Anwendungsbezogene Extremwertaufgaben: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Joerg Stadlinger
Main>Hofmeier
Keine Bearbeitungszusammenfassung
(124 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Lernpfad-M|Üben, Anwenden und Veranschaulichung von Extremwertaufgaben an anwendungsbezogenen Beispielen.
{{Lernpfad-M|Üben, Anwenden und Veranschaulichung von Extremwertaufgaben an anwendungsbezogenen Beispielen.
*'''Voraussetzung:'''Kenntnisse über die Ableitungsfunktion und die Bestimmung von Extremwerten
*'''Zeitbedarf:''' eine Unterrichtsstunde/mehrere Unterrichtsstunden  
*'''Zeitbedarf:''' eine Unterrichtsstunde/mehrere Unterrichtsstunden  
*'''Material:''' Stift und Papier, Konzentration
*'''Material:''' Stift und Papier, Konzentration
Zeile 5: Zeile 6:


{{Kurzinfo-1|M-digital}}
{{Kurzinfo-1|M-digital}}


= Extremwertaufgaben in der Anwendung =
= Extremwertaufgaben in der Anwendung =
== Einführung ==
[[Bild:einführungsgrafik4.png|left]]
Als Extremwert einer Funktion wird derjenige Wert bezeichnet, der innerhalb eines gewissen Bereichs größer ('''Maximum''') bzw. kleiner ('''Minimum''') als alle anderen Werte in diesem Bereich ist. Hierbei wird noch zwischen einem '''lokalen''' und einem '''globalen''' Extremwert unterschieden. Global ist der Extremwert dann, wenn er der größte bzw. kleinste Wert im '''gesamten''' Definitionsberich ist, im anderen Fall ist es ein lokaler Extremwert.


==Einführung==
Willkommen zum Lernpfad "Anwendungsbezogene Extremwertaufgaben". Hier findet ihr Aufgaben, in denen die Bestimmung von Extremwerten anhand von Beispielen aus dem Alltag eingeübt und vertieft werden kann.
'''Kurz zur Wiederholung:'''
Ein Extremwert ist der größte bzw. kleinste Wert einer Funktion (in einem gewissen Bereich). Hier findest du noch die formale mathematische Definition: [[Definition Extremwerte]]. Um diesen Wert zu finden, ist es sinnvoll die Ableitung der Funktion näher zu betrachten. Diese beschreibt nämlich anschaulich die Steigung einer angelegten Tangente an der ursprünglichen Funktion. Bei einem Extremwert, ist diese Tangente waagrecht, d.h. die Ableitungsfunktion an dieser Stelle ist Null.


'''Formal ist er folgendermaßen definiert:'''


Es sei <math> U \subseteq\mathbb R </math> eine Teilmenge der Reellen Zahlen (z.B. ein Intervall) und <math> f\colon U\to\mathbb R </math> eine Funktion.
Diesen Sachverhalt kannst du dir nochmal in folgender Skizze näher anschauen:


<table>
<tr> <td> <ggb_applet width="800" height="350" filename="Einstieg.ggb" showResetIcon="true" /> </td>


f hat an der Stelle <math> x_0\in U </math>
<td valign="centre">
</tr>
</table>


* ein lokales Minimum, wenn es ein Intervall <math> I = (a,b) </math> gibt, das <math>  x_0 </math> enthält, so dass <math> f(x_0)\leq f(x) </math> für alle <math> x\in I\cap U </math> gilt;


* ein globales Minimum, wenn <math> f(x_0)\leq f(x) </math> für alle <math> x\in U </math> gilt;
Du siehst hier die Funktion <math>a \cdot x^3 + b \cdot x^2 + c \cdot x + d</math>, an der du die Werte a, b, c und d verändern kannst. Wie du siehst, gibt es an bestimmten Stellen maximale und minimale Werte. Betrachte nun folgende Aspekte:


* ein lokales Maximum, wenn es ein Intervall <math> I = (a,b) </math> gibt, das <math> x_0 </math> enthält, so dass  <math> f(x_0)\geq f(x) </math> für alle <math> x\in I\cap U </math> gilt;


* ein globales Maximum, wenn <math> f(x_0)\geq f(x) </math> für alle <math> x\in U </math> gilt.
* Welchen Einfluss haben die Parameter a, b, c und d auf die Funktion? Wo liegen die Unterschiede?
* Wo befinden sich die Maxima und Minima der Funktion
* Blende die Ableitungsfunktion ein. Welchen Zusammenhang siehst du? Wie ändert sich die Ableitung mit der Veränderung von a, b, c und d? Was erkennst du bei der Änderung von d?
* Um den Zusammenhang deutlicher zu sehen, klicke auf das Kontrollkästchen Extremwerte




==Wozu überhaupt Extremwerte? ==
==Wozu überhaupt Extremwerte? ==
Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. So kann durch die Bestimmung des Extremwertes herausgefunden werden, welche Verpackungsform das geringste Material verbraucht, unter welchen Parametern eine Strecke in kürzester Zeit zurückgelegt werden kann usw.
Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. Im folgenden soll dies an drei Beispielen verdeutlicht werden. Als erstes wollen wir untersuchen, auf welchem Weg ein Ziel am schnellsten erreicht werden kann (dies ist nicht immer der direkteste Weg). Danach schauen wir uns an, wie man eine größtmögliche Schachtel aus vorgegebenen Karton basteln kann. Als letztes soll untersucht werden, in welchem Winkel man einen Ball werfen muss, um damit eine maximale Wurfweite zu erzielen.
== Allgemeines Lösungsverfahren ==


Ein Extremwert einer Funktion tritt immer dort auf, wo die 1. Ableitung dieser Funktion eine Nullstelle hat und die zweite 2. Ableitung keine Nullstelle besitzt (Alternativ können hier statt der 2. Ableitung auch die Vorzeichen der ersten Ableitung betrachtet werden. Bei Vorzeichenwechsel liegt dann ein Extremwert vor).  
Dies ist ein Ausschnitt aus einem breiten Anwendungsbereich von Extremwertaufgaben bzw. der Differentialrechnung. Denn auch in der Natur werden meist Zustände angenommen, die minimale Energie benötigen und somit über Extremwertbestimmungen ermittelt werden könne.


