Extremwertaufgaben: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Visualisierung zur Überprüfung der Ergebnisse)
(Visualisierung zur Überprüfung der Ergebnisse)
Zeile 49: Zeile 49:
 
==Visualisierung zur Überprüfung der Ergebnisse==
 
==Visualisierung zur Überprüfung der Ergebnisse==
 
<ggb_applet width="1008" height="601"  version="4.0" ggbBase64="UEsDBBQACAAIAK6mP0AAAAAAAAAAAAAAAAAvAAAAOTdkNmNkYjkxYTJlMWUzOTg2NDZlYmY3ZDk3ZDEzMjFcc2NoYWNodGVsMS5wbmfVWWlYklu7fkFySE2L1Nzk0N6ptd1qgzszFShTt1lamWmZSpmaqeE8I5h9mpZZWpqRodtME+csJzRNc06chxBxHnJEQBQEDvXtc77z4/vqXNc513XO4ccNF2u9D/d7r/t53mctYs9amklv/WkrAADS5n+cPA8AIsKPoFFxsPAt7WiaLwAoppifPH4h+PMi9eozvOkb3LnCNslnrODfR07LT+iQqxOSgkVP/u5gozv+nNBidwI3mmV/ghYBAgzb9YgAIIsEALA4gARAgLiqMDAEUMUBAEQWwAHgfzF4G8SUBkY7hHNUcd/AEfJwvzEwaklgbUcKr9vxT+BfxeqXUEVoSQJ5m5IrwkFZ5Dc4DLoetx2wW/FD/OO7fwbfZ/7PifyY0l8RIA+/C98T6B/KfB9+oDNo73fhByslrvp9+H4EJCDxXfiBW8B/fBd+4LfvLPn/wLr/ePH/HHJC1GDvcfgThfMK6zNN9NsRm6VXQ5wf6dWB0XfX61xijSXB4p/eDEcGML2dQq6nXUrulkspRdm+SI1z/LAZfQmVqVHjblF2s9tXOT83WatkIcxBKJs2PLpf5fzhFL151V7/cCfPibXdn6ocP6zcCp8yLbyyP3V5aIR/a+hnc6tr3haAT+F2BpE2ZdKG917tuFRy2/kad7bFq7HooiLwE3WWZfS0RMJDwc9tu/275pLlAKEj7ObzSgbFLeboN24pSsrcVZDKuO7W+TETydXJDsosI3lksxs4WeFvw84s/VpsVDZlLou8MgLHo/tHQapTefB3JCcFPc6yjt1g4706ycZzJTKMFOktSl7pyfHK2MTFmG2EN1x4YmlxeoZtCGlJnvKzaAREVu8eodaetdL1yirSvQ1mcMjp4LbegN+PlqKqNK8x0wmhteQQiQmZ0PLYXL3QEVYj/Ze0kWuY5b7azx4hMG2uowISfDe2zGMznrOao8eOIMe/HZ0nIK6St9lpHRR9zPHCkwaebuw4HzTRHf9C99cdYSrPw0Suq9hPy2hqoetdaPNCL/ks5T8L8jkGhYrEJK+Dy/Z2Nh8vDkAahj15cEWgrsR9gz/K7HxklkuZleMuEJsMi7NcNWZObdPUiq35+5J8mZ9hZRLg8za7z4l1DPnF5H5I8h9wlHUqSLSsRjU9pcYTj4TalCxro8fErpY0Vl9L6Fk9cmWtWluYv0osxriqAyLPkC9Vd+5ealLAlHlonVLG9WusREzITF2SxhXTI6Ge1BeX88MkDddQT7ickXsy8PNtFO8hdqXQhJs3K+c215Keh9ZG9rjPxch1EIj2UemudTfhGfiVOA/2dCy13FWuwbJwpn+uY0fh4xqKDqLcxT6w9e933hUUWbJhmKWivk9QcKo+6OqzhNixLW1Vdu89Aw8erEkSw8nPEdLMVOzQrKbk2MUu5l+0H9YRvtQ9HhC7Pdbkydnom+15Hh7ngp0p9gRyls+XM9UWFhpbVMSsdO73hHVNHzIbsCcXu4wX+Y41l0kcADUkrboxWn5Fr9AO338YtAPDBqUX1DWOpxSx1ltoR1tVrpo74Dd6LKzRfQyLG8AfQn03egJ8Suj+zuiNDIO4M8pnTqGleL38uX3pqynegXoFg7OsMh0BR6q46UsVt67xmJ07OC8UuQN00oefRx/5req9AzuEmQpFGX2qXth4dS0zRuVNmO+UfJM8FCWUwKifesuyK1yvuBUIXQI6bZy2XkZlF9gV2XgsK/81RZFf8dHgjd8akVPLmuS/rtk/zuNqCGAoalX3mQda6rXCWp6IiMaqE4qXoobReqCL8GMrORJFJljnMXXjtm/j3YigYOfkTRLbBcRcAKV/pke6SQPS/I7gtiV/vPM9oSx7ccqvWfUNn9rwb2sDVPoxwYLHop31HLcDuGNrOZTd9qdxEqqg6+tmAl2xznqN2lMx4r5OH2bMPPS3J/f5t1kGEP6KwiTjz2CnlC60wZtXmKD0VqUDLLXwiKIXMhEp8SEBC7Z6x949BaBI8Gxk8ubg9YuCSS3voYxNPq+HbZ1l+24qJevKG6yl3Nm+mixsgaK1CZCBPaRQ/iVTKoEAaBqeca25U0jBfpQoYmy5UIyl5mC/0XqJZVo1Mh48/0kFAXr3YfTzWKb65g2HCVMV3l7/LnhgdkXANx3nVAgCd8dz6rVfLB+761z1ACksERhRyNdohgGm7APkqdDPZEZ/GaLd8P4FpfYzuL6PLt0WgyFPXTRqp6E5CzEPUowm8F+5/yFY54exoXiASJGEOn7gGzOHN0JvZlqpnZ235Woj3p0uyPUUFWYXx23p6JMQRRtWS2Yl3qIsf26D9+eNXSXMl/2HQUequshY+RwGQzuIAzzkbxcq4jC8yCfbYoBKT2BWWr12h3ze9AV9zGphaF81DMMZjvDds9SLyKpq3UprFJK4W6C5bKLdq40HNBVfBtMkinJ9mruJHNhpnAMFqV4rJTQuk2yjcDPV7FFu4YtUgAjTPABKPtZ4js2o4ZgJxFX7I2h44DAokAhShaLmiC+npy+q137VUzjAfhEU+GKx5OsIkWlVB3TyjZd0hvKFpGiEsT7BKyjqVuQ+HKRTRAx3c1t4phmOWPArRmQhTaPWchick41tPcJpv2/lnTHiB86bkkdyzACfAVD6/SFmdX27je0TGxXgEOgIqWmn1Enl6jvxU1UzELt+2O8l0kvMuQ8vtLr1X8UB44mg9I1z6QoxA/dEca0RYfVo1GYlH4ZyixBZqIGi9i/31IYRJ8e/dIRVfc1qL5HZBvxqg9x0rAc9ur4ZzJuQvxtAKzCg/7KiRwDw6PQJE82q8kpfYX6oC4lTdh1dSwudSVC2l6FtDEgRU1gJEkWVfHOMBIH80AiK8nL7cFjav3TrLV0RV/BpoZagC96/dcArHA7lObIpDPXaZL50EVUMf8wkv6KrCTaLUhu+Idr+zUNWF+BMPGYn6ZpddQF2UzzcQTBZc8eKS20nRkTFK1+WZKeC7BfMRlkJwHgIaGcozcn7Qh/iiWQgRpCHV1x0+1AHOSWZ7mG18S1xdyDVmnIWNGYRufIjIZ8hdtQUTrIRLc8ImhhcRqZAHn7LOUjnW9BOQ5m3TghbqmAI6CxsxR/TMhgrWjC10umu+sekw6iuJjQc23sG+5b02I+9bF+CVR5Itk2T6FFPTamur5erivsqZWi3yNQCFx5aumz05gl/5SYvfb2Fq6AX32870kOBDLJi33HsbGfkDwqFDHYE5J7HHLPyMkEIRgIiBi9v9hpI62IUSb7UZ4CmfUMYpPMaFPU1FyQdBb0joj6jXcSmvFDTfQWVIj2HeNahxmgoSqstuPRu0NO1rwEhD/ekPwty5UDsQkrS2glQso3RvpqKTeJpnJzgRQssvEqbZOZlODl8r7Xqw2zVRf338n8vTOI5k/mX/AApxJfeupccPVtioaFeCmL17EC4rkHAL3B3sOf8njDwbMNyzOMtnS0yVanf8hgkl6aZqw1kJlB8Wy4KYO6xEkUfIHY8nZNGN8GeHlZpYZfqMAjm3r/Z2orNB2TwvxIsx4Ck3+vPF9RHJZAWxD8WfjlOTzMj814/si4kXe2DY8AL9m06fWKEn9+8in4gql4r7FBskU8UbOua4EGGl+Z3p63P/TksAzyJWHCffly+sOi29ZZUOcN0H6HAXNDtutbUck1ysIT4tUSSjEFy1NiyFaju33oCrZuIrRJFVK9ULii9awuRd8qhpzLtUBEqSQQ5FUXYoF1qJvUY10EGGwp8Y3T4QkWYnsVB7pvSz3iwFa1P/WsWxIHrpl/EcHERjLd0g9NUjedxpSPY9lYrqycv0UsuZ29stw984sI2ExpllyF7RuBoy/r4pTazjNcR/vFsLX1ieo3M3GXStRdJQVrP3XYhkRudrqzBcteuTfVlRsuXuNheCsTuFBalxAkn2n4d5uk5hag3GnPPyLuUqm9PSgeRUM71cHMCbheF/ZPVUTV0XJSY0uWM3x+dZ80WBhX06uT8jhk4LsyypYdIHRmderfqFj1MY+TbmcyK7G2xIU4u+o4rL7fADCZnlDlmhKpF4+x6TbX8z8YyF/jHp5xSCZ8NHD8/FjMftDFNiIZDtHDlxiJe1bbktA1O3Pj8YWllwo5tVhOYp1Ojz72pt7OUWFbVdx54LFlLyttpSkCTq52e4klKHVuCcl4M2SRTVbY8BH5m+L5daSC17iDrTP8tlh66UWhfVCo5UpFyNphqVHGLYao9MGhpZEBp++j175dcyxJvrRp/fXn8fn3XWzpj3ORKKSo1Zr005SGGnibsJudz3ShyUuYXVOwDFfTd46sd1bSsbgPXWjK4+fVBaykB+FPOvKN4eOyatl3LcaN5tZdOQRpadmvZ+fKKd3Ps13lTHSEdUazu1b3iqsnKUhxGeRq2/nNlpgf/hAMVUaXRZU84keR0IjBNTcuug1130Yit7li0G/1+9WevsB3C9NsmUR1K4cMP5a0zLArKgpkBbeAZyouwmD3/d7Z3pHvvI8IF7+a5Ce/zCJoDCflRAHgfneEskOIuTmSz/OY4IawFjhjoDrHbGY3J2+0Is1ysC7ihVu2IcEBr2ouBII+I3U1POjfejv3KmTpV6nvxEsKeXICVRR7dC+M/tYd1MCjOUv1tdbtOUyjN/ceBurGDGwwfn6DQWeoDQrF+XPXp0M2+0j3RdOFvCZ/Jx4E9OLBbftrWUKLzjWCvdUMT78U5gk00ylMJIrs7wXVBSaGQJztj4+HMZUnnlzctWXQUiVWdpm0tCZBFej/V1YlzDVubcdj28hcPZ/9PRqubt+KmRqudwVJfNzruzRM2ZBJrmNz8WRbZpNmguIaKqfAHtwtpZWCjb7qikvdtkoNURj+WlfCvtD6m8zJSAjkwIwNCFodN4HPFsHD2+iem6/SV6GXl8FKJmk2BdR+pnZ9UHLHt4tnpNR4nG/vbRIqtc6AUqIGhfSrh2vTkDO6E0wFBeC/GJ3FjxorNd90Uh7870qih2/jeWdDksUtgFGXtp90FOxERkR6PZYfRnUgr3vo6bwR7CwhRoi3DNdxIhUtmqrgDgP9N8dk2xDo74b0yJopWzhEgwnxW4AdrEKVHGsfHTZTuj1xX5e/PG9NPUbCfaBNsfU4TLFttq58KNtYSRiskNC5WlQmUvJTeXBdXfaEL+AcP6e1E6lg6GmCL6JuUenahzkcPMVx0//DAx4T4C56IoM3XTeq1D971ZgsEG5FHyrqWBetkY+kE8/w3gpeFhLT4cyWYsv5aMs2K6XugfZ8s+G4TkxwruUrFylfAEST/EX32Jh9tILKRxTt8qHSVhc4kyAyFSI9pqFxqnTDlMr3pLa8myAcXbxED1giJrMMVftKeNF7ki/oBdylxUIPBsSAN/MoNk9GX2w0iMbykhIRlJz4zIZv4HIDpx7x/zjkW3B6ZNDQMMffcI1gnNkPI01DL+MtXSgU78wnvFmG0Y2M8OYjssh7gH15OqXkm9XzuNhu6WQkxGCgs1Hb0EMWZokGygi8+JMkPWH16zMTGruH9W5NzIwSvLyMcKEGrzibROFmkYSYWbFbV2aUbOvC2GXKurVohk7aoeMmeXnixCRH+CH480bdVctmiK+uym2C/PQIDRfklVYGF/Cn6G9bbMjx4o68RuqMjfvV1xYU5Zi8iJqFZW4xN6hCnK7DnOTOBA0PYZwNWH4HO5j8KgRMAvReUPuHMHXPY/HNg2dpJ0lJw5cMK0PmaMnd/+LJ6xCFJbEpOLna6Zmynfe69NcI0K6kGY2aLo7UhAXonXx/er8Ykjya0Og0gBA5/jmXt4pj6rOvijY4n+tXMO+R28LJDeKVncJ9Sjoqr3iJ6gz2Z0U31ex5hz/xkB4vS6H5kPeMCRVFn2D0WAV1867KIgjQAtt9HBCk0jNB/q7AVAt/hxhH36Z9I7sAsM21hByfb7fbeuVBECNgzjZcdxvM/g1NbiFXFBRP5+lzNc01OgAFW1ksRiMuPbyEnymOAfYa9vjMSRULuwgZfNNlz0vqTsLg0iEzyRO3W9TL6Fwmzn3eVXxprPnWX0J6o8Uel2FFLnT4TrhUX6LwNRX2dCxXFbXsQUFzVokao7U8FYLAj+MoTBGVga/LljuRnXzug3Ptfb/QlmtZ1/DdeFDCewWNwBpU/EYahgyegKOcJ1zG/lmaZNlEr18N6ar+RPjrNxytaC9W0V32FphWDVBlOwhtG+YM9F+41aUTojy5jd8B7s1UeT3g4//rkT8SMrv8hSX7/SQYaVSo4ZNbF7+HCdm1QgnyDu9jvhY5xBm6MKlQ0CeqIxnNY/iaDkO8jmX44f2elCX1koFpjyU1B0NdG12KxGU2O9e2QwfNcqxnO68EaET+XiC3KoAZnrgb/7WPrMkcJqZt3IlIrhX3UpGlFl9N9Gt+hbxkREX6d2rXMtthYp0/9/om/UocgK60HDK5ABjfJBy8sIzDz2de50ezFQiuvVUlQgzVHw78Hv66/13tqY4Yg7B92FaPXCM1Ztiqz6zPn+PyYR04MqTvzFTG7j87fEiy/ligqzqp0Fey3Q3hR9I758Rj1ozLC1J626jgTFAXqW4WJJnk4T+IP/UJT5K6iXd+/Ir3tdaZNK1Ys+15/sB8O+B8glDbzk6ojOO+Wl+p5M4XxPFVcJ9x97jAzPIpAsiTpxv9G7e+pPmpugiii0xBUbPk6uxPO2xg1FiXTu8jeMkxy6vZHFmuEdpZfySVLTxqdXfVIRbix06D7ei8cPuIlgszGoq8KVBoteWOEM/cSoHewscJN8pttHbHWUFRdfKWwIpdGWLYL0ig1Aj51TKZlq8r/r4PGkgLQf+uM9f/7Qev/9gH7CkkYwC7+PyJ2VgixvG0m8ofNWpCUKoDDj8hd/k9CjqYhYNfl/st/luCs+WKNj/keVAFKEhC+zE0sTxacQN3+N1BLBwipmq/PKhQAANAZAABQSwMEFAAIAAgArqY/QAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAK6mP0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuPGEX22v2IKDykpESHMBTdHcooipd1NrVeu7Gbj3CoFgiMSFgjQAChRW/4cf4Ef8gH2j6VnBiBBDqgldVlrI7BKAkAMpqdPd5/uGRDk0Z/mkxhd8SyP0uTYwKZlIJ6E6TBKRsfGrLjoeMafvv7yaMTTER9kAbpIs0lQHBtMtIyGx8ZFeBEOsQUN2YB1mOeQjk+J18HkwnFDzwkc2zcQmufRV0n6JpjwfBqE/G045pPgdRoGhRQ8LorpV4eH19fXZiXKTLPR4Wg0MOf50EAwzCQ/Nsqdr6C7lYuuqWxOLAsffvfNa9V9J0ryIkhCbiChwiz6+ssvjq6jZJheo+toWIxBYYswA415NBqDUi71DHQoWk0BkSkPi+iK53Bt7VAqXUymhmwWJOL8F2oPxQt9DDSMrqIhz44Ny6S+bVuuh4ltoDSLeFKUrXAp7bDq5+gq4teqQ7EnZcH4ijSNB4HoC/34IyIWsdCB2GC1IbBxHHXKUu9ZVG2I2jC1sVUbpi5nqilTbZhqw6iBrqI8GsQcbBvEOYAXJRcZGG5xnBc3MZfjKd9Y6o0PQKc8+gCNKYauFNrHhu3SA0z8A8eyDphlKb1rSpJ7SaUHtJKKPX8pFYM08UfsZqm4JrXIZjsKrUQyy9ZFblIUO/eRuQDX9r0auMw7INQ+sEGm3SCT3oauGsNSpjpuEIltqyZSSNoo0GE7CNys5MckHh1W4XJURgjKx6JtiWvBJ7mIGeoj2xeuj5EN8eG44Ok2wj5sXIIgIhC2EbPhEHvIEVsXURdOMESRh0Q7TJEMENuDf8yVnTnIhs7Euy7EJcIgiCGbIizjiiGIJiRjE+KUUGhh28iGi4R4TEQX1EHMgSPqIQZjFGHpYmhI4UI4BvEEUYyouBi7iDjIEf1hJsLd8cTQoUuCHAs5WHQIkQ1RrSIa2nuICm2cEq4omc6KFYjCybDaLdLpwhbQGjhpyXmKo1Yo8YujOBjwGNLEW2FJhK6CWMSEFHSRJgWqjEjUe6MsmI6jMH/LiwKuytH3wVXwOij4/Axa55Vs2TZMk/zbLC16aTybJDlCYRpbizGnMa7tk8Wo4YDWTrD6Cbt2wqntu41yUziDZjkH+WmWV82D4fCVaLEMVEDyPIlvTjIeXE7TaFWNo0OZcY74LIyjYRQk78FZhRSBC6oSkCSPKv/YHq0GkmbDtzc5eDCa/4NnKeDImAk8tngRsOqNOsWobTqE+dVLMFMYiNizLdOqvTDE5U15ivmmX3sR11ai+dXCQsGcL5UdZTLbLw9e5SdpvHxL6t8LpsUsk7UDDCITWnWTUcylj0iWh8QcXg7S+VvlHFT19e5mCkeWGsFgJHFHwA3EBnRG5XagtrKNGNqilSXbWLKFVXlbNFycxz6RLeR2oLayFbivGlqpKq7UxFYlJsolo1lGGTcVWwnnF2l+lkTF6+qgiMLLUlWsLngzmwz40oVEg36kipKy2pqmeSRiqguiymarovEnFy0wgPolL74T1YttyP2/1/bfjXkRyGNIO77nujb8J77nKb9f83g9AgRtq+EhuZsK1zjUYkMmuW1ig3omhSFYPmHMo1BrLGPDdohQtXR6QkyfQE8eppaLmU1qAWGthBcEy4Z4UHC24VBLI6VLDv4ZTv69o19u8PWVfs+h319+vlPPdVeWPl+68mJ/R1e+5FnC4zJXgFfM0lmuUl8tjQx5GE3gUJ0o/SgQhv8rKKDeHfJRxiv1YznhUdDLs1bd1bW3ZVdnWTp5lVy9A69aG8DRYTXKozzMoqlwXjSA+uqSL/0TdA+gPBvWrxPJDaALRRkG8BYC2nO4HHTh6G2R8Sgcj9P4Qx6Og3Bc8Bhy4qwYp+BTfw6SKAnQ36Ki4NAJjxIQAckdDCUIIOYTmPWgQvp1MpvwLAoX5n0vp1Kgw6xUk9lmqamwKkoH30PZsc5/5RG/WlQd0G5DDKAgno6llUtjxMGN4J4aprLXb9IhXzMaKC/hAJ2mytGmnCtPLcooRVPoTgZ5zQSlyhLVySRIhiiR1e9fghtjWYsFUNXsWQfI2ocxQlWzZ8t9pc6sqJrEqs+yJw3QDPqsYImNrXDbGjBrS8DqHpujuboU3QABi+2HelcLlimgHryEiW8uqXABp9h5GQ2HPFnYgf+QqEtyFfDRZBpHYVQskIqFAV4lBYQ/l/6rR+Ul51NBrOfJuyxIcrGQodpUbLHZaN8KMl8zW6xZ6cXtVpIZYWGGF7qdVjhvg5mqDHBvQ23h2bjJs+smJqaLbWlkqzQyroYhlRVJbWVeoN5d47M67Hw+zcAfxLBKHLoQ4vOpwGsVxsOP4Nv9WBwsc0QdXzFzHanNQG3uHwmfAqaghGm+191vAmedc4N1zlWD3I1Hbx/SoBySjzoo2GZMg/UxOSbx7jWm2yFIdXnUof8/iWfdJAiyeWmT8735PjoWyx6/R3P0B4Q9Cx3KPSiddUtdzBJJqsuKbCv22gYjSWgLlIj94CzWCNNdstDm9PAOCjKuJYiuSunnWp4I/oNvzxRibEs3hdYPBfaDJHbfZDBjcH2LWK7n+CW14ZLaOtjxTNt3HM+2POK5xGe3AE4XucbeKu+D8y7y/u3sE5ae/h7cfA5efgN/diUNCl1BBLqjlycWfTwKFeyI/J3qpQgc8gpGnGY5QnNLiHVhxms5roex59jMFWbb8P4Hq7TnHPy303gl3nAlriU3iMwsmqOuVSa+Lq52SFnjoy4FAUQsK3RZddKuYXRb3bc9079P43tMMT4nij82xgu/P0R7ATj9YKt6YKzXAw51sWPbLmPMsv0HLg5OymHudeZ7L/YP0Hh/x/ru5OnUd51lgdeA2uPUe70Sv84LyNliBtnBuyLYe5IIdvCj1cj9yufA5SA6yP5dUOs/HdSwSW330VE7XUON7Yt68QDtjNzpU0IOYypvx9cql4eH7mwDdDd7J/swKdoZwbMni+CjsN5qkf1eVjNrNXZP1dh9rcae3V5hq9Jogdvsbosxm+cxd8aVmZZLVhcL7rVwVltBLkuoMMgKnkdBUpY/BRzL9S3lq707WKGvrNDTrHC1