Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
KKeine Bearbeitungszusammenfassung
Main>Jan Wörler
(60 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 5: Zeile 5:


Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN<sub>0</sub> =/= IN.<br />
Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN<sub>0</sub> =/= IN.<br />
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form <math>\frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\frac{1}{n}\leq 1</math>.
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\textstyle \frac{1}{n}\leq 1</math>.


=== Vergleiche mit Funktionen aus Stufe 2 ===
=== Vergleich mit Funktionen aus Stufe 2 ===


* Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
{| cellspacing="10"
* Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=1|ARBEIT=
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
#* Definitionsbereich
#* Symmetrie
#* Monotonie
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
:{{Lösung versteckt|
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
:Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.
}}
}}<br>
|| <ggb_applet height="300" width="550" showMenuBar="false" showResetIcon="true"
filename="7_x1n_w2.ggb" />
|}


Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.
<!--neue Datei {{ggb|7_x1n_w2.ggb|datei}}-->


== Potenzen und Wurzeln ==
Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt ''Wurzelfunktion''.
Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt:
:<math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math>
Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:
:<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math>


<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"
filename="7_x1n.ggb" />


== Potenzen und Wurzeln ==
Im Falle <math>n=2</math> nennt man die Wurzel "''Quadratwurzel''" und man schreibt:
:<math>x^{\frac{1}{2}} = \sqrt[2]{x} =: \sqrt{x}</math>


Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt:


<math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math>
Im Falle <math>n=3</math> nennt man die Wurzel "''Kubikwurzel''", i. Z.: <font style="vertical-align:27%;"><math>x^{\frac{1}{3}}</math></font> bzw. <math>\sqrt[3]{x}</math>.


Darin ist die n-te Wurzel festgelegt über:


<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math>


Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt Wurzelfunktion
=== Beispiel: Quadratwurzel ===


Beispiele:
In der Regel hat eine positive Zahl zwei Quadratwurzeln, eine positive und eine negative. So ist etwa
* <math>16 = \begin{cases} 4\cdot 4 &= 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \Rightarrow \sqrt{16} = \pm 4</math>.


* <math>16 = \begin{cases} 4\cdot 4 &= 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \Rightarrow \sqrt{16} = \pm 4</math>, aber
Aus negativen Zahlen kann man dagegen keine Quadratwurzel ziehen, denn:
* <math>-16 = \begin{cases} (-1)\cdot 4\cdot 4 &= (-1)\cdot 4^2\\ (-1)\cdot (-4) \cdot (-4) &= (-1)\cdot (-4)^2 \end{cases} \Rightarrow \sqrt{-16}=\pm 4\cdot\sqrt{-1}</math>, nicht definiert.
* <math>-16 = \begin{cases} (-1)\cdot 4\cdot 4 &= (-1)\cdot 4^2\\ (-1)\cdot (-4) \cdot (-4) &= (-1)\cdot (-4)^2 \end{cases} \Rightarrow \sqrt{-16}=\pm 4\cdot\sqrt{-1}</math>, nicht definiert.
=== Beispiel: Kubikwurzel ===
* <math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math>, aber auch
* <math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math>, aber auch




<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"  
<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"  
filename="8_ax1nc.ggb" />
filename="8_ax1nc_w.ggb" />
 
<!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}-->
 
== Definitionsbereich der Wurzelfunktionen ==
==== Einschränkung auf IR<sup>+</sup> ====
 
Offenbar ergibt die Wurzelfunktion <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungeradem ''n'' sowohl für positive als auch negative ''x'' Lösungen, wie folgendes Beispiel zeigt:
:<math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3,</math>
:<math>\sqrt[3]{ 27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>
 
 
Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:
:<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>
 
 
Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
:<math>f(x) = \sqrt[n]{x}</math>  mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math>


== Der Definitionsbereich ==
==== Wurzelfunktion auf ganz IR ====


Offenbar kann man zum Beispiel wegen
Will man eine Wurzelfunktion ''g'' dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa ''g'' derart, dass
* <math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3.</math>
:<math>g(x):=\begin{cases}\sqrt[n]{x}, &x\geq 0 \\ -\sqrt[n]{-x}, &x<0\end{cases}</math>.  
die Wurzelfunktionen <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungeradem n sowohl für positive als auch negative x definieren. <br />Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
Dann gilt: ID<sub>g</sub> = IR.
* <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>


Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die positiven reelle Zahlen ein, also:
== kurz nachgedacht ==


<math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math>
* asd asd  
* asd asd asd
* aasdd
*

Version vom 28. Januar 2009, 20:17 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:


Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:


Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:


Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .


Beispiel: Quadratwurzel

In der Regel hat eine positive Zahl zwei Quadratwurzeln, eine positive und eine negative. So ist etwa

  • .

Aus negativen Zahlen kann man dagegen keine Quadratwurzel ziehen, denn:

  • , nicht definiert.

Beispiel: Kubikwurzel

  • , aber auch


Die Datei [INVALID] wurde nicht gefunden.


Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:


Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.

kurz nachgedacht

  • asd asd
  • asd asd asd
  • aasdd