Ist allerdings wie bei praktischen Problemen keine explizite Funktion vorgegeben, sondern nur das Problem formuliert, muss zunächst eine passende Funktion, die Zielfunktion, aufgestellt werden. Hierbei hilft es, sich an folgendes Schema zu halten:
Nun aber zu unseren Aufgaben...


'''1. Stelle das Problem in einer Skizze dar'''


Eine Skizze hilft, sich die Problemstellung deutlich zu machen. Kennzeichne in der Skizze die bekannten und unbekannten Größen. Überlege dir, welche Größen in der Skizze du noch nicht weißt und ob du diese durch die anderen Größen ermitteln kannst.
==Beispiele für anwendungsbezogene Extremwertaufgaben (mit Lösungsanleitung)==


'''2. Stelle die Zielfunkion auf'''
===Extremwertaufgabe mit Nebenbedingung: Der schnellste Weg===


Versuche nun, deine Skizze in eine Funktion zu übertragen. Hierbei musst du die Größe, die du maximieren oder minimieren willst, durch die anderen vorhandenen Größen ausdrücken.
{{Aufgabe|


'''3. Nebenbedingung in Zielfunktion einsetzen'''
[[Bild:AckerStraße2.jpg|left|133px]]Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage


Unter Nebenbedingung versteht man einen für die Aufgabe notwendigen Zusammenhang, der nicht direkt aus der Aufgabenstellung hervorgeht. Ist in der Zielfunktion also noch eine Größe, die du nicht kennst, versuche sie durch die anderen gegebenen Größen z.B. mit Hilfe eines geometrischen Zusammenhangs auszudrücken. Am Schluss darf deine Zielfunktion nur noch von einer Größe abhängen.
(a.) 1000m


'''4. Extremwert der Zielfunktion bestimmen'''
(b.) 100m.
 
Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?}}


Nun musst du nur noch den Extremwert der Zielfunktion herausfinden. Dies geschieht durch Nullstetzen der ersten Ableitung und durch die Betrachtung des Randes der Definitionsmenge. Betrachtest du die Nullstelle der ersten Ableitung, so musst du diesen Wert noch durch einsetzen in die 2. Ableitung überprüfen. Ist die 2. Ableitung an dieser Stelle positiv, so handelt es sich um eine Minimum, ist sie negativ, um ein Maximum. Falls die 2. Ableitung ebenfalls eine Nullstelle hat, ist es kein Extremum.
                            Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!


== Der schräge Wurf ==
Als erstes Beispiel wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. Hierzu sind natürlich einige Vorüberlegungen zu treffen. Von was hängt die Wurfweite sonst noch ab? Erinnerst du dich an die entsprechenden physikalischen Formeln? Wenn du dich nicht erinnern kannst oder um deine Formeln zu überprüfen, klicke auf Lösung anzeigen! Aber: Vorher nachdenken!


{{Lösung versteckt mit Rand|Entscheidend ist die Zerlegung der Bewegung in eine x- und eine y-Komponente.
Der Ort des Objekts ergibt sich aus dem Anfangsort, der Geschwindikeit in die jeweilige Richtung mal die entsprechende Zeit und die Geschwindigkeitsänderungen (welche über die Beschleunigung ausgedrückt werden) mal die quadratische Zeit:


<math> x(t)=x_{0}+v_{0} \cdot t + \frac{1}{2} \cdot a_{0} \cdot t^2 </math>
Ansonsten löse die Aufgabe in folgenden Schritten:
 
 
'''1. Stelle die Aufgabensituation in einer Skizze dar (Teilaufgabe a))''':
 
Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.
 
{{Lösung versteckt mit Rand|Hier  kannst die die Aufgabensituation in einer Skizze betrachten (links der y-Achse im Koordinatensystem) und nebenstehend den Graphen der zu minimierenden Funktion f in der Variablen d (rechts der y-Achse im Koordinatensystem). Diese Funktion f musst du nachher noch bestimmen.
 
Indem du den Punkt D verschiebst, ändert sich d und somit auch der Funktionswert f(d), was zu dem rechten Graphen führt (grüne Spur).
 
 
<ggb_applet width="900" height="500" filename="Ackerweb.ggb" showResetIcon="true" />
 
 
 
 
Bevor wir zur Extremwertberechnung kommen, hier einige Vorüberlegungen:
 
* Verschiebe den Punkt D und betrachte den nebenstehenden Graphen (grün)!
 
* Bei welchem Wert d wird der Funktionswert von f minimal? Lese den Wert näherungsweise an der x-Achse bzw. an der Anzeige der Streckenlänge d ab.
 
* Wie groß sind jeweils die Streckenlängen auf dem Acker a (braune Linie)und der Straße (rote Linie)? Wie kann man diese berechnen?
 
Notiere deine Gedanken und überprüfe diese Werte durch die genaue Berechnung des Extremwertes und somit der Streckenlängen, die auf dem Acker und der Straße zurückgelegt werden müssen.
 
 
}}
 
'''2. Zielfunktion für Teilaufgabe a)''' :
 
Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.
 
{{Lösung versteckt mit Rand|Der Weg des Fußgängers setzt sich aus 2 Teilstrecken zusammen, nämlich aus einem geraden Weg über den Acker von A nach D (D liegt auf der Straße), also Strecke a (braune Linie), und dem Teilstück b (rote Linie) von D nach B auf der Straße.
 
* Sei d der Abstand von C (Fußpunkt des Lotes durch A auf die Straße) und D, wobei <math>0 \le d  \le 1000</math> .
 