kxWunowVOr+5Gfp3MMOpMsOZZobrncxwfR8zYJs+/BKy1cwvn9Yip3ewyJmyyKlmkQ87WeTDk7NI50mY5Oz2aSBMr0ZLkE6ieKhWUi4ikKCs5rtDJxwOfBwQjjn1PYc5fHDhDuEEpgT/a3GrC5vTZKSGESUnQXg5ytIZWH/9LkNtjIm8HSm1LWv1jU1wtcoty4SNzUjZ7KRh6rorVS79Ae/qD48zc33H50Wl4O9+mKXFH8+yNCmCGMZ0ArP+SxTMLtAwar4Vqa5oWLssoFtjVcYDYrdzLNWsWs58qMfqH8SR8eWYFq59GsF16gXVx2FkKzAGx2oLxWcAf+ognJSINVSdGmTsN87M64G/1wM9+vsQLHQ7QPAKIOdLQPbO94L9/Roqv/y8Ay5PYmV2zaOwaWOozV3qWq5NKWHKo7BNaP0DX9TfzaXoCoKDGoI+mCHYv5tj0d84s2mOdQp6nAnHIh+HpbvqVa9//SkZ8e14qNvgOZ98afkjK3Sr2p0A5RZbanfy9LXrrWr38tf/jrdUrvf0leuvKvdefIqWJ9up13/66p2usTmURhfxrz+F21rw9MmpeOvSfJesr81/9h+Pgitn8yiOguxm80dwbkflREPFb1ExehoquEXF6GuofP6fMHwAWE51Z/FbdwHCpS3hNhCuhopr2s8elZ6GCjbJs0elr6HSEq4gXN1ZXNIGkdFlLeE2EK6GimMy4j97XHoaLthkzx6VvoZKS7mCcnVncaw2jATp2i3pNpBuAyoOaVN0T8MFm86zR6WvodKSriBd3VlsYlK3DaOu05JuA+m2qDRRroYKNr1nj0pfQ6WlXEG5urMwt8XF6LottTQQroYKa5ehjJ6GCml9xejrvtKGEBCuBgtmtA0io+u1hNtAuBoqzLR8/Oxx6Wm4kPb2mdHXvaUNIqBcDRbMsEmddvG/67ek20C6GirUbNegjJ4GC2nvnxl9DZWWcwXnarBgtvyanmcMTBdbLec2cK4OCzWZ09Z0PR0Y0t5BM/o6LC3vCt7VccHUN33ymX8/3YMwL26Zt4l5NVioSXBb2fV0YEh7Iw2YV4OlZV7JvBousuRtIwmYt30UrZF5NVhoCwvwbgtLI++2T6M1867+OBprH0cTrNs+j9bIuhosUNbhdn7U04Gh7U014N32obRm3tWfSmPExF47Reri9sG0RubVYCGmw9xnD0xPB4a2t9aAedtn05qZV384jVHTtdrbAl3cPp3WyLwaLO3z44J3NVhoe28NeLd9PK2Zd/Xn0wCY5xBHq99ZvPi9vLWvLT5XX1ssfnkIBeTY2COmS5mPbde2MXGI7TjiR6hhuk194mOfua7vEVf/3cKXSv52v4j38l5fpvkYX3L/JngjvztTbj+orWxyxy+0P6z/wKY4HvFU/vLn1/8DUEsHCC5gjGAUDQAAh4EAAFBLAQIUABQACAAIAK6mP0Cpmq/PKhQAANAZAAAvAAAAAAAAAAAAAAAAAAAAAAA5N2Q2Y2RiOTFhMmUxZTM5ODY0NmViZjdkOTdkMTMyMVxzY2hhY2h0ZWwxLnBuZ1BLAQIUABQACAAIAK6mP0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAIcUAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgArqY/QC5gjGAUDQAAh4EAAAwAAAAAAAAAAAAAAAAA5RQAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADANsAAAAzIgAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="1008" height="601"  version="4.0" ggbBase64="UEsDBBQACAAIAK6mP0AAAAAAAAAAAAAAAAAvAAAAOTdkNmNkYjkxYTJlMWUzOTg2NDZlYmY3ZDk3ZDEzMjFcc2NoYWNodGVsMS5wbmfVWWlYklu7fkFySE2L1Nzk0N6ptd1qgzszFShTt1lamWmZSpmaqeE8I5h9mpZZWpqRodtME+csJzRNc06chxBxHnJEQBQEDvXtc77z4/vqXNc513XO4ccNF2u9D/d7r/t53mctYs9amklv/WkrAADS5n+cPA8AIsKPoFFxsPAt7WiaLwAoppifPH4h+PMi9eozvOkb3LnCNslnrODfR07LT+iQqxOSgkVP/u5gozv+nNBidwI3mmV/ghYBAgzb9YgAIIsEALA4gARAgLiqMDAEUMUBAEQWwAHgfzF4G8SUBkY7hHNUcd/AEfJwvzEwaklgbUcKr9vxT+BfxeqXUEVoSQJ5m5IrwkFZ5Dc4DLoetx2wW/FD/OO7fwbfZ/7PifyY0l8RIA+/C98T6B/KfB9+oDNo73fhByslrvp9+H4EJCDxXfiBW8B/fBd+4LfvLPn/wLr/ePH/HHJC1GDvcfgThfMK6zNN9NsRm6VXQ5wf6dWB0XfX61xijSXB4p/eDEcGML2dQq6nXUrulkspRdm+SI1z/LAZfQmVqVHjblF2s9tXOT83WatkIcxBKJs2PLpf5fzhFL151V7/cCfPibXdn6ocP6zcCp8yLbyyP3V5aIR/a+hnc6tr3haAT+F2BpE2ZdKG917tuFRy2/kad7bFq7HooiLwE3WWZfS0RMJDwc9tu/275pLlAKEj7ObzSgbFLeboN24pSsrcVZDKuO7W+TETydXJDsosI3lksxs4WeFvw84s/VpsVDZlLou8MgLHo/tHQapTefB3JCcFPc6yjt1g4706ycZzJTKMFOktSl7pyfHK2MTFmG2EN1x4YmlxeoZtCGlJnvKzaAREVu8eodaetdL1yirSvQ1mcMjp4LbegN+PlqKqNK8x0wmhteQQiQmZ0PLYXL3QEVYj/Ze0kWuY5b7azx4hMG2uowISfDe2zGMznrOao8eOIMe/HZ0nIK6St9lpHRR9zPHCkwaebuw4HzTRHf9C99cdYSrPw0Suq9hPy2hqoetdaPNCL/ks5T8L8jkGhYrEJK+Dy/Z2Nh8vDkAahj15cEWgrsR9gz/K7HxklkuZleMuEJsMi7NcNWZObdPUiq35+5J8mZ9hZRLg8za7z4l1DPnF5H5I8h9wlHUqSLSsRjU9pcYTj4TalCxro8fErpY0Vl9L6Fk9cmWtWluYv0osxriqAyLPkC9Vd+5ealLAlHlonVLG9WusREzITF2SxhXTI6Ge1BeX88MkDddQT7ickXsy8PNtFO8hdqXQhJs3K+c215Keh9ZG9rjPxch1EIj2UemudTfhGfiVOA/2dCy13FWuwbJwpn+uY0fh4xqKDqLcxT6w9e933hUUWbJhmKWivk9QcKo+6OqzhNixLW1Vdu89Aw8erEkSw8nPEdLMVOzQrKbk2MUu5l+0H9YRvtQ9HhC7Pdbkydnom+15Hh7ngp0p9gRyls+XM9UWFhpbVMSsdO73hHVNHzIbsCcXu4wX+Y41l0kcADUkrboxWn5Fr9AO338YtAPDBqUX1DWOpxSx1ltoR1tVrpo74Dd6LKzRfQyLG8AfQn03egJ8Suj+zuiNDIO4M8pnTqGleL38uX3pqynegXoFg7OsMh0BR6q46UsVt67xmJ07OC8UuQN00oefRx/5req9AzuEmQpFGX2qXth4dS0zRuVNmO+UfJM8FCWUwKifesuyK1yvuBUIXQI6bZy2XkZlF9gV2XgsK/81RZFf8dHgjd8akVPLmuS/rtk/zuNqCGAoalX3mQda6rXCWp6IiMaqE4qXoobReqCL8GMrORJFJljnMXXjtm/j3YigYOfkTRLbBcRcAKV/pke6SQPS/I7gtiV/vPM9oSx7ccqvWfUNn9rwb2sDVPoxwYLHop31HLcDuGNrOZTd9qdxEqqg6+tmAl2xznqN2lMx4r5OH2bMPPS3J/f5t1kGEP6KwiTjz2CnlC60wZtXmKD0VqUDLLXwiKIXMhEp8SEBC7Z6x949BaBI8Gxk8ubg9YuCSS3voYxNPq+HbZ1l+24qJevKG6yl3Nm+mixsgaK1CZCBPaRQ/iVTKoEAaBqeca25U0jBfpQoYmy5UIyl5mC/0XqJZVo1Mh48/0kFAXr3YfTzWKb65g2HCVMV3l7/LnhgdkXANx3nVAgCd8dz6rVfLB+761z1ACksERhRyNdohgGm7APkqdDPZEZ/GaLd8P4FpfYzuL6PLt0WgyFPXTRqp6E5CzEPUowm8F+5/yFY54exoXiASJGEOn7gGzOHN0JvZlqpnZ235Woj3p0uyPUUFWYXx23p6JMQRRtWS2Yl3qIsf26D9+eNXSXMl/2HQUequshY+RwGQzuIAzzkbxcq4jC8yCfbYoBKT2BWWr12h3ze9AV9zGphaF81DMMZjvDds9SLyKpq3UprFJK4W6C5bKLdq40HNBVfBtMkinJ9mruJHNhpnAMFqV4rJTQuk2yjcDPV7FFu4YtUgAjTPABKPtZ4js2o4ZgJxFX7I2h44DAokAhShaLmiC+npy+q137VUzjAfhEU+GKx5OsIkWlVB3TyjZd0hvKFpGiEsT7BKyjqVuQ+HKRTRAx3c1t4phmOWPArRmQhTaPWchick41tPcJpv2/lnTHiB86bkkdyzACfAVD6/SFmdX27je0TGxXgEOgIqWmn1Enl6jvxU1UzELt+2O8l0kvMuQ8vtLr1X8UB44mg9I1z6QoxA/dEca0RYfVo1GYlH4ZyixBZqIGi9i/31IYRJ8e/dIRVfc1qL5HZBvxqg9x0rAc9ur4ZzJuQvxtAKzCg/7KiRwDw6PQJE82q8kpfYX6oC4lTdh1dSwudSVC2l6FtDEgRU1gJEkWVfHOMBIH80AiK8nL7cFjav3TrLV0RV/BpoZagC96/dcArHA7lObIpDPXaZL50EVUMf8wkv6KrCTaLUhu+Idr+zUNWF+BMPGYn6ZpddQF2UzzcQTBZc8eKS20nRkTFK1+WZKeC7BfMRlkJwHgIaGcozcn7Qh/iiWQgRpCHV1x0+1AHOSWZ7mG18S1xdyDVmnIWNGYRufIjIZ8hdtQUTrIRLc8ImhhcRqZAHn7LOUjnW9BOQ5m3TghbqmAI6CxsxR/TMhgrWjC10umu+sekw6iuJjQc23sG+5b02I+9bF+CVR5Itk2T6FFPTamur5erivsqZWi3yNQCFx5aumz05gl/5SYvfb2Fq6AX32870kOBDLJi33HsbGfkDwqFDHYE5J7HHLPyMkEIRgIiBi9v9hpI62IUSb7UZ4CmfUMYpPMaFPU1FyQdBb0joj6jXcSmvFDTfQWVIj2HeNahxmgoSqstuPRu0NO1rwEhD/ekPwty5UDsQkrS2glQso3RvpqKTeJpnJzgRQssvEqbZOZlODl8r7Xqw2zVRf338n8vTOI5k/mX/AApxJfeupccPVtioaFeCmL17EC4rkHAL3B3sOf8njDwbMNyzOMtnS0yVanf8hgkl6aZqw1kJlB8Wy4KYO6xEkUfIHY8nZNGN8GeHlZpYZfqMAjm3r/Z2orNB2TwvxIsx4Ck3+vPF9RHJZAWxD8WfjlOTzMj814/si4kXe2DY8AL9m06fWKEn9+8in4gql4r7FBskU8UbOua4EGGl+Z3p63P/TksAzyJWHCffly+sOi29ZZUOcN0H6HAXNDtutbUck1ysIT4tUSSjEFy1NiyFaju33oCrZuIrRJFVK9ULii9awuRd8qhpzLtUBEqSQQ5FUXYoF1qJvUY10EGGwp8Y3T4QkWYnsVB7pvSz3iwFa1P/WsWxIHrpl/EcHERjLd0g9NUjedxpSPY9lYrqycv0UsuZ29stw984sI2ExpllyF7RuBoy/r4pTazjNcR/vFsLX1ieo3M3GXStRdJQVrP3XYhkRudrqzBcteuTfVlRsuXuNheCsTuFBalxAkn2n4d5uk5hag3GnPPyLuUqm9PSgeRUM71cHMCbheF/ZPVUTV0XJSY0uWM3x+dZ80WBhX06uT8jhk4LsyypYdIHRmderfqFj1MY+TbmcyK7G2xIU4u+o4rL7fADCZnlDlmhKpF4+x6TbX8z8YyF/jHp5xSCZ8NHD8/FjMftDFNiIZDtHDlxiJe1bbktA1O3Pj8YWllwo5tVhOYp1Ojz72pt7OUWFbVdx54LFlLyttpSkCTq52e4klKHVuCcl4M2SRTVbY8BH5m+L5daSC17iDrTP8tlh66UWhfVCo5UpFyNphqVHGLYao9MGhpZEBp++j175dcyxJvrRp/fXn8fn3XWzpj3ORKKSo1Zr005SGGnibsJudz3ShyUuYXVOwDFfTd46sd1bSsbgPXWjK4+fVBaykB+FPOvKN4eOyatl3LcaN5tZdOQRpadmvZ+fKKd3Ps13lTHSEdUazu1b3iqsnKUhxGeRq2/nNlpgf/hAMVUaXRZU84keR0IjBNTcuug1130Yit7li0G/1+9WevsB3C9NsmUR1K4cMP5a0zLArKgpkBbeAZyouwmD3/d7Z3pHvvI8IF7+a5Ce/zCJoDCflRAHgfneEskOIuTmSz/OY4IawFjhjoDrHbGY3J2+0Is1ysC7ihVu2IcEBr2ouBII+I3U1POjfejv3KmTpV6nvxEsKeXICVRR7dC+M/tYd1MCjOUv1tdbtOUyjN/ceBurGDGwwfn6DQWeoDQrF+XPXp0M2+0j3RdOFvCZ/Jx4E9OLBbftrWUKLzjWCvdUMT78U5gk00ylMJIrs7wXVBSaGQJztj4+HMZUnnlzctWXQUiVWdpm0tCZBFej/V1YlzDVubcdj28hcPZ/9PRqubt+KmRqudwVJfNzruzRM2ZBJrmNz8WRbZpNmguIaKqfAHtwtpZWCjb7qikvdtkoNURj+WlfCvtD6m8zJSAjkwIwNCFodN4HPFsHD2+iem6/SV6GXl8FKJmk2BdR+pnZ9UHLHt4tnpNR4nG/vbRIqtc6AUqIGhfSrh2vTkDO6E0wFBeC/GJ3FjxorNd90Uh7870qih2/jeWdDksUtgFGXtp90FOxERkR6PZYfRnUgr3vo6bwR7CwhRoi3DNdxIhUtmqrgDgP9N8dk2xDo74b0yJopWzhEgwnxW4AdrEKVHGsfHTZTuj1xX5e/PG9NPUbCfaBNsfU4TLFttq58KNtYSRiskNC5WlQmUvJTeXBdXfaEL+AcP6e1E6lg6GmCL6JuUenahzkcPMVx0//DAx4T4C56IoM3XTeq1D971ZgsEG5FHyrqWBetkY+kE8/w3gpeFhLT4cyWYsv5aMs2K6XugfZ8s+G4TkxwruUrFylfAEST/EX32Jh9tILKRxTt8qHSVhc4kyAyFSI9pqFxqnTDlMr3pLa8myAcXbxED1giJrMMVftKeNF7ki/oBdylxUIPBsSAN/MoNk9GX2w0iMbykhIRlJz4zIZv4HIDpx7x/zjkW3B6ZNDQMMffcI1gnNkPI01DL+MtXSgU78wnvFmG0Y2M8OYjssh7gH15OqXkm9XzuNhu6WQkxGCgs1Hb0EMWZokGygi8+JMkPWH16zMTGruH9W5NzIwSvLyMcKEGrzibROFmkYSYWbFbV2aUbOvC2GXKurVohk7aoeMmeXnixCRH+CH480bdVctmiK+uym2C/PQIDRfklVYGF/Cn6G9bbMjx4o68RuqMjfvV1xYU5Zi8iJqFZW4xN6hCnK7DnOTOBA0PYZwNWH4HO5j8KgRMAvReUPuHMHXPY/HNg2dpJ0lJw5cMK0PmaMnd/+LJ6xCFJbEpOLna6Zmynfe69NcI0K6kGY2aLo7UhAXonXx/er8Ykjya0Og0gBA5/jmXt4pj6rOvijY4n+tXMO+R28LJDeKVncJ9Sjoqr3iJ6gz2Z0U31ex5hz/xkB4vS6H5kPeMCRVFn2D0WAV1867KIgjQAtt9HBCk0jNB/q7AVAt/hxhH36Z9I7sAsM21hByfb7fbeuVBECNgzjZcdxvM/g1NbiFXFBRP5+lzNc01OgAFW1ksRiMuPbyEnymOAfYa9vjMSRULuwgZfNNlz0vqTsLg0iEzyRO3W9TL6Fwmzn3eVXxprPnWX0J6o8Uel2FFLnT4TrhUX6LwNRX2dCxXFbXsQUFzVokao7U8FYLAj+MoTBGVga/LljuRnXzug3Ptfb/QlmtZ1/DdeFDCewWNwBpU/EYahgyegKOcJ1zG/lmaZNlEr18N6ar+RPjrNxytaC9W0V32FphWDVBlOwhtG+YM9F+41aUTojy5jd8B7s1UeT3g4//rkT8SMrv8hSX7/SQYaVSo4ZNbF7+HCdm1QgnyDu9jvhY5xBm6MKlQ0CeqIxnNY/iaDkO8jmX44f2elCX1koFpjyU1B0NdG12KxGU2O9e2QwfNcqxnO68EaET+XiC3KoAZnrgb/7WPrMkcJqZt3IlIrhX3UpGlFl9N9Gt+hbxkREX6d2rXMtthYp0/9/om/UocgK60HDK5ABjfJBy8sIzDz2de50ezFQiuvVUlQgzVHw78Hv66/13tqY4Yg7B92FaPXCM1Ztiqz6zPn+PyYR04MqTvzFTG7j87fEiy/ligqzqp0Fey3Q3hR9I758Rj1ozLC1J626jgTFAXqW4WJJnk4T+IP/UJT5K6iXd+/Ir3tdaZNK1Ys+15/sB8O+B8glDbzk6ojOO+Wl+p5M4XxPFVcJ9x97jAzPIpAsiTpxv9G7e+pPmpugiii0xBUbPk6uxPO2xg1FiXTu8jeMkxy6vZHFmuEdpZfySVLTxqdXfVIRbix06D7ei8cPuIlgszGoq8KVBoteWOEM/cSoHewscJN8pttHbHWUFRdfKWwIpdGWLYL0ig1Aj51TKZlq8r/r4PGkgLQf+uM9f/7Qev/9gH7CkkYwC7+PyJ2VgixvG0m8ofNWpCUKoDDj8hd/k9CjqYhYNfl/st/luCs+WKNj/keVAFKEhC+zE0sTxacQN3+N1BLBwipmq/PKhQAANAZAABQSwMEFAAIAAgArqY/QAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIAK6mP0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuPGEX22v2IKDykpESHMBTdHcooipd1NrVeu7Gbj3CoFgiMSFgjQAChRW/4cf4Ef8gH2j6VnBiBBDqgldVlrI7BKAkAMpqdPd5/uGRDk0Z/mkxhd8SyP0uTYwKZlIJ6E6TBKRsfGrLjoeMafvv7yaMTTER9kAbpIs0lQHBtMtIyGx8ZFeBEOsQUN2YB1mOeQjk+J18HkwnFDzwkc2zcQmufRV0n6JpjwfBqE/G045pPgdRoGhRQ8LorpV4eH19fXZiXKTLPR4Wg0MOf50EAwzCQ/Nsqdr6C7lYuuqWxOLAsffvfNa9V9J0ryIkhCbiChwiz6+ssvjq6jZJheo+toWIxBYYswA415NBqDUi71DHQoWk0BkSkPi+iK53Bt7VAqXUymhmwWJOL8F2oPxQt9DDSMrqIhz44Ny6S+bVuuh4ltoDSLeFKUrXAp7bDq5+gq4teqQ7EnZcH4ijSNB4HoC/34IyIWsdCB2GC1IbBxHHXKUu9ZVG2I2jC1sVUbpi5nqilTbZhqw6iBrqI8GsQcbBvEOYAXJRcZGG5xnBc3MZfjKd9Y6o0PQKc8+gCNKYauFNrHhu3SA0z8A8eyDphlKb1rSpJ7SaUHtJKKPX8pFYM08UfsZqm4JrXIZjsKrUQyy9ZFblIUO/eRuQDX9r0auMw7INQ+sEGm3SCT3oauGsNSpjpuEIltqyZSSNoo0GE7CNys5MckHh1W4XJURgjKx6JtiWvBJ7mIGeoj2xeuj5EN8eG44Ok2wj5sXIIgIhC2EbPhEHvIEVsXURdOMESRh0Q7TJEMENuDf8yVnTnIhs7Euy7EJcIgiCGbIizjiiGIJiRjE+KUUGhh28iGi4R4TEQX1EHMgSPqIQZjFGHpYmhI4UI4BvEEUYyouBi7iDjIEf1hJsLd8cTQoUuCHAs5WHQIkQ1RrSIa2nuICm2cEq4omc6KFYjCybDaLdLpwhbQGjhpyXmKo1Yo8YujOBjwGNLEW2FJhK6CWMSEFHSRJgWqjEjUe6MsmI6jMH/LiwKuytH3wVXwOij4/Axa55Vs2TZMk/zbLC16aTybJDlCYRpbizGnMa7tk8Wo4YDWTrD6Cbt2wqntu41yUziDZjkH+WmWV82D4fCVaLEMVEDyPIlvTjIeXE7TaFWNo0OZcY74LIyjYRQk78FZhRSBC6oSkCSPKv/YHq0GkmbDtzc5eDCa/4NnKeDImAk8tngRsOqNOsWobTqE+dVLMFMYiNizLdOqvTDE5U15ivmmX3sR11ai+dXCQsGcL5UdZTLbLw9e5SdpvHxL6t8LpsUsk7UDDCITWnWTUcylj0iWh8QcXg7S+VvlHFT19e5mCkeWGsFgJHFHwA3EBnRG5XagtrKNGNqilSXbWLKFVXlbNFycxz6RLeR2oLayFbivGlqpKq7UxFYlJsolo1lGGTcVWwnnF2l+lkTF6+qgiMLLUlWsLngzmwz40oVEg36kipKy2pqmeSRiqguiymarovEnFy0wgPolL74T1YttyP2/1/bfjXkRyGNIO77nujb8J77nKb9f83g9AgRtq+EhuZsK1zjUYkMmuW1ig3omhSFYPmHMo1BrLGPDdohQtXR6QkyfQE8eppaLmU1qAWGthBcEy4Z4UHC24VBLI6VLDv4ZTv69o19u8PWVfs+h319+vlPPdVeWPl+68mJ/R1e+5FnC4zJXgFfM0lmuUl8tjQx5GE3gUJ0o/SgQhv8rKKDeHfJRxiv1YznhUdDLs1bd1bW3ZVdnWTp5lVy9A69aG8DRYTXKozzMoqlwXjSA+uqSL/0TdA+gPBvWrxPJDaALRRkG8BYC2nO4HHTh6G2R8Sgcj9P4Qx6Og3Bc8Bhy4qwYp+BTfw6SKAnQ36Ki4NAJjxIQAckdDCUIIOYTmPWgQvp1MpvwLAoX5n0vp1Kgw6xUk9lmqamwKkoH30PZsc5/5RG/WlQd0G5DDKAgno6llUtjxMGN4J4aprLXb9IhXzMaKC/hAJ2mytGmnCtPLcooRVPoTgZ5zQSlyhLVySRIhiiR1e9fghtjWYsFUNXsWQfI2ocxQlWzZ8t9pc6sqJrEqs+yJw3QDPqsYImNrXDbGjBrS8DqHpujuboU3QABi+2HelcLlimgHryEiW8uqXABp9h5GQ2HPFnYgf+QqEtyFfDRZBpHYVQskIqFAV4lBYQ/l/6rR+Ul51NBrOfJuyxIcrGQodpUbLHZaN8KMl8zW6xZ6cXtVpIZYWGGF7qdVjhvg5mqDHBvQ23h2bjJs+smJqaLbWlkqzQyroYhlRVJbWVeoN5d47M67Hw+zcAfxLBKHLoQ4vOpwGsVxsOP4Nv9WBwsc0QdXzFzHanNQG3uHwmfAqaghGm+191vAmedc4N1zlWD3I1Hbx/SoBySjzoo2GZMg/UxOSbx7jWm2yFIdXnUof8/iWfdJAiyeWmT8735PjoWyx6/R3P0B4Q9Cx3KPSiddUtdzBJJqsuKbCv22gYjSWgLlIj94CzWCNNdstDm9PAOCjKuJYiuSunnWp4I/oNvzxRibEs3hdYPBfaDJHbfZDBjcH2LWK7n+CW14ZLaOtjxTNt3HM+2POK5xGe3AE4XucbeKu+D8y7y/u3sE5ae/h7cfA5efgN/diUNCl1BBLqjlycWfTwKFeyI/J3qpQgc8gpGnGY5QnNLiHVhxms5roex59jMFWbb8P4Hq7TnHPy303gl3nAlriU3iMwsmqOuVSa+Lq52SFnjoy4FAUQsK3RZddKuYXRb3bc9079P43tMMT4nij82xgu/P0R7ATj9YKt6YKzXAw51sWPbLmPMsv0HLg5OymHudeZ7L/YP0Hh/x/ru5OnUd51lgdeA2uPUe70Sv84LyNliBtnBuyLYe5IIdvCj1cj9yufA5SA6yP5dUOs/HdSwSW330VE7XUON7Yt68QDtjNzpU0IOYypvx9cql4eH7mwDdDd7J/swKdoZwbMni+CjsN5qkf1eVjNrNXZP1dh9rcae3V5hq9Jogdvsbosxm+cxd8aVmZZLVhcL7rVwVltBLkuoMMgKnkdBUpY/BRzL9S3lq707WKGvrNDTrHC1kxWunowVOr+5Gfp3MMOpMsOZZobrncxwfR8zYJs+/BKy1cwvn9Yip3ewyJmyyKlmkQ87WeTDk7NI50mY5Oz2aSBMr0ZLkE6ieKhWUi4ikKCs5rtDJxwOfBwQjjn1PYc5fHDhDuEEpgT/a3GrC5vTZKSGESUnQXg5ytIZWH/9LkNtjIm8HSm1LWv1jU1wtcoty4SNzUjZ7KRh6rorVS79Ae/qD48zc33H50Wl4O9+mKXFH8+yNCmCGMZ0ArP+SxTMLtAwar4Vqa5oWLssoFtjVcYDYrdzLNWsWs58qMfqH8SR8eWYFq59GsF16gXVx2FkKzAGx2oLxWcAf+ognJSINVSdGmTsN87M64G/1wM9+vsQLHQ7QPAKIOdLQPbO94L9/Roqv/y8Ay5PYmV2zaOwaWOozV3qWq5NKWHKo7BNaP0DX9TfzaXoCoKDGoI+mCHYv5tj0d84s2mOdQp6nAnHIh+HpbvqVa9//SkZ8e14qNvgOZ98afkjK3Sr2p0A5RZbanfy9LXrrWr38tf/jrdUrvf0leuvKvdefIqWJ9up13/66p2usTmURhfxrz+F21rw9MmpeOvSfJesr81/9h+Pgitn8yiOguxm80dwbkflREPFb1ExehoquEXF6GuofP6fMHwAWE51Z/FbdwHCpS3hNhCuhopr2s8elZ6GCjbJs0elr6HSEq4gXN1ZXNIGkdFlLeE2EK6GimMy4j97XHoaLthkzx6VvoZKS7mCcnVncaw2jATp2i3pNpBuAyoOaVN0T8MFm86zR6WvodKSriBd3VlsYlK3DaOu05JuA+m2qDRRroYKNr1nj0pfQ6WlXEG5urMwt8XF6LottTQQroYKa5ehjJ6GCml9xejrvtKGEBCuBgtmtA0io+u1hNtAuBoqzLR8/Oxx6Wm4kPb2mdHXvaUNIqBcDRbMsEmddvG/67ek20C6GirUbNegjJ4GC2nvnxl9DZWWcwXnarBgtvyanmcMTBdbLec2cK4OCzWZ09Z0PR0Y0t5BM/o6LC3vCt7VccHUN33ymX8/3YMwL26Zt4l5NVioSXBb2fV0YEh7Iw2YV4OlZV7JvBousuRtIwmYt30UrZF5NVhoCwvwbgtLI++2T6M1867+OBprH0cTrNs+j9bIuhosUNbhdn7U04Gh7U014N32obRm3tWfSmPExF47Reri9sG0RubVYCGmw9xnD0xPB4a2t9aAedtn05qZV384jVHTtdrbAl3cPp3WyLwaLO3z44J3NVhoe28NeLd9PK2Zd/Xn0wCY5xBHq99ZvPi9vLWvLT5XX1ssfnkIBeTY2COmS5mPbde2MXGI7TjiR6hhuk194mOfua7vEVf/3cKXSv52v4j38l5fpvkYX3L/JngjvztTbj+orWxyxy+0P6z/wKY4HvFU/vLn1/8DUEsHCC5gjGAUDQAAh4EAAFBLAQIUABQACAAIAK6mP0Cpmq/PKhQAANAZAAAvAAAAAAAAAAAAAAAAAAAAAAA5N2Q2Y2RiOTFhMmUxZTM5ODY0NmViZjdkOTdkMTMyMVxzY2hhY2h0ZWwxLnBuZ1BLAQIUABQACAAIAK6mP0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAIcUAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgArqY/QC5gjGAUDQAAh4EAAAwAAAAAAAAAAAAAAAAA5RQAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADANsAAAAzIgAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
==Visualisiserung mit Tabelle==
 +
<ggb_applet width="1008" height="601"  version="4.0" ggbBase64="UEsDBBQACAAIANumP0AAAAAAAAAAAAAAAAAvAAAAOTdkNmNkYjkxYTJlMWUzOTg2NDZlYmY3ZDk3ZDEzMjFcc2NoYWNodGVsMS5wbmfVWWlYklu7fkFySE2L1Nzk0N6ptd1qgzszFShTt1lamWmZSpmaqeE8I5h9mpZZWpqRodtME+csJzRNc06chxBxHnJEQBQEDvXtc77z4/vqXNc513XO4ccNF2u9D/d7r/t53mctYs9amklv/WkrAADS5n+cPA8AIsKPoFFxsPAt7WiaLwAoppifPH4h+PMi9eozvOkb3LnCNslnrODfR07LT+iQqxOSgkVP/u5gozv+nNBidwI3mmV/ghYBAgzb9YgAIIsEALA4gARAgLiqMDAEUMUBAEQWwAHgfzF4G8SUBkY7hHNUcd/AEfJwvzEwaklgbUcKr9vxT+BfxeqXUEVoSQJ5m5IrwkFZ5Dc4DLoetx2wW/FD/OO7fwbfZ/7PifyY0l8RIA+/C98T6B/KfB9+oDNo73fhByslrvp9+H4EJCDxXfiBW8B/fBd+4LfvLPn/wLr/ePH/HHJC1GDvcfgThfMK6zNN9NsRm6VXQ5wf6dWB0XfX61xijSXB4p/eDEcGML2dQq6nXUrulkspRdm+SI1z/LAZfQmVqVHjblF2s9tXOT83WatkIcxBKJs2PLpf5fzhFL151V7/cCfPibXdn6ocP6zcCp8yLbyyP3V5aIR/a+hnc6tr3haAT+F2BpE2ZdKG917tuFRy2/kad7bFq7HooiLwE3WWZfS0RMJDwc9tu/275pLlAKEj7ObzSgbFLeboN24pSsrcVZDKuO7W+TETydXJDsosI3lksxs4WeFvw84s/VpsVDZlLou8MgLHo/tHQapTefB3JCcFPc6yjt1g4706ycZzJTKMFOktSl7pyfHK2MTFmG2EN1x4YmlxeoZtCGlJnvKzaAREVu8eodaetdL1yirSvQ1mcMjp4LbegN+PlqKqNK8x0wmhteQQiQmZ0PLYXL3QEVYj/Ze0kWuY5b7azx4hMG2uowISfDe2zGMznrOao8eOIMe/HZ0nIK6St9lpHRR9zPHCkwaebuw4HzTRHf9C99cdYSrPw0Suq9hPy2hqoetdaPNCL/ks5T8L8jkGhYrEJK+Dy/Z2Nh8vDkAahj15cEWgrsR9gz/K7HxklkuZleMuEJsMi7NcNWZObdPUiq35+5J8mZ9hZRLg8za7z4l1DPnF5H5I8h9wlHUqSLSsRjU9pcYTj4TalCxro8fErpY0Vl9L6Fk9cmWtWluYv0osxriqAyLPkC9Vd+5ealLAlHlonVLG9WusREzITF2SxhXTI6Ge1BeX88MkDddQT7ickXsy8PNtFO8hdqXQhJs3K+c215Keh9ZG9rjPxch1EIj2UemudTfhGfiVOA/2dCy13FWuwbJwpn+uY0fh4xqKDqLcxT6w9e933hUUWbJhmKWivk9QcKo+6OqzhNixLW1Vdu89Aw8erEkSw8nPEdLMVOzQrKbk2MUu5l+0H9YRvtQ9HhC7Pdbkydnom+15Hh7ngp0p9gRyls+XM9UWFhpbVMSsdO73hHVNHzIbsCcXu4wX+Y41l0kcADUkrboxWn5Fr9AO338YtAPDBqUX1DWOpxSx1ltoR1tVrpo74Dd6LKzRfQyLG8AfQn03egJ8Suj+zuiNDIO4M8pnTqGleL38uX3pqynegXoFg7OsMh0BR6q46UsVt67xmJ07OC8UuQN00oefRx/5req9AzuEmQpFGX2qXth4dS0zRuVNmO+UfJM8FCWUwKifesuyK1yvuBUIXQI6bZy2XkZlF9gV2XgsK/81RZFf8dHgjd8akVPLmuS/rtk/zuNqCGAoalX3mQda6rXCWp6IiMaqE4qXoobReqCL8GMrORJFJljnMXXjtm/j3YigYOfkTRLbBcRcAKV/pke6SQPS/I7gtiV/vPM9oSx7ccqvWfUNn9rwb2sDVPoxwYLHop31HLcDuGNrOZTd9qdxEqqg6+tmAl2xznqN2lMx4r5OH2bMPPS3J/f5t1kGEP6KwiTjz2CnlC60wZtXmKD0VqUDLLXwiKIXMhEp8SEBC7Z6x949BaBI8Gxk8ubg9YuCSS3voYxNPq+HbZ1l+24qJevKG6yl3Nm+mixsgaK1CZCBPaRQ/iVTKoEAaBqeca25U0jBfpQoYmy5UIyl5mC/0XqJZVo1Mh48/0kFAXr3YfTzWKb65g2HCVMV3l7/LnhgdkXANx3nVAgCd8dz6rVfLB+761z1ACksERhRyNdohgGm7APkqdDPZEZ/GaLd8P4FpfYzuL6PLt0WgyFPXTRqp6E5CzEPUowm8F+5/yFY54exoXiASJGEOn7gGzOHN0JvZlqpnZ235Woj3p0uyPUUFWYXx23p6JMQRRtWS2Yl3qIsf26D9+eNXSXMl/2HQUequshY+RwGQzuIAzzkbxcq4jC8yCfbYoBKT2BWWr12h3ze9AV9zGphaF81DMMZjvDds9SLyKpq3UprFJK4W6C5bKLdq40HNBVfBtMkinJ9mruJHNhpnAMFqV4rJTQuk2yjcDPV7FFu4YtUgAjTPABKPtZ4js2o4ZgJxFX7I2h44DAokAhShaLmiC+npy+q137VUzjAfhEU+GKx5OsIkWlVB3TyjZd0hvKFpGiEsT7BKyjqVuQ+HKRTRAx3c1t4phmOWPArRmQhTaPWchick41tPcJpv2/lnTHiB86bkkdyzACfAVD6/SFmdX27je0TGxXgEOgIqWmn1Enl6jvxU1UzELt+2O8l0kvMuQ8vtLr1X8UB44mg9I1z6QoxA/dEca0RYfVo1GYlH4ZyixBZqIGi9i/31IYRJ8e/dIRVfc1qL5HZBvxqg9x0rAc9ur4ZzJuQvxtAKzCg/7KiRwDw6PQJE82q8kpfYX6oC4lTdh1dSwudSVC2l6FtDEgRU1gJEkWVfHOMBIH80AiK8nL7cFjav3TrLV0RV/BpoZagC96/dcArHA7lObIpDPXaZL50EVUMf8wkv6KrCTaLUhu+Idr+zUNWF+BMPGYn6ZpddQF2UzzcQTBZc8eKS20nRkTFK1+WZKeC7BfMRlkJwHgIaGcozcn7Qh/iiWQgRpCHV1x0+1AHOSWZ7mG18S1xdyDVmnIWNGYRufIjIZ8hdtQUTrIRLc8ImhhcRqZAHn7LOUjnW9BOQ5m3TghbqmAI6CxsxR/TMhgrWjC10umu+sekw6iuJjQc23sG+5b02I+9bF+CVR5Itk2T6FFPTamur5erivsqZWi3yNQCFx5aumz05gl/5SYvfb2Fq6AX32870kOBDLJi33HsbGfkDwqFDHYE5J7HHLPyMkEIRgIiBi9v9hpI62IUSb7UZ4CmfUMYpPMaFPU1FyQdBb0joj6jXcSmvFDTfQWVIj2HeNahxmgoSqstuPRu0NO1rwEhD/ekPwty5UDsQkrS2glQso3RvpqKTeJpnJzgRQssvEqbZOZlODl8r7Xqw2zVRf338n8vTOI5k/mX/AApxJfeupccPVtioaFeCmL17EC4rkHAL3B3sOf8njDwbMNyzOMtnS0yVanf8hgkl6aZqw1kJlB8Wy4KYO6xEkUfIHY8nZNGN8GeHlZpYZfqMAjm3r/Z2orNB2TwvxIsx4Ck3+vPF9RHJZAWxD8WfjlOTzMj814/si4kXe2DY8AL9m06fWKEn9+8in4gql4r7FBskU8UbOua4EGGl+Z3p63P/TksAzyJWHCffly+sOi29ZZUOcN0H6HAXNDtutbUck1ysIT4tUSSjEFy1NiyFaju33oCrZuIrRJFVK9ULii9awuRd8qhpzLtUBEqSQQ5FUXYoF1qJvUY10EGGwp8Y3T4QkWYnsVB7pvSz3iwFa1P/WsWxIHrpl/EcHERjLd0g9NUjedxpSPY9lYrqycv0UsuZ29stw984sI2ExpllyF7RuBoy/r4pTazjNcR/vFsLX1ieo3M3GXStRdJQVrP3XYhkRudrqzBcteuTfVlRsuXuNheCsTuFBalxAkn2n4d5uk5hag3GnPPyLuUqm9PSgeRUM71cHMCbheF/ZPVUTV0XJSY0uWM3x+dZ80WBhX06uT8jhk4LsyypYdIHRmderfqFj1MY+TbmcyK7G2xIU4u+o4rL7fADCZnlDlmhKpF4+x6TbX8z8YyF/jHp5xSCZ8NHD8/FjMftDFNiIZDtHDlxiJe1bbktA1O3Pj8YWllwo5tVhOYp1Ojz72pt7OUWFbVdx54LFlLyttpSkCTq52e4klKHVuCcl4M2SRTVbY8BH5m+L5daSC17iDrTP8tlh66UWhfVCo5UpFyNphqVHGLYao9MGhpZEBp++j175dcyxJvrRp/fXn8fn3XWzpj3ORKKSo1Zr005SGGnibsJudz3ShyUuYXVOwDFfTd46sd1bSsbgPXWjK4+fVBaykB+FPOvKN4eOyatl3LcaN5tZdOQRpadmvZ+fKKd3Ps13lTHSEdUazu1b3iqsnKUhxGeRq2/nNlpgf/hAMVUaXRZU84keR0IjBNTcuug1130Yit7li0G/1+9WevsB3C9NsmUR1K4cMP5a0zLArKgpkBbeAZyouwmD3/d7Z3pHvvI8IF7+a5Ce/zCJoDCflRAHgfneEskOIuTmSz/OY4IawFjhjoDrHbGY3J2+0Is1ysC7ihVu2IcEBr2ouBII+I3U1POjfejv3KmTpV6nvxEsKeXICVRR7dC+M/tYd1MCjOUv1tdbtOUyjN/ceBurGDGwwfn6DQWeoDQrF+XPXp0M2+0j3RdOFvCZ/Jx4E9OLBbftrWUKLzjWCvdUMT78U5gk00ylMJIrs7wXVBSaGQJztj4+HMZUnnlzctWXQUiVWdpm0tCZBFej/V1YlzDVubcdj28hcPZ/9PRqubt+KmRqudwVJfNzruzRM2ZBJrmNz8WRbZpNmguIaKqfAHtwtpZWCjb7qikvdtkoNURj+WlfCvtD6m8zJSAjkwIwNCFodN4HPFsHD2+iem6/SV6GXl8FKJmk2BdR+pnZ9UHLHt4tnpNR4nG/vbRIqtc6AUqIGhfSrh2vTkDO6E0wFBeC/GJ3FjxorNd90Uh7870qih2/jeWdDksUtgFGXtp90FOxERkR6PZYfRnUgr3vo6bwR7CwhRoi3DNdxIhUtmqrgDgP9N8dk2xDo74b0yJopWzhEgwnxW4AdrEKVHGsfHTZTuj1xX5e/PG9NPUbCfaBNsfU4TLFttq58KNtYSRiskNC5WlQmUvJTeXBdXfaEL+AcP6e1E6lg6GmCL6JuUenahzkcPMVx0//DAx4T4C56IoM3XTeq1D971ZgsEG5FHyrqWBetkY+kE8/w3gpeFhLT4cyWYsv5aMs2K6XugfZ8s+G4TkxwruUrFylfAEST/EX32Jh9tILKRxTt8qHSVhc4kyAyFSI9pqFxqnTDlMr3pLa8myAcXbxED1giJrMMVftKeNF7ki/oBdylxUIPBsSAN/MoNk9GX2w0iMbykhIRlJz4zIZv4HIDpx7x/zjkW3B6ZNDQMMffcI1gnNkPI01DL+MtXSgU78wnvFmG0Y2M8OYjssh7gH15OqXkm9XzuNhu6WQkxGCgs1Hb0EMWZokGygi8+JMkPWH16zMTGruH9W5NzIwSvLyMcKEGrzibROFmkYSYWbFbV2aUbOvC2GXKurVohk7aoeMmeXnixCRH+CH480bdVctmiK+uym2C/PQIDRfklVYGF/Cn6G9bbMjx4o68RuqMjfvV1xYU5Zi8iJqFZW4xN6hCnK7DnOTOBA0PYZwNWH4HO5j8KgRMAvReUPuHMHXPY/HNg2dpJ0lJw5cMK0PmaMnd/+LJ6xCFJbEpOLna6Zmynfe69NcI0K6kGY2aLo7UhAXonXx/er8Ykjya0Og0gBA5/jmXt4pj6rOvijY4n+tXMO+R28LJDeKVncJ9Sjoqr3iJ6gz2Z0U31ex5hz/xkB4vS6H5kPeMCRVFn2D0WAV1867KIgjQAtt9HBCk0jNB/q7AVAt/hxhH36Z9I7sAsM21hByfb7fbeuVBECNgzjZcdxvM/g1NbiFXFBRP5+lzNc01OgAFW1ksRiMuPbyEnymOAfYa9vjMSRULuwgZfNNlz0vqTsLg0iEzyRO3W9TL6Fwmzn3eVXxprPnWX0J6o8Uel2FFLnT4TrhUX6LwNRX2dCxXFbXsQUFzVokao7U8FYLAj+MoTBGVga/LljuRnXzug3Ptfb/QlmtZ1/DdeFDCewWNwBpU/EYahgyegKOcJ1zG/lmaZNlEr18N6ar+RPjrNxytaC9W0V32FphWDVBlOwhtG+YM9F+41aUTojy5jd8B7s1UeT3g4//rkT8SMrv8hSX7/SQYaVSo4ZNbF7+HCdm1QgnyDu9jvhY5xBm6MKlQ0CeqIxnNY/iaDkO8jmX44f2elCX1koFpjyU1B0NdG12KxGU2O9e2QwfNcqxnO68EaET+XiC3KoAZnrgb/7WPrMkcJqZt3IlIrhX3UpGlFl9N9Gt+hbxkREX6d2rXMtthYp0/9/om/UocgK60HDK5ABjfJBy8sIzDz2de50ezFQiuvVUlQgzVHw78Hv66/13tqY4Yg7B92FaPXCM1Ztiqz6zPn+PyYR04MqTvzFTG7j87fEiy/ligqzqp0Fey3Q3hR9I758Rj1ozLC1J626jgTFAXqW4WJJnk4T+IP/UJT5K6iXd+/Ir3tdaZNK1Ys+15/sB8O+B8glDbzk6ojOO+Wl+p5M4XxPFVcJ9x97jAzPIpAsiTpxv9G7e+pPmpugiii0xBUbPk6uxPO2xg1FiXTu8jeMkxy6vZHFmuEdpZfySVLTxqdXfVIRbix06D7ei8cPuIlgszGoq8KVBoteWOEM/cSoHewscJN8pttHbHWUFRdfKWwIpdGWLYL0ig1Aj51TKZlq8r/r4PGkgLQf+uM9f/7Qev/9gH7CkkYwC7+PyJ2VgixvG0m8ofNWpCUKoDDj8hd/k9CjqYhYNfl/st/luCs+WKNj/keVAFKEhC+zE0sTxacQN3+N1BLBwipmq/PKhQAANAZAABQSwMEFAAIAAgA26Y/QAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIANumP0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcttGEn1OvmIKD1vSrghhLrhlpaQoUrK95VipyOvN3moLBEckIhBgAFCiXPmcfEEe9gOSH9ueGYAEOaBMSrKjrKAqG7fG9PTp7jM9A4I8+mo+idE1z/IoTY4NbFoG4kmYDqNkdGzMisuOZ3z15edHI56O+CAL0GWaTYLi2GBCMhoeG5fhZTjEFgiyAeswzyEdnxKvg8ml44aeEzi2byA0z6MvkvRNMOH5NAj5RTjmk+B1GgaFVDwuiukXh4c3NzdmpcpMs9HhaDQw5/nQQNDNJD82yp0voLmVm26oFCeWhQ+/+/q1ar4TJXkRJCE3kDBhFn35+WdHN1EyTG/QTTQsxmCwRZiBxjwajcEol3oGOhRSU0BkysMiuuY53Fs7lEYXk6khxYJEXP9M7aF4YY+BhtF1NOTZsWGZ1Ldty/UwsQ2UZhFPilIKK23a3XjlduJ7Htl899Fh1Yuj64jfqO6IPdlTsK5I03gQiKbQjz8iYhELHYgNVhsCG8dRlyx1zqJqQ9SGqY2tZJi6nSlRpmSYkmHUQNdRHg1iDiBlM0A+Si4z8DoEShDncJwXtzGX3SlP1Mw+AJPy6D0IE881kHLVsWG79AAT/8CxrANmWRVoCxtJTWnZ6A5a6QGttGLPX2rFoE38I3azVuw8zNaFVmo5NVuZd0CofWCDZrtJ60OULlQyy9YN3QQvvQtf1YelTnW8EsoltrZVs1IYt9FGh+2gUEd2W41Hh1W+HJUpgvKxkC1xLfgkF0lDfWT7IvYxsiFBHBdC3UbYh41LEKQEwjZiNhxiDzli6yLqwgWGKPKQkMMUyQyxPfiPubIxB9nQmDjrQmIiDIoYsinCMrEYgnRCMjkhUQkFCdtGNtwk1GMimqAOYg4cUQ8x6KPISxeDIIUb4RjUE0QxouJm7CLiIEe0h5nId8cTXYcmCXIs5GDRIKQ2pLVKaZD3EBXWOCVcUTKdFSsQhZNhtVuk04UvQBpIaUmZiqRWGPWzozgY8BhGmQvhSYSug1jEp1R0mSYFqpxI1LlRFkzHUZhf8KKAu3L0fXAdvA4KPj8D6bzSLWXDNMm/ydKil8azSZIjFKaxtehzGuPaPln0Gg5o7QKrX7BrF5zavtuoN4UraJZz0J9meSUeDIevhMQyUQHJ8yS+Pcl4cDVNo1Uzjg7lgHXEZ2EcDaMgeQfBKrQIXFA1fslEroYv26NVR9JseHGbQwSj+T94lgKOjJnAZIs/Al69VZcYtU2HML/6EywRBiL3bMu0an8Y8vK2vMR806/9EddWqvn1wkPBnC+NHWWyWFgevMpP0nh5StrfC6bFLJOlB3QiE1Z1k1HMZYxInodxPbwapPMLFRxUtfX2dgpHlurBYCRxR8ANxAZ0RuV2oLZSRnRtIWVJGUtKWFW0RcPFdewTKSG3A7WVUhC+qmulqbgyE1uVmiiXjGYZZd5UbCWCX1QJsyQqXlcHRRRelaZidcOb2WTAlyEkBPqRqmnKYm2a5pHIqS6oKsVWVeNPrlpgAPVLXnwnqhfbkPt/r+2/HfMikMcw0vme69rwv6hyVNyvRbyeAYK2VfeQ3E1FaBxquSHH1W1yg3omhS5YPmHMo1BtLHPDdogwtQx6QkyfQEseppaLmU1qCWGtpBcky4Z8UHC26VAbRsqQHPwznPx7x7jcEOsr7Z5Du7/8fK+W66EsY74M5cX+jqGcT4Hrh/mY86KRzmXZq4Us3HTZ43F8URd1raUkqcJ/2bwa+yq0q4y4Uw4v5JhzlxxZyt3ZHl3K4bvk2ELOKeMx57GoFNIEofFFmKVxLK24ru2H8v5jowO9zoTLO6WOOLhNZ6J8AI+ewWR1FgcntTpRnH4ho7IsJOH4pWr3ZFm/irPvGs+egLKcZ9/AlCteaVQZ9BLs4ys3fAvty5NoUQjEcXpzAbVQFMSnw6hIl72Tl95CMfo2mi64gv8wg6vfwibK+HClRNDi6eiKZ9CzshoB3pmls1wVV7VCZQi6J3CoLpTABYJa/gopos4O+SjjVYLFckaukltetepkqp2WTZ1l6eRVcv0WeGutA0eHVS+P8jCLpoIe0QAq+KuleSK7ApgArNgryifARIVGERUiec/hdrCFo4si41E4Hqfx+zwcB+G44DEgOivGAuC/BEmUBOhvUVFwaIRHCaiA8hGoQAwxMZ/AxBoVkjmT2YRnUbggkHdyrg82zEozmW2WlgoPo3TwPYTr+ghbHvHrRV0LchtYFhw/HUseWUaxGN1qmMpWv06HfM1pYLyEA2yaKiqbcq6yuSjHATSF5uQwUnNBabJEdTIJkiFK5Pzq2+DWWFb7AdTNe9YBsvahj1A379lyX5kzKyqRWLVZtqQBmkGbFSyxsRVuWwNmbQlYPWJzNFe3olugWbF9X29qMY4VMOO4SnieS9JbwCl2XkbDIU8WfuA/JOqWXA0p0WQaR2FULJCKhQNeJQUMMIra9Ky84nwqhu7z5G0WJLlYaVMy1Xi02WnfiHJhzW2x5qUXd3tJ1hwLN7zQ/bQyqm5wU1VjPNhRW0Q2borsuouJ6WJbOtkqnYyrbkhj5YBan3mqs2t8Voedz4Fxc7FYWuHQhRSfTwVeqzAefgDf7ofyYFmF1PEVayMjtRmozcMz4VPAFJQwzfe6+03grHNusM65qpO78ejdXRqUXfJRBwXb9Gmw3ifHJN6D+nQ3BKmujzr0/2fgWXcJVEjnpU/O9+b76FgsrP0RzdGfEPYsdCj3qKxN16C7nCWSVJc1/1bstQ1GktAWKBH70VmsEab7jEKbh4e3UJBxbYDoqiH9XBsngv/gu0cK0bdlmIL0Y4H9KAO7bzKYk7q+RSzXc/yS2nBJbR3seKbtO45nWx7Mt4jP7gCcLsYae6txH4J3Me7fzT5hGenvIMznEOW38M+utEGhK4hAD/TywqKNj0IFOyJ/r3opgoC8hh6nWY7Q3BJqXcvFluN6GHuOzVzhtg3n31ulP+cQv53GO/GGO3FtcIPMzKI56lrlwNfF1Q4pa3zUpaCAiIWrLqsu2jWM7qr7tmf6d2n8gCnG74nij43xIu4P0V4AQT/Yqh4Y6/WAQ13s2LbLGLNs/5GLg5Oym3ud+d6L/QM03t+xvjt5OvVdZ1ngNaD2ceq9Xolf5wWM2WIG2cG7Ith7kgh28EerkftVzEHIQXaQ/fug1n86qGGT2u5HR+10DTW2L+rFA7QzcqdPCTmMqfzER61yeXzozjZAd7t3sg+Top0RPHuyCH4U1lstst/Jamatxu6pGruv1dizuytsVRotcJvdbzFm8zzm3rgy03LJ6mLBgxbOaivIZQkVBlnB8yhIyvKngGO5vqVitXcPL/SVF3qaF6538sL1k/FC5zd3Q/8ebjhVbjjT3HCzkxtuHuIGbNPHX0K2mvnl03rk9B4eOVMeOdU88n4nj7x/ch7pPAmXnN09DYTp1WgJ0kkUD9VKymUEGpTXfHfohMOBjwPCMae+5zCHDy7dIVzAlOB/LR51YXOajFQ3ouQkCK9GWToD768/Zaj1MZEPvKW1Za2+UQRXq9yyTNgoRkqxk4ap665UuYwHvGs8fJyZ61s+LyoD//DDLC3+fJalSRHE0KcTmPVfoWB2iYZR86NIdUfD2mUBzRqrOh4Ru51zqebVcuZDPVb/qJfML8e0cO3zLq5TL6g+DCNbgTE4VlsoPgP4pw7CSYlYQ9WpQcZ+45F5PfH3emBHfx+ShW4HCF4B5HwJyN75XrC/X0Pll593wOVJrMyuRRQ2bQy1uUtdy7UpJUxFFLYJrX+kkPq7hRRdQXBQQ9AHNwT79wss+huPbFpgnYIdZyKwyIdh6a5G1etff0pGfDse6jZEzidfWv7ACt2qdSdAucWW1p08fet6q9a9/PW/4y2N6z194/qrxr0TH53iyXbm9Z++eadrbA6l0WX860/hth48fXIm3rk03yXra/O/+49HwZ2zeRRHQXa7+SM4d6NyoqHit6gYPQ0V3KJi9DVUfv+fMHwEWE71YPHbcAHCpS3hNhCuhopr2s8elZ6GCjbJs0elr6HSEq4gXD1YXNImkdFlLeE2EK6GimMy4j97XHoaLthkzx6VvoZKS7mCcvVgcaw2jQTp2i3pNpBuAyoOaYfonoYLNp1nj0pfQ6UlXUG6erDYxKRum0ZdpyXdBtJtUWmiXA0VbHrPHpW+hkpLuYJy9WBhbouL0XVbamkgXA0V1i5DGT0NFdLGitHXY6VNISBcDRbMaJtERtdrCbeBcDVUmGn5+Nnj0tNwIe3jM6OvR0ubREC5GiyYYZM67eJ/129Jt4F0NVSo2a5BGT0NFtI+PzP6Giot5wrO1WDBbPk1Pc8YmC62Ws5t4FwdFmoyp63pejowpH2CZvR1WFreFbyr44Kpb/rkd/79dI/CvLhl3ibm1WChJsFtZdfTgSHtgzRgXg2Wlnkl82q4yJK3zSRg3vZVtEbm1WChLSzAuy0sjbzbvo3WzLv662isfR1NsG77Ploj62qwQFmH2/lRTweGtg/VgHfbl9KaeVd/K40RE3vtFKmL2xfTGplXg4WYDnOfPTA9HRjaPloD5m3fTWtmXv3lNEZN12ofC3Rx+3ZaI/NqsLTvjwve1WCh7bM14N329bRm3tXfTwNgnkMerX5n8eL38ta+tvhcfW2x+OUhFJBjY4+YLmU+tl3bxsQhtuOInzmH6Tb1iY995rq+R1z9dwtfKv3b/SLeywd9mebH+JL7N8Eb+d2ZcvtebaXIPb/Q/rD+A5vieMRT+cufX/4PUEsHCA88UV7pDQAAKIQAAFBLAQIUABQACAAIANumP0Cpmq/PKhQAANAZAAAvAAAAAAAAAAAAAAAAAAAAAAA5N2Q2Y2RiOTFhMmUxZTM5ODY0NmViZjdkOTdkMTMyMVxzY2hhY2h0ZWwxLnBuZ1BLAQIUABQACAAIANumP0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAIcUAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA26Y/QA88UV7pDQAAKIQAAAwAAAAAAAAAAAAAAAAA5RQAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADANsAAAAIIwAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
  
