Benutzer:JWittenstein: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Nützliche Links im ZUM-Wiki)
(Nützliche Links im ZUM-Wiki)
Zeile 12: Zeile 12:
 
*[[Hilfe:GeoGebra]]
 
*[[Hilfe:GeoGebra]]
 
*[[Interaktive Übungen im ZUM-Wiki]]
 
*[[Interaktive Übungen im ZUM-Wiki]]
 +
 +
==Lernpfade==
 +
[[Benutzer:JWittenstein/Exponentielles Wachstum|Lernpfad exponentielles Wachstum mit Hilfe der Zinsrechnung]]
 +
 
==Beispiel==
 
==Beispiel==
 
<ggb_applet width="1272" height="632"  version="4.0" ggbBase64="UEsDBBQACAAIABRdkD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAUXZA/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1dS5PstnVe21X5D6yJ7LKTubwADp7yvXZpSL1ckuzyVeyUF3H1dHNm2rene9yP+1B54cou/yGVVbLLOivv9E/8S3IANtnNBmZA3AcpSyWpe9gggHNwcL4PJD7yyS9e3S6yF9V6M18tn57RnJxl1XK6ms2X10/PdturR/rsFz//4ZPranVdXa4n2dVqfTvZPj3jtuR89vRsJkHNxIw9mrHZ5SNOr6pHhjH5SEwmhDE9MRNanWXZq838w+Xqq8lttbmbTKtn05vqdvLFajrZuoZvttu7Dx8/fvnyZd40la/W14+vry/zV5vZWYbdXG6enu2/fIjVdU56Ca44I4Q+/tcvv6irfzRfbraT5RTbtybs5j//4Q+evJwvZ6uX2cv5bHuDBjOtz7Kban59g0Ypac6yx7bUHXrkrppu5y+qDZ579Kczent7d+aKTZb29x/U37JFa89ZNpu/mM+q9dMzkkvNlWaSaGmEFIydZav1vFpu92Xpvs3HTW1PXsyrl3W19ptrEQu9mG/ml4sKW1/v0KT58mqN7nx6djVZbPDvzfb1orqcrNsDh94A/jr/BotqjY3XHsAqCTm3/0n8jxNS9+KoSX6WbVerhauSZH/+c8YII9m5/aD1B8MPKeufSH2MQP3B6g9ef4i6DK9P53VRXpfhdRkOCRbWvx8MpI2BoEV/A9lRi/sm3sSp1FZ92iYT4TapfKDR2qwH2mztpOKoTWzK/ev+81qEh8w8bfFexyY0KPkgJj553EyTJ/swzTY3tuw+eLbV7cYGLphMGBt/NBMYpFJhuImMGvxQLMOwzKjIuMA/qc6k/VQZKPyBZ5DpzJajkLkoFRr/x5WrTGYCK7NHFU6OjGJDPBOQURfcPMOQztwEwcnCAEsIkQk8yTZPma0CZMYl/gU649hHOzcUxYKAJ+Lf2DzLgGZgT6YqYzKTtj7K7ZyT2nYdq2SZJJmktkKcXji16mmF5XUG1hq5d9d8ebfbdlw0vZ01X7eru3YssDTmokPGq3NTJyH+4MliclktECSe2ZHMsheThZ0RrqGr1XKbNYPI6mPX68ndzXy6eVZtt3jWJvvj5MXki8m2evUJlt40bbuy09Vy8+v1alusFrvb5SbLpqsFafu8WtCj76ztNf4BRz/w4x/E0Q/y6LsKtrvCX7LdpsL2V+tNU3wym31uSxxSA3ryV8vF64t1NXl+t5p3zXjy2OHNk2o3Xcxn88nytxisthXrl6yBH5ePG/SRlDcdWa1nz15vMIKzV7+v1iv0ozG5kYirHKeF4cBxjr2ufxKa5kwIoIZybUBhAtxMJ3buUciBESW4otJoSpk9af8byYnkIKnCZM6UFIhMdePVi3aMJq+q1vzrtZ3ae9PtH59vLlaLwyHngGJyt92tHXXA7Li2Zn20vF5ULkhcvkVcnj6/XL16VkcH1HV9/frOdqnuwOW1c3yGyQHNwgL7z8v605WxPWtLEVeGuBKkCbf5rP2dGuZKuM/L+tOVwvitu7a3lDZmUtI0M9+4lEbOOhPHBb8F+d1yvv2i+WM7nz7fW0rr8l/tbi+rNoS6VdJ3VOWTxych9mRzhxE529xU1TYYdA4jm6ATWtUdw5OuimqxeHZcVJFDSbb32lH19QxtPNRQKrofpE21sAljtcyym2fT9WqxcMVeHH2fugrc17X1hd4PzOT1amdzCBr8CRLO3WJycQQW9vCnbqD2aIJ/f1bXenEAMXv0t8GjF9jWplr/GunWolNpbc9naF7VOeE3WL87mLXZYLFYvXyGCXE+WXw8m29Xh965n75GRPp6ftdOn+pPO/z1N/gxX1ezTto59if6/xNHsLM90f5ygnmZnJPzy3MqzqfnjxgBIzT/EM7l+cQ/fn51Dh/Sc0HdDx+yc8bqb/SB8uwcZFOe77/BcR3QfKPtNy6aellbr61ItKez5ttRAXp0WLTH6L5NZE380Mmrc2orhKa8MfYbs22rtjbS/NrUgf1pe8ZNe4w0LUj7K+AXyjv+oK49aM+G9mw8x9VtG9atnby1ru2Csd3iWF65Q/gFZNccYt3bOYLNtDWBao1pO0EPnVD7ToTGkFpreVvUdRMPNTUSGwaddulxzWZf/KhZ3foQmmKKN7XqtlY4tY9CwKu0rQ9rgb1vMIBOPdE2Bd5vcOhQGzactsNL20FrI5G17gCvlxhAp223NTR1YVfdN9t46yoMgNMTWdsMP3Xx4TzF9r5rirM6EG0000MAtHPPRZANJc69BtvJQkXA18QObGgI2KGj6nSSidZ6WccwPcoI9+cNqCPNFj+kDRdNNj+x1tROAmgSB7FBEYwVaIe1