* Die Länge des Weges von D nach C, also die rote Strecke b, ist 1000 - d.
 
* Da der Fußgänger auf dem Acker nur halb so schnell voran kommt wie auf der Straße, müssen die dort zurückzulegenden Meter doppelt gezählt werden.
 
Die Überlegungen führen uns zu folgender '''Zielfunktion''':
 
 
<math>f(x)=2*a+(1000-d)</math>
 
 
Diese ist zu minimieren.
}}
 
 
'''3. Nebenbedingung in Zielfunktion für Teilaufgabe a)''':
 
Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.
 
{{Lösung versteckt mit Rand|Die Länge des Weges a von A nach D ist nach Pythagoras <math>a=\sqrt{400^2+d^2}</math> .
 
Mit dieser Nebenbedingung  <math>a=\sqrt{400^2+d^2}</math> ergibt sich durch Ersetzen von a in der [[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion|Zielfunktion]]:
 
''' <math>f(d)=2*\sqrt{400^2+d^2}+ (1000-d)= min!</math>'''
}}
 
 
'''4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):'''
 
Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.
 
{{Lösung versteckt mit Rand|1=
'''Teilaufgabe a)'''
 
* Um den Extremwert der Zielfunktion bzw. den schnellsten Weg, um von A nach B zu kommen, zu bestimmen, benötigen wir die erste Ableitung dieser Funktion, die wir gleich 0 setzen, also <math>f'(d)=0</math>:
 
<math>f'(d)=(2d/\sqrt{400^2+d^2})-1=0</math>
 
* Durch Auflösen dieser Bedingung nach d erhält man als Lösung
 
<math>d=\sqrt{\frac{400^2}{3}}\approx230.94</math>
 
* Um nachzuprüfen, ob an dieser Stelle ein lokales Minimum (schnellster Weg) vorliegt, berechnen wir die zweite Ableitung der Zielfunktion f<nowiki>''</nowiki>(d) und prüfen, ob durch Einsetzen von unserer Lösung in f<nowiki>''</nowiki>(d) eine Zahl größer als 0 vorliegt, also ob f<nowiki>''</nowiki>(d)>0:
 
Es gilt <math>f''(d)=[2*\sqrt{400^2+d^2}-d^2/\sqrt{400^2+d^2}]/(400^2+d^2)</math>
 
und somit <math>f''(\sqrt{\frac{400^2}{3}})>0</math>
 
* Die Weglänge über die Straße, also die Entfernung von Punkt D zu B, beträgt also
 
<math>1000-\sqrt{\frac{400^2}{3}}\approx769.04</math>.
 
Die Weglänge über den Acker beträgt
 
<math>a=\sqrt{400^2+\sqrt{400^2/3} }\approx461.8</math>.
 
                                     
'''Teilaufgabe b)'''
 
* Wenn allerdings der Abstand zwischen B und C nur 100m beträgt, so lautet die zu minimierende Zielfunktion
 
<math>f(d)=2*\sqrt{400^2+d^2}+(100-d)</math>
 
 
* Die Ableitung hiervon ist die gleiche wie in Teilaufgabe a) schon betrachtet:
 
<math>f'(d)=(2d/\sqrt{400^2+d^2})-1</math>.
 
Setzt man diese Ableitung gleich 0, so hat sie für <math>0\le d\le100</math> keine Nullstelle bzw. keine Lösung. Hiermit gibt es in diesem Fall kein lokales Minimum. Die Funktion ist im Intervall [0,100] also streng monoton, weshalb der minimale Wert am Rand des Definitionsbereiches liegen muss, also entweder bei <math>d=0</math> oder bei <math>d=100</math>.
 
 
* Durch Einsetzen von d = 0 erhält man <math>f (0)=2*400+100=900</math>
 
Durch Einsetzen von d = 100 erhält man <math>f (100)=2*412+100-100=824</math>
 
Da der Funktionswert für d=100 der kleinere ist, führt folglich der kürzeste Weg von A nach B auf gerader Linie direkt über den Acker.
}}
 
===Bastelstunde: Falten einer Schachtel===
 
{{Aufgabe|
Von einem rechteckigen Karton mit Seitenlängen '''a''' und '''b''' (mit '''b''' <math>\le</math> '''a''') schneidet man an den Ecken Quadrate der Seitenlänge '''x''' aus, so dass man damit eine oben offene Schachtel falten kann. Die Schachtel besteht dabei aus der Grundfläche '''G''' und den Seitenflächen '''S1''' bis '''S4'''.
 
 
::a.) Berechne '''x''' in Abhängigkeit von '''a''' und '''b''' für den Fall, dass das Schachtelvolumen möglichst groß ist.
 
::b.) Was ergibt sich im Sonderfall '''a''' <math>=</math> '''b'''?
 
::c.) Wie groß ist das maximale Volumen für '''a''' <math>=</math> 21 und '''b''' <math>=</math> 16?}}
 
            Schreibe deine Gedanken, den Rechenweg und deine Ergebnisse auf einem Blatt Papier nieder.
      Falls du an einer Stelle nicht weiterkommst, oder du zum Schluss die Lösungen vergleichen möchtest,
                                  kannst du folgende Hinweise zu Hilfe nehmen:
 
 
Fertige zuerst eine Skizze der Aufgabenstellung an, in welche die gegebenen und gesuchten Variablen eingezeichnet werden. Dadurch sind die Zusammenhänge leichter ersichtlich.
 
{{Lösung versteckt mit Rand|Falls du die Aufgabenstellung richtig gelesen und verstanden hast, müsste deine Skizze jetzt so aussehen:
 
 
[[bild:lernpfad.jpg|left]]
 
 
 
 
 
 
 
 
Wie man im Bild (links) leicht erkennen kann, wird die längere Seite der ausgeschnittenen Schachtel mit <math> (a-2 \cdot x) </math> und die kürzere mit <math> (b-2 \cdot x) </math> bezeichnet.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Die folgende interaktive Skizze (unten) ist dazu gedacht, dass du die Zusammenhänge der Aufgabenvariablen besser erkennst und ein bisschen mit diesen "herumspielen" kannst.
 