 
==Weiterführende Problemstellung==
 
==Weiterführende Problemstellung==

Version vom 31. Januar 2012, 20:55 Uhr

Inhaltsverzeichnis

Problemstellung

Der Goldfisch in Wermelskirchen möchte wiedereröffnen. Da es sich um einen Raucher-club handeln soll, hat der neue Inhaber sich überlegt, Streichholzschachteln als Werbung zu nutzen. Den Großteil seines Geldes hat er bereits in die Sanierung gesteckt, deshalb will er die Streichholzschachteln von seinen Mitarbeitern basteln lassen und zwar mit möglichst wenig Materialverbrauch. In einem Großmarkt hat der Besitzer dementspre-chend Pappe und Streichhölzer (4,5cm lang) gekauft. Einer der Mitarbeiter kam gestern mit folgender Bastelanleitung zu mir:

(Siehe Aufgabenblatt)

Er fragte mich, wie er aus der Pappe möglichst viele Streichholzschachteln basteln könnte. Als Vorgabe hat er gesagt bekommen, dass das Volumen 45cm³ haben muss. Könnt ihr ihm helfen, herauszufinden, welche Maße die Streichholzschachtel haben muss? (Die Klebekanten [siehe gestrichelte Linien] werden für die Berechnung nicht weiter berücksichtigt)

Falls du nicht weiterkommst: Hier findest du Hilfen

Hauptbedingung

 O=15a+20b+4ab

Nebenbedingung

 45=5ab

Zielfunktion

 O(a)=15a+180/a+36

Ableitung

 O'(a)=15+180/a^2

Notwendige Bedingung

 0=15+180/a^2

 a=3,46cm


Hinreichende Bedingung

 O''(3,46)>0 --> Tiefpunkt

Seitenlänge b und Oberfläche O

 b=2,6cm

 O=139,9cm^2

Randextrema

Sowohl fuer a gegen 0 als auch fuer a gegen unendlich, geht O(a) 
gegen unendlich --> 3,46 ist ein globales Minimum

Visualisierung zur Überprüfung der Ergebnisse

Visualisiserung mit Tabelle

Weiterführende Problemstellung

Bastel eine "optimale" Streichholzschachtel.

Überlege: Warum sind Streichholzschachteln in der Realität nicht "optimal"?

Verfasser

Team.gif
Entstanden unter Mitwirkung von:

Janina Wittenstein