/XZIKy4KnWfA88whfNuk4cLN9aY9BG0HQHuOaPt8yCfQ9oK30wnD7PTMNg1AG8YYSqeBR71Ot5PehZu1DMxp5U0qYm16IjaSTqtqs9MhJx3ylAtBN1TtVIJDxnhgjO/LN+HjrM1DrE0xrM0sxIbaaYZXTalDAhDMK3VIOve0e8gxwhsd3jrkkBYcnhjrrRboeDv3qQxPotadbvpKG2uHQ7IJTW8AD5mACa9vLUI3VdEmOZAaU2zkMHI63FrsQ1s3U8LIfcLS0BwR+9OFOA1FUQf/vq666+iLgxM9pFLNzNZmXz0zXq3quFayr5W2oG/Ivg6j93UIc3SGaeP2MBIqMBLYmcZ61VbkpUrVJrMWKQ7j4JvX+KB1gWGNP5s2DDSQ0BIKw/culqQ1hB79TmkwSzPluc6DKdMAkFb7romW29C2AeZhUvMbdqNN+pSFk+0xeRNtEod2wDoF2CEPHaCqneMtK2sPiQO0dao5nNMCj2aNiW2i1rQZvsPJ5DwEGtDGLT2KYEqCRenBJ/dktkMJYKdjEopG1gYYOwQY3FN52z3dRld7pB5vdhQ9up7AtB15Uk93N1magD3Egm7i0zTT43Ce5G18knrC24KixfnOSB8CR5kmvuH4fLM/n7UcW7TERDf815B97w+lDoFDWzQFDydDFIbUOcN1hR51RTU5TunGpjbHK9V0s4Vz2gbfYRVxKC/3demmLtPA5iEuDewPsbYG2qYr8PK04fth6oSxZEdp71A3O6wB2ip1Y4TLB7xe9HuL/CfPqzWuZ/cXsrbz5W6129TX5Y4WmzNcsd7in/UP+xX9xF6j+ZflfFsfnVXX66q5XLFw92LqqyTuV3J8jco77Kr6ZL26/Xz54uv1/PqkA08eN718spmu53f2OlN2uVhNnx8WxdlsvplcLjqrZHdtDlfS9eWE7Xxrr4h8/OputazQVFw1V5vsd5PpzWa7u81+8vv5crOupjfL3fL6p7gg321v7Pr8l7+bb7cV1lPNl9jKZIt1uLs4L1fr586TX1evttnkcvUCf/mHH/8jJT9L/f/H6+yyer66vUVfYk832FS1zP72l/96hn3drNbV8m9/+c9st9xW6830Zl7NFvPpTfYCTcg+rRaz7LrCw9Xy+Ta7W+DwfbRE96+2VXb17V/Xma0MDy0m11X27V8vq3Umfjm5WVd59rtqgadl9gpF/fsyez5ZLjP8++W3/32zqJbnGXpmiS7CQsv9eUtsbrm7rlv+ZreZ3N7isW922c3kcn+GrXFdza1nq+wCO3GNBz7G7i9vJrsNOtMWx8Ga4wm/OHbExWT5PKMfNt21zgBCPmj6nbkO2JOtUbeZHbLNZPuNK6jPzY+8uli3LtGzLuHXBJ2aeN9eYcL4kT/gX3z7f5squ15PruY4ctmqdhjGXrV2B3bLWV373frbv17ZIbKD+DH68XI53+CptzjtZtgWjvwWAxk9i+Ox+tTdbP3oblFtt3VDZxhYC3uNzM2H6hXO/429adtcObygZxkefXr24z/tVtuf7SMno/Wf9UmLCgd4m23d5dYtBvvZ0dnuWtTN6mW2uvxjNd0ebs3UJY6SCBa45+JrNlnc3Uzc1WX/Yq69/Hy9/7zcf+7Ltxd2F5PX6MDjjOKa/xL9enT0yeO9KUFPFGFPsH6eKN6TJ96FZWXYMuhnWfkdtuwjdmKZm59zTJ3//r/9rMMavjcR/BF0vNGmIfTHj3p6A77DY8071n0x2V19U2EWROtqWOppIv/umnihOiZ+vN6uJ9c9M7F6Q7OogPdvWPHmhhVvatjxeDkj30tqfXPDyrczjBH+Xmdb1zA3w3pOsHcxYONk1I5Ry90tkrFp2+sm4fyhxkOsYreviImmjx2jO3doD7dy+00++qARv7q62lTb7NXTs0dYwWv8oDRo4/7oZmE3lSFprHfK3E5e2b0x2NzlZrXYbatnU1y6LQ/76uquN3dmiR0D25ixn6/tDXhrcXY1f1W1d1NxrTT/BleQk46xh3vl25v59PkSg8zd0N/ub927L5/NZ7i6aDs7WeJa063YkNre1bew76qqvvndnniHrnFbBo5WiclDyU6HksObDuX96ebhoXxfY0XZfrCYMd+PwYLTwQL9doMVSqEjDRbfDxY38rs+WD5raYjZUYbMfJA4HdcLfn8eTcqRzll1DUcbZnav5ov5ZP26+0OEpniWsD6WFJ4lhzSSlCLenSWlZwn0saT0LDnMsaT588aWPNi9j/Rp92gwA7wV3UjMAG86p96FO4w3g77n7vBpKiX7QGfZP2UfmexRhkHSI9LtiaehHpuzAbe8Yafpcacpsb02/XrtkU8+XK9Zp9fU9pqSft32iFYw1b+fbkOn28x1uxdC2VNPui2H6zbvdBtct3vBkT31pNtquG6LTre563Yv7LGnnnT7Aex5192WnW4L123er9vytNtmuG6rTrel67bo123lYSkZrt+602/l+i379dvnAHS4fptOv7Xrt+rXbw+sKRus36yDktTBJO2Hk8zDSTocULIOUDIHlLQfUjIPKelwUMk6UMkcVLJ+UMk8qKTDYSXrYCVzWMn6YSXzsJIOB5asA5bMgSXrB5bMA0s6HFqyDloyh5asH1oyDy3pcHDJOnDJHFyyfnDJPLikw+El6+Alc3jJ+uEl8/CSDYeXrIOXzOEl64eXzMNLNhxesg5eMoeXrB9eMn9xOxxeQgcvmcNL1g8vwcNLNhxeQgcvweEl64eX4N/WGA4voYOX4PAS+uEleHgZvoz4fvrdwUtweAn98BI8vGTD4SV08BIcXkI/vAT/su1weAkdvASHl9APL8HDSzYcXkIHL8HhJfTDS/Dwkg2Hl9DBS3B4Cf3wEjy8hOHwEjp4CQ4voR9egoeXMBxeQgcvweEl9MNL8PAShsNL3sFLcHgJ/fCS+9dhh8NL3sFL7vAS+uEl9/AShsNL3sFL7vCS98NL7uElDIeXvIOX3OEl74eX3L/9Oxxe8g5ecoeXvB9ecv+W2nB4yTt4yR1e8n54yT28fOhW4LvudwcvucNL3g8vuYeXMBxe8g5ecoeXvB9ecg8v+XB4yTt4yR1e8n54yT285MPhJe/gJXd4yfvhJffwkg+Hl6KDl9zhJe+Hl8LDy/hmg3fX7w5eCoeXvB9eCv/O5XB4KTp4KRxein54Kfw9YsPhpejgpXB4KfrhpfDwkg+Hl6KDl8LhpeiHl8LfTDMcXooOXgqHl6IfXgoPL/lweCk6eCkcXop+eCk8vOTD4aXo4KVweCn64aXw8FK8L7x8sCONysLfFizz/XOJht8VLOpNweroxwe3LpL91kW7nSNx62Kzc9HAgBsXrSfeydbFJr8ejWKfrYuBfSH6Dcbx/eySa23xkes7tbn5LYLO3YJ2m5sl+e6HXb/R8mJK5+ZtRusd725+m9GSze5m8feYJAovSfTbFewTsLE3BXuG9NsUfH9kfgf2BD/3LzOTYJr7e9gFe2z2dHV7O1nOsqV7AK59xsDVvFrMnLn1Q1knxJpf27DbNkdcSSxI6wr31Xh+3LYVNi45nPhuScvDqrQDaaF1kgAW9Cx5O8+6lPK8mn1areo5sHfcolpeb2/2IF4fmk7uXAPuWC0p/gPtwSWaNebzXhTCvwxLgvx1JBKx+L5Oq4fNvv2+mt0vmyzuzSbsTbNJQF//VoSzdzZhNUEkcpB0skhKJ6wH62jSyaIX2eibTt4b3egXYLf3Bhi8aYAFHlnwVhy5d4DpGq6MGCTAbpMCDHqwwSbAbnuRwLQAew80sBtgn1+dRNYHFzz723/8T4ZunVD7p72k9BOa/XP2wQVkjzNcjvz0337ykbZPdmLt8BwF4uThADx1yMS/3U5yTo7+gURASDD24oPaWKt1stZefNBae/FB19pTMy90mp0X/n6IHoZG2eDbD3jrA/OwD0zABybRB/7eCs5yqhUb13K3Fn/AdEoCtlOSaHxAKSdFzoUwzMg6AsTIfqARP9CQHyILJN8P/o4PQ3Ig0gDTlGlC6MhuYBE3sJAbIszOd4N/WZHK3L6riHDGOVGjRwNE3AAhN0T4h+8G//IOFzk1wAXHgJBSwdh+4BE/8JAfeKofAvfrMDtIKYnRUhPdvCliNDeIiBtEyA0i1Q3e7T9BVK6MBjD4L6U66QbBe3CDjLhBhtwgU93g3U0UiJSYH6V9Bw2nKnDhcFAvqIgXVMgLKtUL/r1JZXJcihoFhBLgMDZSRHgjDRFHmsocfammpDoXBghXVAnCJR/ZDRHqSEPckaaSR1/5ibkxl0KB4qCZ4WbkDMkiNJKFaCRLpZG+kBSZQi60fdWU5sQYMjKbZhEWyUIskqWySF+XqgTkQlIppDGaKjUyULAIi2QhFslSWaQvc0X6mGsCmhupOBEw9qSIsEgWYpEslUX6qlktTC6ACEq5QNJgRiaRLEIiWYhEslQS6YtwDVW5UVogccAVFh17TkQ4JAtxSJbKIX1Jr9H2UgulQOzb+8joGTLCIVmIQ7JUDhlQCBO7B1AiSkiDC0zKxp4UERbJQiySpbJIX3FMcRmRM2kITgvKpKZjx0OERrIQjWSpNNJXMFNqeA44LQQXuMLiY6+0WYRHshCPZKk80ldEU4ZLbcG4YFJRXFeMvKqACI+EEI+EVB7pC6wpSIbTgmBUCKZA07H9ECGSECKSkEokfcE2MgakUAa0VkpgWIx8XR4iRBJCRBJSiaSv/6YCCbW2V+AYZUwgqR7ZDxEmCSEmCalM0teTfzX5amTDI9wRQtwRUrmjL0gf3/AIXYQQXYRUuugr2sc3PEIQIUQQIZUg+pL48Q2PMEIIMUJIZYS+pn58wyMUEEIUEFIpoC/KH9/wCOeDEOeDVM7nq/pHN5xHWB4PsTyeyvL8xwKMb3iE1vEQreOptM5/rsD4hkeIHA8ROZ5K5PwHE4xveIS58RBz46nMzX+ywfiGR5gbDzE3nsrc/EcjjG94hLnxEHPjqczNf7bC+IZHmBsPMTeeytz8hzOMb3iEufEQc+OpzM1/usP4hkeYGw8xN57K3PzHQ4xveIS58RBz46nMzX++xOiGiwhzEyHmJlKZm/+AivENjzA3EWJuIpW5+U+4GN/wCHMTIeYmUpmb/4iM8Q2PMDcRYm4ilbn5z9gY3/AIcxMh5iZSmZv/kI7xDY8wNxFibiKVuflP+Rjf8AhzEyHmJlKZm/+YkPENjzA3EWJuIpW5+c8ZGcvw4kT0URzsLiKijyKRthWBh2BGn44VlJO9Q7PNw2YHWFuRSNqKwDM0ec4D94+GtLtRedxneEjlUaSqPIqAygNUzoUJ7DEY1HoasT7A3YpUbUcR0HYIkhuhhNR7lVNgr+qgfmARPwSoXJEq7ih8cQdInhsjtCIhtdOgHoCIBwKcrkjVdRS+rgOUyQWGAhGCh3bxD+oDHvFBgN4VqZqOwtd0gOG5UkZgTsBAECyww2JQN4iIGwJkr0jVdBS+poNTkmMgKCooo0KzsWeEjLghQP2KVE1H4Ws6OJOYE0BwUExyLnhgr+6gflARPwSYYJGq6ih8VQe3j7BUwDR6QAgCEcXve3dDhBiGVB1Fqqqj8FUdXNJcg2RUarsDK7Qbb1A3RIhiSNVRpKo6Cl/VwbVVgxopBaYIIJyP7AcW4Y0hWUeRKusofFkHN4iXjBFECQOUypGTA4sQyJCso0iVdRS+rENQdANhBjjTRHM6cnJgEf4YknUUqbKOwpd1CE5ypq2gQQor9RnZCxEOGVJ1FKmqjsJXdQibIg3iJSiqkTmM7IUIiwyJOopUUUfhizqE5jkoQrmWUmod2qA6qBsiLDKk6ihSVR2Fr+qQVhnMuREInCBEaH/qoG6IsMiQqqNIVXUUvqpD2heUWObElNGUjE2mWYREhkQdRaqoo/BFHVKoHEAazgy2xOTYboiQyJCmo0jVdBS