diesem Applet die Sekante durch die Punkte A und B und verschieben Sie erneut den Punkt B in Richtung A. Beschreiben Sie die Gerade die entsteht.

Hier die Lösung

Tangente
Die Gerade, die den Graphen von am Punkt berührt und die gleiche Steigung wie der Graph von in diesem Punkt hat, nennt man die Tangente von am Punkt .

Die Tangente als lokale lineare Approximation


Aufgabe 4

Wie du in den Aufgaben zuvor schon gesehen hast, lässt sich der Graph der Funktion in einer kleinen Umgebung sehr gut durch die Tangente nähern.
Wir betrachten die Funktion , die Tangente der Funktion am Punkt mit und die Abweichung von .

a) Für welche Werte von h lassen sich die Werte der Funktion durch die der Tangente gut annähern? Entscheiden Sie mit Hilfe des Applets und interpretieren Sie die rote Strecke.
b) Bestimmen Sie die Gleichung der Tangente mit Hilfe des Differentialquotienten.

c) Bestimmen Sie durch Berechnung des Approximationsfehlers einen h-Wert für eine ,,gute" und ein h-Wert für eine ,,schlechte" Näherung durch die Tangente.


Aufgabe 5
Bestimmen Sie durch Addition der farbigen Strecken die allgemeine Gleichung zur Berechnung der Werte für . Nutzen Sie als Hilfe das folgende Applet.

Approximation farbliche Strecken.png

Aufgabe 6
Lassen Sie nun den Approximationsfehler für kleine h außer Acht und betrachten die Näherungsfunktion Stellen Sie die Gleichung nach um. Was fällt Ihnen auf?