Differenzenquotient: Unterschied zwischen den Versionen
(→Differentialquotient) |
K (→Momentane Änderungsrate) |
||
Zeile 114: | Zeile 114: | ||
b) Der Zeitabschnitt für die mittlere Änderungsrate müsste immer kleiner gewählt werden, z.B. zwischen Sekunde 12 und 12,00001 usw.<br /> | b) Der Zeitabschnitt für die mittlere Änderungsrate müsste immer kleiner gewählt werden, z.B. zwischen Sekunde 12 und 12,00001 usw.<br /> | ||
</popup> | </popup> | ||
− | <br | + | <br> |
− | + | ||
== Von der Sekantensteigung zur Tangentensteigung == | == Von der Sekantensteigung zur Tangentensteigung == |
Aktuelle Version vom 22. Februar 2017, 23:02 Uhr
Inhaltsverzeichnis |
Von der mittleren Änderungsrate zur momentanen Änderungsrate
Blumenvase
Wir Betrachten die abgebildete Vase, in die gleichmäßig Wasser eingelassen wird. Die Tabelle stellt dar, wie sich die Wasserhöhe (hier gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert.
Zeit (Sekunden) Höhe (cm) 0 0,51 3 1,33 6 2,74 9 4,91 12 8,00 15 12,17 18 17,58
Mittlere Änderungsrate
Die mittlere Änderungsrate gibt in diesem Beispiel an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.
Bsp.
In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)
Berechnen Sie anhand der obigen Tabelle und mit dem Taschenrechner die mittlere Änderungsrate in den angegebenen Zeitabschnitten: |
Momentane Änderungsrate
Möchte man nun für einen Zeitpunkt (z.B. Sekunde 12) eine Änderungsrate bestimmen, so spricht man von der momentanen Änderungsrate. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in der folgenden Aufgabe.
Um näherungsweise die momentane Änderungsrate für den Zeitpunkt t0 = 12 Sekunden zu erhalten, bestimmen Sie mit Hilfe der Schieberegler des Applets und mit Hilfe des Taschenrechners die mittlere Änderungsrate im Zeitintervall von ... |
Wenn der Wasserstand als Funktion von der Zeit mit einer Funktionsvorschrift gegeben ist, kann man die mittleren Änderungsraten auch rechnerisch bestimmen.
Die Höhe des Wasserstandes der bisher betrachteten Vase kann mit der Funktion w(t)=0,001(t+8)3 beschrieben werden. Hierbei gibt w(t) die Höhe des Wasserstandes in cm zu einem Zeitpunkt t (in Sekunden) an. |
Von der Sekantensteigung zur Tangentensteigung
Eine Sekante ist eine Gerade, die den Graphen einer Funktion in zwei Punkten schneidet. Die Sekantensteigung ist die Steigung dieser Geraden. Die Sekantensteigung der Sekante duch die Punkte und
kann mit
berechnet werden. Dies entspricht der Steigung der Geraden, die durch die Punkte A und B geht.
Die Sekantensteigung gibt die mittlere Änderungsrate einer Funktion zwischen zwei Punkten bzw. die durchschnittliche Steigung zwischen zwei Punkten auf dem Funktionsgraph an.
Information
Eine Sekante schneidet den Graphen in zwei Punkten. Wenn nun der Punkt B immer weiter dem Punkt A angenähert wird und bei diesem Prozess letztendlich der Punkt B mit dem Punkt A zusammenfällt, so berührt die Gerade (lokal) den Graphen nur noch in einem Punkt, dem sogenannten Berührpunkt. Diese Gerade nennt man nun nicht mehr Sekante (da es keine zwei Schnittpunkte mehr gibt), sondern Tangente an den Graphen der Funktion f im Punkt A. Die Steigung der Tangenten gibt die Steigung des Graphen der Funktion im Berührpunkt an.
Im Applet sind eine Sekante und die Tangente eingezeichnet und man kann den Übergang von der Sekante zur Tangente durchführen.
Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit |
Wir betrachten weiterhin die Funktion f mit |
Differentialquotient
Die mittlere Änderungsrate und die Sekantensteigung werden durch den Differenzenquotienten beschrieben.
Information
Der Differentialquotient f'(x0 ) ist definiert als Grenzwert eines Differenzenquotienten:
Differentialquotient
Der Differentialquotient f'(x0) wird auch als Ableitung der Funktion f an der Stelle x0 bezeichnet.
Der Differentialquotient f'(x0 )
- beschreibt die momentane Änderungsrate der Funktion f an der Stelle x0 und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen x0 und x1 den Wert x1 immer mehr dem Wert x0 annnährt,
- beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x0|f(x0)) und entsteht, wenn man im Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten A(x0|f(x0)) und B(x1|f(x1)) den Punkt B(x1|f(x1)) immer mehr dem Punkt A(x0|f(x0)) annähert.
Im folgenden Applet können Sie den Übergang von der Sekanten zur Tangenten anschaulich machen: Applet Differentialquotient
h-Schreibweise
Information
Da sich dadurch einige Rechungen später einfacher gestalten lassen, betrachten wir noch eine andere Schreibweise:
Anstatt x1 immer mehr x0 anzunähern, kann man auch die Differenz klein werden lassen. Es ist dann
.
a) Überlegen Sie, wo in der folgenden Zeichnung die Größen |
Gegeben ist wieder die Funktion f mit Berechnen Sie für Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1|1). Vergleichen Sie mit den Ergebnissen der vorherigen Aufgaben. |
Andere Schreibweise des Differentialquotienten:
Statt den Wert x1 immer mehr dem Wert x0 anzunähern, können wir auch jetzt wieder die Differenz der beiden Werte immer kleiner werden lassen.
Ersetzen Sie in der Definition des Differentialquotienten den Wert x1 durch x0+h. |
Im folgenden Applet ist wieder der Übergang von der Sekante zur Tangente dargestellt, diesmal mit den Bezeichnungen der h-Schreibweise.
Applet Differentialquotient mit h-Methode
Vergleichen Sie die beiden Applets und untersuchen Sie die Veränderungen.