+pkNqyCWyJkasVJypkS+3sAiJDEk6ilRJR+FLOhSuMI0SEhQXmCf5yG6ACIcMSTqKVElH4Us6FJicUy6llUfjOvPe540O5IYIhwwpOopURUfhKzqU1LjQpowbLjFPipGpNEQ4ZEjRUaQqOgpf0aFwRaEE0cZwLhmTcmQ3REhkSNBRpAo6Cl/QoYEibyD2wgvjSKXHjoYIiwzJO4pUeUfhyzu0FDmhRCiGqyoCY1+ShQiLDIk9ilSxR+GLPXA25JISY29ScKnHvj8BERYZkn4UqdKPwpd+4GywV+c5EmmN6wo19qSIsMiQEKRIFYIUvhDEKMBJYZgAQjSSyJHX2RBhkSFZSJEqCyl8WQgllOaGI48GyrQwI68wIcIiQyKRIlUkUvgiEcyODPmTksw9SQPGvgbHIzQypBkpUjUjha8ZwfTIc+TRwAyhQuuxF1c8wiNDEpIiVUJS+BISSkHnlkoThkEhGB2ZQfEIkQwpSopURUnhK0oo1bU02OD/QGg2th8iTDIkMClSBSaFLzChmB5zqoySkhpOR3dDhEmG5CZFqtyk8OUm9qGdOWfSCIlUUpuR72rzCJMMiU+KVPFJ4YtPKGA0SM4JCEqFkGOvr3iESoa0KEWqFqXwtSiYJHluiFHG3qqgwWcvDeqHCJcMSVOKVGlK4UtTKIZC7p66pEHjAkONPS8iZDKkVClSlSqFr1Sh3KjcUI1rC0MlAznySpNH2GRIuFKkClcKX7iCOUHlGpODAhAMWdTI+UFE2GRIx1Kk6lgKX8eCMYDmcC00YVoFn8Y1qBsiZDKkailSVS1FT1XLoIZH2GNI1VKkqlqKnqqWQQ2P0MWQqqVIVbUUPVUtgxoeIYghVUuRqmopeqpaBjU8QglDqpYiVdVS9FS1DGp4hAOGVC1Fqqql6KlqGdTwCOkLqVqKVFVL0VPVMoDh5YmqpTzYXUZULWUixSsDrzKR+b2Xxh54h807NNs8bHaA0pWJjK70VS1C5ErJey+ODmN5o2u5z/SQrqVM1bWUAV2LVrld7Boijftn5AhoFC73+iHA48pUhUvpK1w4o7lhTNjdy4yhH+69gzSQH1jEDwFaV6YqXMrA60uEybkCaXCZYwD4vaubgdwAETcESF6ZKnMpfZmLILjolxKjwa5wjBg7GnjEDQHKV6YqXUpf6YLm59oYQbjAFS8PvdNnUDeIiBsCBLBMVbqUgbeXGMgBZ4QkHPOlVGNPChlxQ4AOlqlKl9JXukguc0YQKwVQpWno2fyDukFF3BAgh2Wq0KX0hS6KQK4YYUJysA8aHjsaIlwxJHQpU4UupS90UVLmmBRA2Pvs9h0mI7shwh1DQpcyVehS+kIXDTy3twmAMGaVLiNPChbhkSGdS5mqcyl9nYshOtfAKLqAKgahl9kM6oYIjQzpXMpUnUvp61yMNrmimiFzUsgk79+HNJAbIiwypHMpU3Uupa9zoYgS9v0lVEiGbgi+G3JQP0RoZEjpUqYqXUpf6UKpsliBq0tFJeUSxvZDhEeGtC5lqtal9LUulCmdU23ASC21hvtVkQP5IUIkQ2KXMlXsUvpiFwrG7sjSiJjUbsIZe7XNIkwypHYpU9UuZeAdJoIKhAsquVKMEz12mowwyZDapUxVu5SBV5hIQewmZolMUlHB7r+3PJAfIlQyJHcpU+UuZeAVJsqoXAopNODCG1dbY/shwiVDepcyVe9SBl5hYgT6gWv78g7kUvz+Te3D+AEiZDIkeClTBS+lL3hhFGiulZYYCZJKMrYbImQyJHgpUwUvpS94YRgDuaRCI2oKZu6V/QzkhQiXDOldylS9S+nrXZhgOmdglFXPM0NGnxQRLhkSvJSpgpfSF7ww+2pEu6WdS4K8cuwL1BChkiHBS5kqeCl9wQvOA7t7lwmpqH0LGoy84IYIlQwpXspUxUvpK16ASZFT5A7EXakXbOxpEaGSIclLmSp5KX3JCwh7/86+58rgktvQkVcWEKGSIclLmSp5KX3JC+AaO6dGa8ooMcgkR76fCREqGdK8lKmal9LXvHBGZa4ZF0QC8oexF1gQYZIhzUuZqnkpfc2LfVRhjqGgteLiIcnwMG7gESIZkryUqZKX0pe84GqC5PalyvbxXNqMfRmKR4hkSPFSpipeSl/xIjgX9l14ShNtXzg+8vKKR5hkSPBSpgpeSl/wYl+2ngulgSlAAsFGTpE8QiRDepcyVe9S+noXyYXOAVOj0ZZNipHvX/EIkQzpXcpUvUvp610UAUDEROpAhDHyflXgQG6I8MiQ3qVM1buUvt5FSWFyKix74gpGv5vJIzQyJHcpU+UuZc9XrwxqeIQ4hvQtZaq+pez56pVBDY8wxZCgpUwVtJQ9X70yqOERbhhSsJSpCpay56tXhjRcRNhgSLJSpkpWyp6vXhnU8Aj/C4lUylSRSpkkUhnI8AjjC4lUylSRSpkkUhnI8AjHC4lUylSRSpkkUhnI8AirC4lUylSRSpkkUhnI8AiPC4lUylSRSpkkUhnI8AhzC4lUylSRSpkkUhnI8AhzC4lUylSRSpkkUnmXhn+yW06389XyxPyLw3tmDra++mntCtsus+998wy/etjsq6axxu7a65ub1csMzaym232X298ni03luyH6BprF5HW1rl3QHsEKv1zNqu7R+bJ6tn29qLLtzXz6fFltNk/PsO66u6T+8tl8NquW2OobebI4aJvu9WThe/I60ZPXb+bJ+1VP3z1PlocJeK8nS9+TN4mevHkbT4am5qCeRDuXG+yvs8n+fV2trqvL9eTn/w9QSwcIbFnkajUgAADJAAEAUEsBAhQAFAAIAAgAFF2QP0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAUXZA/bFnkajUgAADJAAEADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAM0gAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1272" height="632"  