Benutze dafür den Schieberegler. Ziehst du den Reglerpunkt nach links, werden die auszuschneidenden Quadrate kleiner, nach rechts werden sie größer. Zeitgleich verändert sich rechts neben der y-Achse das Volumen der "zusammengefalteten" Schachtel, welches als grüner Graph dargestellt wird. Außerdem wird dir zu jedem Volumen der zugehörige Wert der Quadratseitenlänge in türkis auf der x-Achse abgebildet. Als konkretes Beispiel dient ein Karton mit den Maßen 14cm x 10 cm.
 
 
 
<ggb_applet width="960" height="590" filename="Schachtelfertig3.ggb" showResetIcon="true" />
 
 
Für welches '''x''' bastelt man die Schachtel mit dem größten Volumen?
 
 
Versuche es durch Ausprobieren und Ablesen!
 
}}
 
 
'''Lösungsweg zu Teilaufgabe a.)'''
 
Nun gilt es, mit Hilfe der Variablen in der Skizze die Formel für das Schachtel-Volumen aufzustellen. Weißt du noch, wie man das Volumen eines Quaders berechnet?
 
{{Lösung versteckt mit Rand|Wie du dich vielleicht erinnerst, berechnet man das Volumen eines Quaders mit dem Merksatz "Länge mal Breite mal Höhe". Hier in unserem Fall lautet die Formel also:
 
 
<math> \begin{matrix} V(x) &=& (a-2x) \cdot (b-2x) \cdot x \\ \ &=&(ab-2ax-2bx+4x^2) \cdot x \\ \ &=&4x^3-2ax^2-2bx^2+abx \end{matrix} </math>
}}
 
Jetzt bilden wir die erste Ableitung der Volumenformel '''V(x)''' und setzen diese gleich Null, um "Kandidaten" für Extrempunkte zu bekommen.
 
{{Lösung versteckt mit Rand|<math> \begin{matrix} V^\prime(x) &=&12x^2-4ax-4bx+ab \\ \ &=&12x^2-4(a+b)x+ab  \end{matrix} \qquad \qquad \stackrel{!}{=} \ 0 </math>
 
 
Mit Hilfe der "Mitternachtsformel" erhalten wir maximal 2 mögliche Extremstellen (da dies ein Polynom zweiten Grades ist):
 
 
<math> \begin{matrix} x_{1,2} &=&\frac {4(a+b)\pm \sqrt{16(a+b)^2-4 \cdot 12 \cdot ab}}{24} \\ \ &=&\frac{4a+4b \pm \sqrt{16a^2+32ab+16b^2-48ab}}{24} \\ \ &=&\frac{4a+4b \pm \sqrt{16a^2-16ab+16b^2}}{24} \\ \ &=&\frac{4a+4b \pm 4\sqrt{a^2-ab+b^2}}{24} \\ \ &=&\frac{a+b \pm \sqrt{a^2-ab+b^2}}{6}\end{matrix} </math>
 
 
:<math> \Rightarrow \qquad x_1 =\frac{a+b+ \sqrt{a^2-ab+b^2}}{6} \quad , \quad x_2 =\frac{a+b- \sqrt{a^2-ab+b^2}}{6}</math>
}}
 
Für welchen unserer Extremstellen-"Kandidaten" das Schachtelvolumen maximal wird, sehen wir nun durch sukzessives Einsetzen der erhaltenen Punkte in die zweite Ableitung der Volumenformel '''V(x)'''.
 
{{Lösung versteckt mit Rand|<math> {V^\prime}^\prime (x) = 24x-4a-4b </math>
 
 
:<math> \Rightarrow </math>
 
:::<math> {V^\prime}^\prime (x_1) = 4(a+b+ \sqrt{a^2-ab+b^2})-4a-4b =4 \sqrt{a^2-ab+b^2} \qquad > \ 0 \qquad \Rightarrow \quad x_1 \ ist \ Minimum </math>
 
:::<math> {V^\prime}^\prime (x_2) = 4(a+b- \sqrt{a^2-ab+b^2})-4a-4b =-4 \sqrt{a^2-ab+b^2} \quad < \ 0 \qquad \Rightarrow \quad x_2 \ ist \ Maximum </math>
 
 
'''Ergebnis:''' Nach Herausschneiden von Quadraten der Seitenlänge '''<math>x_2</math>''' an den Ecken des Kartons besitzt die gefaltete Schachtel das größtmögliche Volumen!
}}
 
'''Lösungsweg zu Teilaufgabe b.)'''
 
Für den Sonderfall '''<math> a = b </math>''' ersetzen wir also nun die Variable '''b''' durch die Variable '''a''', was bedeutet, dass unser Karton jetzt quadratisch ist. Dadurch erhalten wir sofort zwei neue Lösungen für die Seitenlänge '''x''' der herauszuschneidenden Quadrate.
 
{{Lösung versteckt mit Rand|<math> x_{1,2} = \frac{2a \pm \sqrt{a^2-a^2+a^2}}{6} = \frac{2a \pm a}{6} </math>
 
 
:<math> \Rightarrow </math>
 
:::<math> x_1 = \frac{a}{2} \quad \Rightarrow \quad Fuer \ diesen \ Fall \ gibt \ es \ keine \ Schachtel, \ da \ (a-2x_1)=0 </math>
 
:::<math> x_2 = \frac{a}{6} \quad \Rightarrow \quad {V^\prime}^\prime (x_2) = 24 \left( \frac{a}{6} \right) -4a-4a = -4a \quad < \ 0 \qquad \Rightarrow \quad x_2 \ ist \ Maximum </math>
 
 
'''Ergebnis:''' Die Schachtel hat die Kanten '''a/6''', '''4a/6''' und '''4a/6'''. Das ist das Verhältnis '''<math> 1 \ : \ 4 \ : \ 4 </math>'''.
}}
 
'''Lösungsweg zu Teilaufgabe c.)'''
 