version="4.0" ggbBase64="UEsDBBQACAAIABRdkD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAUXZA/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1dS5PstnVe21X5D6yJ7LKTubwADp7yvXZpSL1ckuzyVeyUF3H1dHNm2rene9yP+1B54cou/yGVVbLLOivv9E/8S3IANtnNBmZA3AcpSyWpe9gggHNwcL4PJD7yyS9e3S6yF9V6M18tn57RnJxl1XK6ms2X10/PdturR/rsFz//4ZPranVdXa4n2dVqfTvZPj3jtuR89vRsJkHNxIw9mrHZ5SNOr6pHhjH5SEwmhDE9MRNanWXZq838w+Xqq8lttbmbTKtn05vqdvLFajrZuoZvttu7Dx8/fvnyZd40la/W14+vry/zV5vZWYbdXG6enu2/fIjVdU56Ca44I4Q+/tcvv6irfzRfbraT5RTbtybs5j//4Q+evJwvZ6uX2cv5bHuDBjOtz7Kban59g0Ypac6yx7bUHXrkrppu5y+qDZ579Kczent7d+aKTZb29x/U37JFa89ZNpu/mM+q9dMzkkvNlWaSaGmEFIydZav1vFpu92Xpvs3HTW1PXsyrl3W19ptrEQu9mG/ml4sKW1/v0KT58mqN7nx6djVZbPDvzfb1orqcrNsDh94A/jr/BotqjY3XHsAqCTm3/0n8jxNS9+KoSX6WbVerhauSZH/+c8YII9m5/aD1B8MPKeufSH2MQP3B6g9ef4i6DK9P53VRXpfhdRkOCRbWvx8MpI2BoEV/A9lRi/sm3sSp1FZ92iYT4TapfKDR2qwH2mztpOKoTWzK/ev+81qEh8w8bfFexyY0KPkgJj553EyTJ/swzTY3tuw+eLbV7cYGLphMGBt/NBMYpFJhuImMGvxQLMOwzKjIuMA/qc6k/VQZKPyBZ5DpzJajkLkoFRr/x5WrTGYCK7NHFU6OjGJDPBOQURfcPMOQztwEwcnCAEsIkQk8yTZPma0CZMYl/gU649hHOzcUxYKAJ+Lf2DzLgGZgT6YqYzKTtj7K7ZyT2nYdq2SZJJmktkKcXji16mmF5XUG1hq5d9d8ebfbdlw0vZ01X7eru3YssDTmokPGq3NTJyH+4MliclktECSe2ZHMsheThZ0RrqGr1XKbNYPI6mPX68ndzXy6eVZtt3jWJvvj5MXki8m2evUJlt40bbuy09Vy8+v1alusFrvb5SbLpqsFafu8WtCj76ztNf4BRz/w4x/E0Q/y6LsKtrvCX7LdpsL2V+tNU3wym31uSxxSA3ryV8vF64t1NXl+t5p3zXjy2OHNk2o3Xcxn88nytxisthXrl6yBH5ePG/SRlDcdWa1nz15vMIKzV7+v1iv0ozG5kYirHKeF4cBxjr2ufxKa5kwIoIZybUBhAtxMJ3buUciBESW4otJoSpk9af8byYnkIKnCZM6UFIhMdePVi3aMJq+q1vzrtZ3ae9PtH59vLlaLwyHngGJyt92tHXXA7Li2Zn20vF5ULkhcvkVcnj6/XL16VkcH1HV9/frOdqnuwOW1c3yGyQHNwgL7z8v605WxPWtLEVeGuBKkCbf5rP2dGuZKuM/L+tOVwvitu7a3lDZmUtI0M9+4lEbOOhPHBb8F+d1yvv2i+WM7nz7fW0rr8l/tbi+rNoS6VdJ3VOWTxych9mRzhxE529xU1TYYdA4jm6ATWtUdw5OuimqxeHZcVJFDSbb32lH19QxtPNRQKrofpE21sAljtcyym2fT9WqxcMVeHH2fugrc17X1hd4PzOT1amdzCBr8CRLO3WJycQQW9vCnbqD2aIJ/f1bXenEAMXv0t8GjF9jWplr/GunWolNpbc9naF7VOeE3WL87mLXZYLFYvXyGCXE+WXw8m29Xh965n75GRPp6ftdOn+pPO/z1N/gxX1ezTto59if6/xNHsLM90f5ygnmZnJPzy3MqzqfnjxgBIzT/EM7l+cQ/fn51Dh/Sc0HdDx+yc8bqb/SB8uwcZFOe77/BcR3QfKPtNy6aellbr61ItKez5ttRAXp0WLTH6L5NZE380Mmrc2orhKa8MfYbs22rtjbS/NrUgf1pe8ZNe4w0LUj7K+AXyjv+oK49aM+G9mw8x9VtG9atnby1ru2Csd3iWF65Q/gFZNccYt3bOYLNtDWBao1pO0EPnVD7ToTGkFpreVvUdRMPNTUSGwaddulxzWZf/KhZ3foQmmKKN7XqtlY4tY9CwKu0rQ9rgb1vMIBOPdE2Bd5vcOhQGzactsNL20FrI5G17gCvlxhAp223NTR1YVfdN9t46yoMgNMTWdsMP3Xx4TzF9r5rirM6EG0000MAtHPPRZANJc69BtvJQkXA18QObGgI2KGj6nSSidZ6WccwPcoI9+cNqCPNFj+kDRdNNj+x1tROAmgSB7FBEYwVaIe1/XZIKy4KnWfA88whfNuk4cLN9aY9BG0HQHuOaPt8yCfQ9oK30wnD7PTMNg1AG8YYSqeBR71Ot5PehZu1DMxp5U0qYm16IjaSTqtqs9MhJx3ylAtBN1TtVIJDxnhgjO/LN+HjrM1DrE0xrM0sxIbaaYZXTalDAhDMK3VIOve0e8gxwhsd3jrkkBYcnhjrrRboeDv3qQxPotadbvpKG2uHQ7IJTW8AD5mACa9vLUI3VdEmOZAaU2zkMHI63FrsQ1s3U8LIfcLS0BwR+9OFOA1FUQf/vq666+iLgxM9pFLNzNZmXz0zXq3quFayr5W2oG/Ivg6j93UIc3SGaeP2MBIqMBLYmcZ61VbkpUrVJrMWKQ7j4JvX+KB1gWGNP5s2DDSQ0BIKw/culqQ1hB79TmkwSzPluc6DKdMAkFb7romW29C2AeZhUvMbdqNN+pSFk+0xeRNtEod2wDoF2CEPHaCqneMtK2sPiQO0dao5nNMCj2aNiW2i1rQZvsPJ5DwEGtDGLT2KYEqCRenBJ/dktkMJYKdjEopG1gYYOwQY3FN52z3dRld7pB5vdhQ9up7AtB15Uk93N1magD3Egm7i0zTT43Ce5G18knrC24KixfnOSB8CR5kmvuH4fLM/n7UcW7TERDf815B97w+lDoFDWzQFDydDFIbUOcN1hR51RTU5TunGpjbHK9V0s4Vz2gbfYRVxKC/3demmLtPA5iEuDewPsbYG2qYr8PK04fth6oSxZEdp71A3O6wB2ip1Y4TLB7xe9HuL/CfPqzWuZ/cXsrbz5W6129TX5Y4WmzNcsd7in/UP+xX9xF6j+ZflfFsfnVXX66q5XLFw92LqqyTuV3J8jco77Kr6ZL26/Xz54uv1/PqkA08eN718spmu53f2OlN2uVhNnx8WxdlsvplcLjqrZHdtDlfS9eWE7Xxrr4h8/OputazQVFw1V5vsd5PpzWa7u81+8vv5crOupjfL3fL6p7gg321v7Pr8l7+bb7cV1lPNl9jKZIt1uLs4L1fr586TX1evttnkcvUCf/mHH/8jJT9L/f/H6+yyer66vUVfYk832FS1zP72l/96hn3drNbV8m9/+c9st9xW6830Zl7NFvPpTfYCTcg+rRaz7LrCw9Xy+Ta7W+DwfbRE96+2VXb17V/Xma0MDy0m11X27V8vq3Umfjm5WVd59rtqgadl9gpF/fsyez5ZLjP8++W3/32zqJbnGXpmiS7CQsv9eUtsbrm7rlv+ZreZ3N7isW922c3kcn+GrXFdza1nq+wCO3GNBz7G7i9vJrsNOtMWx8Ga4wm/OHbExWT5PKMfNt21zgBCPmj6nbkO2JOtUbeZHbLNZPuNK6jPzY+8uli3LtGzLuHXBJ2aeN9eYcL4kT/gX3z7f5squ15PruY4ctmqdhjGXrV2B3bLWV373frbv17ZIbKD+DH68XI53+CptzjtZtgWjvwWAxk9i+Ox+tTdbP3oblFtt3VDZxhYC3uNzM2H6hXO/429adtcObygZxkefXr24z/tVtuf7SMno/Wf9UmLCgd4m23d5dYtBvvZ0dnuWtTN6mW2uvxjNd0ebs3UJY6SCBa45+JrNlnc3Uzc1WX/Yq69/Hy9/7zcf+7Ltxd2F5PX6MDjjOKa/xL9enT0yeO9KUFPFGFPsH6eKN6TJ96FZWXYMuhnWfkdtuwjdmKZm59zTJ3//r/9rMMavjcR/BF0vNGmIfTHj3p6A77DY8071n0x2V19U2EWROtqWOppIv/umnihOiZ+vN6uJ9c9M7F6Q7OogPdvWPHmhhVvatjxeDkj30tqfXPDyrczjBH+Xmdb1zA3w3pOsHcxYONk1I5Ry90tkrFp2+sm4fyhxkOsYreviImmjx2jO3doD7dy+00++qARv7q62lTb7NXTs0dYwWv8oDRo4/7oZmE3lSFprHfK3E5e2b0x2NzlZrXYbatnU1y6LQ/76uquN3dmiR0D25ixn6/tDXhrcXY1f1W1d1NxrTT/BleQk46xh3vl25v59PkSg8zd0N/ub927L5/NZ7i6aDs7WeJa063YkNre1bew76qqvvndnniHrnFbBo5WiclDyU6HksObDuX96ebhoXxfY0XZfrCYMd+PwYLTwQL9doMVSqEjDRbfDxY38rs+WD5raYjZUYbMfJA4HdcLfn8eTcqRzll1DUcbZnav5ov5ZP26+0OEpniWsD6WFJ4lhzSSlCLenSWlZwn0saT0LDnMsaT588aWPNi9j/Rp92gwA7wV3UjMAG86p96FO4w3g77n7vBpKiX7QGfZP2UfmexRhkHSI9LtiaehHpuzAbe8Yafpcacpsb02/XrtkU8+XK9Zp9fU9pqSft32iFYw1b+fbkOn28x1uxdC2VNPui2H6zbvdBtct3vBkT31pNtquG6LTre563Yv7LGnnnT7Aex5192WnW4L123er9vytNtmuG6rTrel67bo123lYSkZrt+602/l+i379dvnAHS4fptOv7Xrt+rXbw+sKRus36yDktTBJO2Hk8zDSTocULIOUDIHlLQfUjIPKelwUMk6UMkcVLJ+UMk8qKTDYSXrYCVzWMn6YSXzsJIOB5asA5bMgSXrB5bMA0s6HFqyDloyh5asH1oyDy3pcHDJOnDJHFyyfnDJPLikw+El6+Alc3jJ+uEl8/CSDYeXrIOXzOEl64eXzMNLNhxesg5eMoeXrB9eMn9xOxxeQgcvmcNL1g8vwcNLNhxeQgcvweEl64eX4N/WGA4voYOX4PAS+uEleHgZvoz4fvrdwUtweAn98BI8vGTD4SV08BIcXkI/vAT/su1weAkdvASHl9APL8HDSzYcXkIHL8HhJfTDS/Dwkg2Hl9DBS3B4Cf3wEjy8hOHwEjp4CQ4voR9egoeXMBxeQgcvweEl9MNL8PAShsNL3sFLcHgJ/fCS+9dhh8NL3sFL7vAS+uEl9/AShsNL3sFL7vCS98NL7uElDIeXvIOX3OEl74eX3L/9Oxxe8g5ecoeXvB9ecv+W2nB4yTt4yR1e8n54yT28fOhW4LvudwcvucNL3g8vuYeXMBxe8g5ecoeXvB9ecg8v+XB4yTt4yR1e8n54yT285MPhJe/gJXd4yfvhJffwkg+Hl6KDl9zhJe+Hl8LDy/hmg3fX7w5eCoeXvB9eCv/O5XB4KTp4KRxein54Kfw9YsPhpejgpXB4KfrhpfDwkg+Hl6KDl8LhpeiHl8LfTDMcXooOXgqHl6IfXgoPL/lweCk6eCkcXop+eCk8vOTD4aXo4KVweCn64aXw8FK8L7x8sCONysLfFizz/XOJht8VLOpNweroxwe3LpL91kW7nSNx62Kzc9HAgBsXrSfeydbFJr8ejWKfrYuBfSH6Dcbx/eySa23xkes7tbn5LYLO3YJ2m5sl+e6HXb/R8mJK5+ZtRusd725+m9GSze5m8feYJAovSfTbFewTsLE3BXuG9NsUfH9kfgf2BD/3LzOTYJr7e9gFe2z2dHV7O1nOsqV7AK59xsDVvFrMnLn1Q1knxJpf27DbNkdcSSxI6wr31Xh+3LYVNi45nPhuScvDqrQDaaF1kgAW9Cx5O8+6lPK8mn1areo5sHfcolpeb2/2IF4fmk7uXAPuWC0p/gPtwSWaNebzXhTCvwxLgvx1JBKx+L5Oq4fNvv2+mt0vmyzuzSbsTbNJQF//VoSzdzZhNUEkcpB0skhKJ6wH62jSyaIX2eibTt4b3egXYLf3Bhi8aYAFHlnwVhy5d4DpGq6MGCTAbpMCDHqwwSbAbnuRwLQAew80sBtgn1+dRNYHFzz723/8T4ZunVD7p72k9BOa/XP2wQVkjzNcjvz0337ykbZPdmLt8BwF4uThADx1yMS/3U5yTo7+gURASDD24oPaWKt1stZefNBae/FB19pTMy90mp0X/n6IHoZG2eDbD3jrA/OwD0zABybRB/7eCs5yqhUb13K3Fn/AdEoCtlOSaHxAKSdFzoUwzMg6AsTIfqARP9CQHyILJN8P/o4PQ3Ig0gDTlGlC6MhuYBE3sJAbIszOd4N/WZHK3L6riHDGOVGjRwNE3AAhN0T4h+8G//IOFzk1wAXHgJBSwdh+4BE/8JAfeKofAvfrMDtIKYnRUhPdvCliNDeIiBtEyA0i1Q3e7T9BVK6MBjD4L6U66QbBe3CDjLhBhtwgU93g3U0UiJSYH6V9Bw2nKnDhcFAvqIgXVMgLKtUL/r1JZXJcihoFhBLgMDZSRHgjDRFHmsocfammpDoXBghXVAnCJR/ZDRHqSEPckaaSR1/5ibkxl0KB4qCZ4WbkDMkiNJKFaCRLpZG+kBSZQi60fdWU5sQYMjKbZhEWyUIskqWySF+XqgTkQlIppDGaKjUyULAIi2QhFslSWaQvc0X6mGsCmhupOBEw9qSIsEgWYpEslUX6qlktTC6ACEq5QNJgRiaRLEIiWYhEslQS6YtwDVW5UVogccAVFh17TkQ4JAtxSJbKIX1Jr9H2UgulQOzb+8joGTLCIVmIQ7JUDhlQCBO7B1AiSkiDC0zKxp4UERbJQiySpbJIX3FMcRmRM2kITgvKpKZjx0OERrIQjWSpNNJXMFNqeA44LQQXuMLiY6+0WYRHshCPZKk80ldEU4ZLbcG4YFJRXFeMvKqACI+EEI+EVB7pC6wpSIbTgmBUCKZA07H9ECGSECKSkEokfcE2MgakUAa0VkpgWIx8XR4iRBJCRBJSiaSv/6YCCbW2V+AYZUwgqR7ZDxEmCSEmCalM0teTfzX5amTDI9wRQtwRUrmjL0gf3/AIXYQQXYRUuugr2sc3PEIQIUQQIZUg+pL48Q2PMEIIMUJIZYS+pn58wyMUEEIUEFIpoC/KH9/wCOeDEOeDVM7nq/pHN5xHWB4PsTyeyvL8xwKMb3iE1vEQreOptM5/rsD4hkeIHA8ROZ5K5PwHE4xveIS58RBz46nMzX+ywfiGR5gbDzE3nsrc/EcjjG94hLnxEHPjqczNf7bC+IZHmBsPMTeeytz8hzOMb3iEufEQc+OpzM1/usP4hkeYGw8xN57K3PzHQ4xveIS58RBz46nMzX++xOiGiwhzEyHmJlKZm/+AivENjzA3EWJuIpW5+U+4GN/wCHMTIeYmUpmb/4iM8Q2PMDcRYm4ilbn5z9gY3/AIcxMh5iZSmZv/kI7xDY8wNxFibiKVuflP+Rjf8AhzEyHmJlKZm/+YkPENjzA3EWJuIpW5+c8ZGcvw4kT0URzsLiKijyKRthWBh2BGn44VlJO9Q7PNw2YHWFuRSNqKwDM0ec4D94+GtLtRedxneEjlUaSqPIqAygNUzoUJ7DEY1HoasT7A3YpUbUcR0HYIkhuhhNR7lVNgr+qgfmARPwSoXJEq7ih8cQdInhsjtCIhtdOgHoCIBwKcrkjVdRS+rgOUyQWGAhGCh3bxD+oDHvFBgN4VqZqOwtd0gOG5UkZgTsBAECyww2JQN4iIGwJkr0jVdBS+poNTkmMgKCooo0KzsWeEjLghQP2KVE1H4Ws6OJOYE0BwUExyLnhgr+6gflARPwSYYJGq6ih8VQe3j7BUwDR6QAgCEcXve3dDhBiGVB1Fqqqj8FUdXNJcg2RUarsDK7Qbb1A3RIhiSNVRpKo6Cl/VwbVVgxopBaYIIJyP7AcW4Y0hWUeRKusofFkHN4iXjBFECQOUypGTA4sQyJCso0iVdRS+rENQdANhBjjTRHM6cnJgEf4YknUUqbKOwpd1CE5ypq2gQQor9RnZCxEOGVJ1FKmqjsJXdQibIg3iJSiqkTmM7IUIiwyJOopUUUfhizqE5jkoQrmWUmod2qA6qBsiLDKk6ihSVR2Fr+qQVhnMuREInCBEaH/qoG6IsMiQqqNIVXUUvqpD2heUWObElNGUjE2mWYREhkQdRaqoo/BFHVKoHEAazgy2xOTYboiQyJCmo0jVdBS+pkNqyCWyJkasVJypkS+3sAiJDEk6ilRJR+FLOhSuMI0SEhQXmCf5yG6ACIcMSTqKVElH4Us6FJicUy6llUfjOvPe540O5IYIhwwpOopURUfhKzqU1LjQpowbLjFPipGpNEQ4ZEjRUaQqOgpf0aFwRaEE0cZwLhmTcmQ3REhkSNBRpAo6Cl/QoYEibyD2wgvjSKXHjoYIiwzJO4pUeUfhyzu0FDmhRCiGqyoCY1+ShQiLDIk9ilSxR+GLPXA25JISY29ScKnHvj8BERYZkn4UqdKPwpd+4GywV+c5EmmN6wo19qSIsMiQEKRIFYIUvhDEKMBJYZgAQjSSyJHX2RBhkSFZSJEqCyl8WQgllOaGI48GyrQwI68wIcIiQyKRIlUkUvgiEcyODPmTksw9SQPGvgbHIzQypBkpUjUjha8ZwfTIc+TRwAyhQuuxF1c8wiNDEpIiVUJS+BISSkHnlkoThkEhGB2ZQfEIkQwpSopURUnhK0oo1bU02OD/QGg2th8iTDIkMClSBSaFLzChmB5zqoySkhpOR3dDhEmG5CZFqtyk8OUm9qGdOWfSCIlUUpuR72rzCJMMiU+KVPFJ4YtPKGA0SM4JCEqFkGOvr3iESoa0KEWqFqXwtSiYJHluiFHG3qqgwWcvDeqHCJcMSVOKVGlK4UtTKIZC7p66pEHjAkONPS8iZDKkVClSlSqFr1Sh3KjcUI1rC0MlAznySpNH2GRIuFKkClcKX7iCOUHlGpODAhAMWdTI+UFE2GRIx1Kk6lgKX8eCMYDmcC00YVoFn8Y1qBsiZDKkailSVS1FT1XLoIZH2GNI1VKkqlqKnqqWQQ2P0MWQqqVIVbUUPVUtgxoeIYghVUuRqmopeqpaBjU8QglDqpYiVdVS9FS1DGp4hAOGVC1Fqqql6KlqGdTwCOkLqVqKVFVL0VPVMoDh5YmqpTzYXUZULWUixSsDrzKR+b2Xxh54h807NNs8bHaA0pWJjK70VS1C5ErJey+ODmN5o2u5z/SQrqVM1bWUAV2LVrld7Boijftn5AhoFC73+iHA48pUhUvpK1w4o7lhTNjdy4yhH+69gzSQH1jEDwFaV6YqXMrA60uEybkCaXCZYwD4vaubgdwAETcESF6ZKnMpfZmLILjolxKjwa5wjBg7GnjEDQHKV6YqXUpf6YLm59oYQbjAFS8PvdNnUDeIiBsCBLBMVbqUgbeXGMgBZ4QkHPOlVGNPChlxQ4AOlqlKl9JXukguc0YQKwVQpWno2fyDukFF3BAgh2Wq0KX0hS6KQK4YYUJysA8aHjsaIlwxJHQpU4UupS90UVLmmBRA2Pvs9h0mI7shwh1DQpcyVehS+kIXDTy3twmAMGaVLiNPChbhkSGdS5mqcyl9nYshOtfAKLqAKgahl9kM6oYIjQzpXMpUnUvp61yMNrmimiFzUsgk79+HNJAbIiwypHMpU3Uupa9zoYgS9v0lVEiGbgi+G3JQP0RoZEjpUqYqXUpf6UKpsliBq0tFJeUSxvZDhEeGtC5lqtal9LUulCmdU23ASC21hvtVkQP5IUIkQ2KXMlXsUvpiFwrG7sjSiJjUbsIZe7XNIkwypHYpU9UuZeAdJoIKhAsquVKMEz12mowwyZDapUxVu5SBV5hIQewmZolMUlHB7r+3PJAfIlQyJHcpU+UuZeAVJsqoXAopNODCG1dbY/shwiVDepcyVe9SBl5hYgT6gWv78g7kUvz+Te3D+AEiZDIkeClTBS+lL3hhFGiulZYYCZJKMrYbImQyJHgpUwUvpS94YRgDuaRCI2oKZu6V/QzkhQiXDOldylS9S+nrXZhgOmdglFXPM0NGnxQRLhkSvJSpgpfSF7ww+2pEu6WdS4K8cuwL1BChkiHBS5kqeCl9wQvOA7t7lwmpqH0LGoy84IYIlQwpXspUxUvpK16ASZFT5A7EXakXbOxpEaGSIclLmSp5KX3JCwh7/86+58rgktvQkVcWEKGSIclLmSp5KX3JC+AaO6dGa8ooMcgkR76fCREqGdK8lKmal9LXvHBGZa4ZF0QC8oexF1gQYZIhzUuZqnkpfc2LfVRhjqGgteLiIcnwMG7gESIZkryUqZKX0pe84GqC5PalyvbxXNqMfRmKR4hkSPFSpipeSl/xIjgX9l14ShNtXzg+8vKKR5hkSPBSpgpeSl/wYl+2ngulgSlAAsFGTpE8QiRDepcyVe9S+noXyYXOAVOj0ZZNipHvX/EIkQzpXcpUvUvp610UAUDEROpAhDHyflXgQG6I8MiQ3qVM1buUvt5FSWFyKix74gpGv5vJIzQyJHcpU+UuZc9XrwxqeIQ4hvQtZaq+pez56pVBDY8wxZCgpUwVtJQ9X70yqOERbhhSsJSpCpay56tXhjRcRNhgSLJSpkpWyp6vXhnU8Aj/C4lUylSRSpkkUhnI8AjjC4lUylSRSpkkUhnI8AjHC4lUylSRSpkkUhnI8AirC4lUylSRSpkkUhnI8AiPC4lUylSRSpkkUhnI8AhzC4lUylSRSpkkUhnI8AhzC4lUylSRSpkkUnmXhn+yW06389XyxPyLw3tmDra++mntCtsus+998wy/etjsq6axxu7a65ub1csMzaym232X298ni03luyH6BprF5HW1rl3QHsEKv1zNqu7R+bJ6tn29qLLtzXz6fFltNk/PsO66u6T+8tl8NquW2OobebI4aJvu9WThe/I60ZPXb+bJ+1VP3z1PlocJeK8nS9+TN4mevHkbT4am5qCeRDuXG+yvs8n+fV2trqvL9eTn/w9QSwcIbFnkajUgAADJAAEAUEsBAhQAFAAIAAgAFF2QP0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAUXZA/bFnkajUgAADJAAEADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAM0gAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Version vom 16. Dezember 2011, 12:46 Uhr

Inhaltsverzeichnis

Zur Person

Hallo, mein Name ist Janina Wittenstein, und ich bin Lehrerin am städtischen Gymnasium in Wermelskirchen.
Meine Unterrichtsfächer sind Mathematik und Pädagogik.

Kurzinfo

Nützliche Links im ZUM-Wiki

Lernpfade

Lernpfad exponentielles Wachstum mit Hilfe der Zinsrechnung

Beispiel