Zum Schluß haben wir noch zwei konkrete Werte für unsere Kartonseitenlängen gegeben, nämlich '''<math> a = 21 </math>''' und '''<math> b = 16 </math>'''. Wie groß ist hierfür das maximale Volumen '''<math>V_\mathrm{max} (x) </math>'''?
 
{{Lösung versteckt mit Rand|Dazu setzen wir zunächst '''a''' und '''b''' in die Formel unseres Maximums aus Teilaufgabe a.) ein:
 
 
<math>x = \frac{a+b- \sqrt{a^2-ab+b^2}}{6} = \frac{37- \sqrt{441-336+256}}{6} = \frac{37-19}{6} = 3 </math>
 
 
Jetzt wissen wir, welche Länge die Quadrate haben, die wir an den Ecken des Kartons ausschneiden müssen. Mit diesem Wert lässt sich schließlich '''<math>V_\mathrm{max} (x) </math>''' berechnen:
 
 
<math> V_\mathrm{max} (x) = (21-6) \cdot (16-6) \cdot 3 = 15 \cdot 10 \cdot 3 = 450 </math>.
 
 
 
 
 
'''Skizze zur Veranschaulichung:'''
 


Dies müssen wir nun in x- und y-Richtung ausdrücken. In x-Richtung bleibt die Geschwindigkeit (wenn wir die Reibung vernachlässigen) über die ganze Strecke konstant und wir starten am Anfangspunkt 0:
Dies ist ein interaktives Koordinatensystem, in dem man durch Einstellen der Kartonseitenlängen '''a''' und '''b''' das Volumen der Schachtel durch die Funktion '''f''' in Abhängigkeit von '''x''' angezeigt bekommt. Auf der x-Achse ist die Seitenlänge der auszuschneidenden Quadrate und auf der y-Achse das Schachtelvolumen angegeben.  


<math> x(t)=v_{x} \cdot t </math>
Vorgehensweise: Mit Hilfe der Schieberegler stellt man die gewünschten Seitenlängen des Kartons ein. Dadurch verändert sich der Graph der Funktion '''f'''. Im höchsten Punkt der nach unten geöffneten Parabel ist dann das maximale Volumen der erzeugten Schachtel angegeben. Senkrecht unterhalb dieses Punktes auf der x-Achse lässt sich dann leicht der Wert '''x''' ablesen, für den das maximale Schachtelvolumen erreicht wird. Die zweite Nullstelle des Graphen neben der Nullstelle '''<math> x = 0 </math>''' zeigt an, ab welcher Größe der auszuschneidenden Quadrate keine Schachtel mehr gefaltet werden kann. Der restliche Verlauf des Graphen ab der zweiten Nullstelle ist irrelevant.


In y-Richtung starten wir ebenfalls am Anfangspunkt 0, allerdings nimmt die Geschwindigkeit mit der Erdbeschleunigung g ab:


<math> y(t)=v_{y} \cdot t - 1/2 \cdot g \cdot t^2 </math>
<ggb_applet width="400" height="300" filename="VolumenSkizze.ggb" showResetIcon="true" />
}}
}}


=== Der schräge Wurf ===
{{Aufgabe|
Nun wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. }}
'''1. Skizze:'''
Als erstes solltest du eine Skizze von einem Wurf nach schräg oben anfertigen. Wo befindet sich dabei der entscheidende Winkel <math>\alpha</math>? Was sind die entscheidenden Größen?


Versuche nun nach dem oben dargestellten Schema vorzugehen, dir also in einer Skizze die Situation zu verdeutlichen und die entsprechenden Größen einzuzeichnen! Wo befindet sich der Winkel <math>\alpha</math>?


{{Lösung versteckt|Skizze:
''Falls du nicht weiterkommst, findest du hier die Skizze des Wurfes:''{{Lösung versteckt|Skizze:


<ggb_applet width="400" height="250" filename="schraeger_Wurf4.ggb" showResetIcon="true" />
<ggb_applet width="400" height="250" filename="schraeger_Wurf4.ggb" showResetIcon="true" />


}}




Als feste Größe ist die Abwurfgeschwindigkeit <math>\vec v_{0}</math> anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel <math>\alpha</math>. Kannst du die noch unbekannten Größen mit Hilfe von <math>\vec v_{0}</math> und <math>\alpha</math> ausdrücken?
Als feste Größe ist die Abwurfgeschwindigkeit <math>\vec v_{0}</math> anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel <math>\alpha</math>.}}
 
Entscheidend ist nun die Zerlegung der Bewegung in eine x- und eine y-Komponente. Versuche zunächst, die Geschwindigkeit an Hand der Skizze in diese Komponenten zu zerlegen.


{{Lösung versteckt mit Rand|Um unsere Gleichungen für x(t) und y(t) aufzustellen benötigen wir die noch unbekannten Größen <math> v_{x} </math> und <math> v_{y} </math> die sich aus der Skizze ablesen lassen:
{{Lösung versteckt mit Rand|Die Größen <math> v_{x} </math> und <math> v_{y} </math> lassen sichmit Hilfe von <math>\alpha</math> wie folgt bestimmen:


<math> v_{x}=v_{0} \cdot cos(\alpha) </math> und
<math> v_{x}=v_{0} \cdot cos(\alpha) </math> und
Zeile 89: Zeile 362:
}}
}}


Nun kannst du die beiden Ortsgleichungen aufschreiben und zu einer Funktionsgleichung umformen. Die Zielfunktion ist dabei die Funktion der Größe, die du maximieren willst. In unserem Fall möchten wir zunächst das Maximum der Wurfweite in Abhängigkeit des Abwurfwinkels bestimmen. Unsere Zielfunktion ist also die Ortsfunktion in x-Richtung. Versuche diese Funktion mit Hilfe der bisherigen Gleichungen aufzustellen.
'''2. Physikalische Formeln'''
 
Wir wollen allerdings die Flugweite und Flughöhe, nicht die jeweiligen Geschwindigkeiten betrachten. Erinnerst du dich, wie die Ortskomponenten in der Physik mit den Geschwindigkeitskomponenten zusammenhängen? Schreibe die entsprechenden Gleichungen auf!
 
{{Lösung versteckt mit Rand|Der Ort des Wurfobjekts ergibt sich aus dem Anfangsort, der Geschwindikeit in die jeweilige Richtung mal die entsprechende Zeit und die Geschwindigkeitsänderungen (welche über die Beschleunigung ausgedrückt werden) mal die quadratische Zeit:
 
<math> x(t)=x_{0}+v_{0} \cdot t + \frac{1}{2} \cdot a_{0} \cdot t^2 </math>


Dies müssen wir nun in x- und y-Richtung ausdrücken. In x-Richtung bleibt die Geschwindigkeit (wenn wir die Reibung vernachlässigen) über die ganze Strecke konstant und wir starten am Anfangspunkt 0:


{{Lösung versteckt mit Rand|Durch das Zusammensetzen der obigen Funktion von <math> x(t) </math> und <math> v_{x}(t) </math> ergibt sich folgender Zusammenhang:
<math> x(t)=v_{x} \cdot t = v_{0} \cdot cos(\alpha) \cdot t</math>


<math> x(t)=v_{x} \cdot t = v_{0} \cdot cos(\alpha) \cdot t = x(t,\alpha) </math>
In y-Richtung starten wir ebenfalls am Anfangspunkt 0, allerdings nimmt die Geschwindigkeit mit der Erdbeschleunigung g ab:


<math> y(t)=v_{y} \cdot t - 1/2 \cdot g \cdot t^2 = v_{0} \cdot sin(\alpha) \cdot t - 1/2 \cdot g \cdot t^2</math>
}}
}}
'''3. Nebenbedingung formulieren'''


Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels <math> \alpha </math>. Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.
Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels <math> \alpha </math>. Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.
Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.
 
''Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.''


Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:
Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:
{{Lösung versteckt mit Rand|Störend ist bei uns noch die Variable t. Wir interessieren uns ja nur für den Zeitpunkt, an dem der Ball/Stein oder ähnliches wieder auf dem Boden aufkommt. Dies ist genau der Zeitpunkt, bei dem unsere zweite Ortsfunktion y(t) (also die Höhe) wieder 0 ist. Als Funktion:
{{Lösung versteckt mit Rand|Störend ist bei uns noch die Variable t. Wir interessieren uns ja nur für den Zeitpunkt, an dem der Ball/Stein oder ähnliches wieder auf dem Boden aufkommt. Dies ist genau der Zeitpunkt, bei dem unsere zweite Ortsfunktion y(t) (also die Höhe) wieder 0 ist. Als Funktion:


Zeile 124: Zeile 410:
}}
}}


Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch für die Aufgabe wesentliche Größen ausdrücken. Dies musst du nun in die Zielfunktion einsetzen.
'''4. Nebenbedingung einsetzen und Funktion aufstellen'''
 
Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch die für die Aufgabe wesentlichen Größen ausdrücken und in die Zielfunktion einsetzen.


{{Lösung versteckt mit Rand|Mit der Information über t können wir t nun in unserer Ortsfunktion <math> x(t,\alpha) </math> elimieren.
{{Lösung versteckt mit Rand|Mit der Information über t können wir t nun in unserer Ortsfunktion <math> x(t,\alpha) </math> elimieren.
Zeile 130: Zeile 418:
<math> x(t_{2},\alpha)= v_{0} \cdot cos(\alpha) \cdot t_{2} = v_{0} \cdot cos(\alpha) \cdot \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g}= \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha)=x(\alpha) </math>
<math> x(t_{2},\alpha)= v_{0} \cdot cos(\alpha) \cdot t_{2} = v_{0} \cdot cos(\alpha) \cdot \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g}= \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha)=x(\alpha) </math>


Somit hängt unsere Wurfweite wie gewollt nur noch vom Abwurfwinkel <math> \alpha </math> ab. In der Skizze kannst du zusätzlich die Abwurfgeschwindigkeit <math> \v_{0} </math> variieren, die wir in der Berechnung zunächst einmal als fest voraussetzen.
Somit hängt unsere Wurfweite wie gewollt nur noch vom Abwurfwinkel <math> \alpha </math> ab. In der Skizze kannst du zusätzlich die Abwurfgeschwindigkeit <math> v_{0} </math> variieren, die wir in der Berechnung zunächst einmal als fest voraussetzen.


Skizze:
Skizze:
Zeile 138: Zeile 426:
}}
}}


Du hast nun die Zielfunktion aufgestellt und die störende Variable durch deine Nebenbedingung elimiert. Nun hast du eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von <math> x(\alpha)</math>.
'''5. Bestimmung des Extremwerts (maximale Wurfweite)'''
 
Du hast nun eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von <math> x(\alpha)</math>.


Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von <math> \alpha </math> abhängt, musst du jetzt natürlich nach <math> \alpha </math> ableiten. Versuche, die Nullstelle zu bestimmen.
Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von <math> \alpha </math> abhängt, musst du jetzt natürlich nach <math> \alpha </math> ableiten. Versuche, die Nullstelle zu bestimmen.
Zeile 152: Zeile 442:
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (cos(\alpha)^2 - sin(\alpha)^2) </math>
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (cos(\alpha)^2 - sin(\alpha)^2) </math>


<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (1-2sin(\alpha)^2) \stackrel{!}{=} 0 \qquad \qquad sin(x)^2+cos(x)^2=1</math>   
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (1-2sin(\alpha)^2) \stackrel{!}{=} 0 \qquad \qquad (sin(x)^2+cos(x)^2=1)</math>   


<math> \Leftrightarrow 2 \cdot sin(\alpha)^2 = 1 \qquad \Leftrightarrow sin(\alpha) = \pm \frac{1}{\sqrt{2}} </math>
<math> \Leftrightarrow 2 \cdot sin(\alpha)^2 = 1 \qquad \Leftrightarrow sin(\alpha) = \pm \frac{1}{\sqrt{2}} </math>
Zeile 169: Zeile 459:


}}
}}
'''6. Untersuchung der Flughöhe'''


==Dritte Überschrift ==
Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.
 
==Extremwertaufgabe mit Nebenbedingung: Acker neben Straße==
 
{{Aufgabe|
Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage
 
(a.) 1000m


(b.) 100m.  
Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei <math> \alpha=0^\circ </math>, also den Wurf senkrecht nach oben, sein Maximum haben wird.
Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.


Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?}}
{{Lösung versteckt mit Rand|Wir müssen die Ableitung der Funktion y(t) wieder gleich 0 setzen, um die Extremwerte der Funktion herauszufinden und diese Werte dann mithilfe der 2. Ableitung überprüfen:


<math> y(t)= v_{0} \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 </math>


                  Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!
<math> y'(t)= v_{0} \cdot sin(\alpha) - \frac{1}{2} \cdot g \cdot 2 \cdot t \stackrel{!}{=} 0</math>


<math> \Rightarrow t_{max} = \frac{ v_{0} \cdot sin(\alpha)}{g} </math>


Einsetzen in y(t):


[[Bild:AckerStraße.jpg]]
<math> y(t_{max})= v_{0} \cdot sin(\alpha) \frac{v_{0} \cdot sin(\alpha)}{g} - \frac{1}{2} \cdot g \frac{v_{0}^2 \cdot sin(\alpha)^2}{g^2} </math>


<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{g} - \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>


<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>


                    Ansonsten löse die Aufgabe in folgenden Schritten:
Einsetzen von <math> \alpha_{max}=45^\circ </math>


<math> y(t_{max})= \frac{v_{0}^2}{4g} </math>


'''1. Stelle die Aufgabensituation in einer Skizze dar''':
Zuletzt noch die Überprüfun der 2. Ableitung:


Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.
<math> y''(t_{max})= -g < 0 </math>


[[Mathematik-digital/Testlernpfad Hofmeier/Skizze "Acker neben Straße"|Skizze "Acker neben Straße"]]
Somit handelt es sich um ein Maximum und wir haben die Flughöhe für beliebige Anfangsgeschwindigkeiten bestimmt.


}}


'''2. Zielfunktion für Teilaufgabe a)''' :
Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!
 
Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion|Zielfunktion]]
 
 
'''3. Nebenbedingung in Zielfunktion für Teilaufgabe a)''':
 
Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion mit Nebenbedingung|Zielfunktion mit Nebenbedingung]]
 
 
'''4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):'''
 
Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Extremwertbestimmung|Extremwertbestimmung]]








{{mitgewirkt|* <Ihr Name>}}
{{mitgewirkt|
* [[Benutzer:Joerg Stadlinger|Jörg Stadlinger]]
* [[Benutzer:MatThe|Matthias Then]]
* [[Benutzer:Hofmeier|Mareike Hofmeier]]}}




[[Kategorie:Kurvendiskussion]]
[[Kategorie:Extremwerte]]

Version vom 6. Februar 2009, 14:48 Uhr

Vorlage:Lernpfad-M

Vorlage:Kurzinfo-1


Extremwertaufgaben in der Anwendung

Einführung

Willkommen zum Lernpfad "Anwendungsbezogene Extremwertaufgaben". Hier findet ihr Aufgaben, in denen die Bestimmung von Extremwerten anhand von Beispielen aus dem Alltag eingeübt und vertieft werden kann.


Kurz zur Wiederholung:

Ein Extremwert ist der größte bzw. kleinste Wert einer Funktion (in einem gewissen Bereich). Hier findest du noch die formale mathematische Definition: Definition Extremwerte. Um diesen Wert zu finden, ist es sinnvoll die Ableitung der Funktion näher zu betrachten. Diese beschreibt nämlich anschaulich die Steigung einer angelegten Tangente an der ursprünglichen Funktion. Bei einem Extremwert, ist diese Tangente waagrecht, d.h. die Ableitungsfunktion an dieser Stelle ist Null.


Diesen Sachverhalt kannst du dir nochmal in folgender Skizze näher anschauen:

GeoGebra


Du siehst hier die Funktion , an der du die Werte a, b, c und d verändern kannst. Wie du siehst, gibt es an bestimmten Stellen maximale und minimale Werte. Betrachte nun folgende Aspekte:


  • Welchen Einfluss haben die Parameter a, b, c und d auf die Funktion? Wo liegen die Unterschiede?
  • Wo befinden sich die Maxima und Minima der Funktion
  • Blende die Ableitungsfunktion ein. Welchen Zusammenhang siehst du? Wie ändert sich die Ableitung mit der Veränderung von a, b, c und d? Was erkennst du bei der Änderung von d?
  • Um den Zusammenhang deutlicher zu sehen, klicke auf das Kontrollkästchen Extremwerte


Wozu überhaupt Extremwerte?

Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. Im folgenden soll dies an drei Beispielen verdeutlicht werden. Als erstes wollen wir untersuchen, auf welchem Weg ein Ziel am schnellsten erreicht werden kann (dies ist nicht immer der direkteste Weg). Danach schauen wir uns an, wie man eine größtmögliche Schachtel aus vorgegebenen Karton basteln kann. Als letztes soll untersucht werden, in welchem Winkel man einen Ball werfen muss, um damit eine maximale Wurfweite zu erzielen.

Dies ist ein Ausschnitt aus einem breiten Anwendungsbereich von Extremwertaufgaben bzw. der Differentialrechnung. Denn auch in der Natur werden meist Zustände angenommen, die minimale Energie benötigen und somit über Extremwertbestimmungen ermittelt werden könne.

Nun aber zu unseren Aufgaben...


Beispiele für anwendungsbezogene Extremwertaufgaben (mit Lösungsanleitung)

Extremwertaufgabe mit Nebenbedingung: Der schnellste Weg

Aufgabe


AckerStraße2.jpg
Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage

(a.) 1000m

(b.) 100m.

Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?
                            Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!


Ansonsten löse die Aufgabe in folgenden Schritten:


1. Stelle die Aufgabensituation in einer Skizze dar (Teilaufgabe a)):

Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.

Vorlage:Lösung versteckt mit Rand

2. Zielfunktion für Teilaufgabe a) :

Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.

Vorlage:Lösung versteckt mit Rand


3. Nebenbedingung in Zielfunktion für Teilaufgabe a):

Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.

Vorlage:Lösung versteckt mit Rand


4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):

Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.

Vorlage:Lösung versteckt mit Rand

Bastelstunde: Falten einer Schachtel

Aufgabe

Von einem rechteckigen Karton mit Seitenlängen a und b (mit b a) schneidet man an den Ecken Quadrate der Seitenlänge x aus, so dass man damit eine oben offene Schachtel falten kann. Die Schachtel besteht dabei aus der Grundfläche G und den Seitenflächen S1 bis S4.


a.) Berechne x in Abhängigkeit von a und b für den Fall, dass das Schachtelvolumen möglichst groß ist.
b.) Was ergibt sich im Sonderfall a b?
c.) Wie groß ist das maximale Volumen für a 21 und b 16?
           Schreibe deine Gedanken, den Rechenweg und deine Ergebnisse auf einem Blatt Papier nieder. 
      Falls du an einer Stelle nicht weiterkommst, oder du zum Schluss die Lösungen vergleichen möchtest, 
                                 kannst du folgende Hinweise zu Hilfe nehmen:


Fertige zuerst eine Skizze der Aufgabenstellung an, in welche die gegebenen und gesuchten Variablen eingezeichnet werden. Dadurch sind die Zusammenhänge leichter ersichtlich.

Vorlage:Lösung versteckt mit Rand


Lösungsweg zu Teilaufgabe a.)

Nun gilt es, mit Hilfe der Variablen in der Skizze die Formel für das Schachtel-Volumen aufzustellen. Weißt du noch, wie man das Volumen eines Quaders berechnet?

Vorlage:Lösung versteckt mit Rand

Jetzt bilden wir die erste Ableitung der Volumenformel V(x) und setzen diese gleich Null, um "Kandidaten" für Extrempunkte zu bekommen.

Vorlage:Lösung versteckt mit Rand

Für welchen unserer Extremstellen-"Kandidaten" das Schachtelvolumen maximal wird, sehen wir nun durch sukzessives Einsetzen der erhaltenen Punkte in die zweite Ableitung der Volumenformel V(x).

Vorlage:Lösung versteckt mit Rand

Lösungsweg zu Teilaufgabe b.)

Für den Sonderfall ersetzen wir also nun die Variable b durch die Variable a, was bedeutet, dass unser Karton jetzt quadratisch ist. Dadurch erhalten wir sofort zwei neue Lösungen für die Seitenlänge x der herauszuschneidenden Quadrate.

Vorlage:Lösung versteckt mit Rand

Lösungsweg zu Teilaufgabe c.)

Zum Schluß haben wir noch zwei konkrete Werte für unsere Kartonseitenlängen gegeben, nämlich und . Wie groß ist hierfür das maximale Volumen ?

Vorlage:Lösung versteckt mit Rand

Der schräge Wurf

Aufgabe
Nun wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht.

1. Skizze:

Als erstes solltest du eine Skizze von einem Wurf nach schräg oben anfertigen. Wo befindet sich dabei der entscheidende Winkel ? Was sind die entscheidenden Größen?


Falls du nicht weiterkommst, findest du hier die Skizze des Wurfes:

Skizze:

GeoGebra


Als feste Größe ist die Abwurfgeschwindigkeit anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel .

Entscheidend ist nun die Zerlegung der Bewegung in eine x- und eine y-Komponente. Versuche zunächst, die Geschwindigkeit an Hand der Skizze in diese Komponenten zu zerlegen.

Vorlage:Lösung versteckt mit Rand

2. Physikalische Formeln

Wir wollen allerdings die Flugweite und Flughöhe, nicht die jeweiligen Geschwindigkeiten betrachten. Erinnerst du dich, wie die Ortskomponenten in der Physik mit den Geschwindigkeitskomponenten zusammenhängen? Schreibe die entsprechenden Gleichungen auf!

Vorlage:Lösung versteckt mit Rand


3. Nebenbedingung formulieren

Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels . Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.

Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.

Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:

Vorlage:Lösung versteckt mit Rand

4. Nebenbedingung einsetzen und Funktion aufstellen

Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch die für die Aufgabe wesentlichen Größen ausdrücken und in die Zielfunktion einsetzen.

Vorlage:Lösung versteckt mit Rand

5. Bestimmung des Extremwerts (maximale Wurfweite)

Du hast nun eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von .

Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von abhängt, musst du jetzt natürlich nach ableiten. Versuche, die Nullstelle zu bestimmen.

Vorlage:Lösung versteckt mit Rand

6. Untersuchung der Flughöhe

Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.

Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei , also den Wurf senkrecht nach oben, sein Maximum haben wird. Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.

Vorlage:Lösung versteckt mit Rand

Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!



Vorlage:Mitgewirkt