Rechnen mit Quadratwurzeln und Potenzfunktionen - 3. Stufe: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>Petra Bader
Keine Bearbeitungszusammenfassung
 
Main>Jan Wörler
KKeine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
{{Lernpfad-M|Kurze Beschreibung des Lernpfades mit Zielsetzung.
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
*'''Zeitbedarf:''' Übungslernpfad zur Wiederholen und Vertiefen des Rechnens mit Quadratwurzeln
'''[[Potenzfunktionen|Start]] - [[Einführung|Einführung]] - [[1. Stufe|1. Stufe]] - [[2. Stufe|2. Stufe]] - [[3. Stufe|3. Stufe]] - [[4. Stufe|4. Stufe]] - [[5. Stufe|5. Stufe]]'''</div>
*'''Material:''' Arbeitsblatt
 
*'''Hinweis:'''  Konzeption für Intensivierungsstunden
== Die Graphen der Funktionen mit f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN ==
 
Es sei stets IN<sub>0</sub>={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN<sub>0</sub> =/= IN.<br />
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}</math> als Exponenten haben.''' Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: <math>0<\textstyle \frac{1}{n}\leq 1</math>.
 
=== Vergleich mit Funktionen aus Stufe 2 ===
 
{| cellspacing="10"
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=1|ARBEIT=
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
#* Definitionsbereich
#* Symmetrie
#* Monotonie
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
:{{Lösung versteckt|
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br>
:Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>.
}}
}}
}}<br>
|| <ggb_applet height="300" width="550" showMenuBar="false" showResetIcon="true"
filename="7_x1n_w2.ggb" />
|}
<!--neue Datei {{ggb|7_x1n_w2.ggb|datei}}-->
== Potenzen und Wurzeln ==
Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt ''Wurzelfunktion''.
Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt:
:<math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math>
Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:
:<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math>
Im Falle <math>n=2</math> nennt man die Wurzel "''Quadratwurzel''" und man schreibt:
:<math>x^{\frac{1}{2}} = \sqrt[2]{x} =: \sqrt{x}</math>
Im Falle <math>n=3</math> nennt man die Wurzel "''Kubikwurzel''", i. Z.: <font style="vertical-align:27%;"><math>x^{\frac{1}{3}}</math></font> bzw. <math>\sqrt[3]{x}</math>.
=== Beispiel: Quadratwurzel ===
[[Bild:diagonale.png|right|180px]] Eine positive Zahl <math>x>0</math> hat zwei Quadratwurzeln, eine positive und eine negative. So ist etwa
* <math>16 = \begin{cases} \quad 4\cdot \quad 4 &= \, \quad 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \quad \Rightarrow \quad \sqrt{16} = \pm 4</math>.
In manchen Fällen (etwa wenn es um die von Längen oder Flächeninhalten geht) ist nur die postive Lösung sinnvoll.
Beispielsweise ergibt sich die Länge <math>d</math> der Diagonale in einem Quadrat der Seitenlänge <math>a=1</math> über den Satz des Pythagoras (<math>a^2 + a^2 = d^2</math>) zu:
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 \quad \Rightarrow \quad d = \pm \sqrt{2}.</math>
Die mathematisch richtige Lösung <font style="vertical-align:18%;"><math>\textstyle d=-\sqrt{2}</math></font> ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.
<!--
=== Beispiel: Kubikwurzel ===
[[Bild:diagonale3.png|right|200px]] Die 3.-Wurzel <math>\sqrt[3]{x}</math> einer Zahl <math>x</math> wird auch als ihre ''Kubikwurzel'' bezeichnet. Der Name leitet sich vom Würfel (lat. "''cubus''") ab: Die Raumdiagonale <math>D</math> im Einheitswürfel (das ist ein Würfel mit Kantenlänge <math>a=1</math>) berechnet sich - ähnlich wie im Falle der Flächendiagonale - über den Satz des Pythagoras (hier: <math>d^2+1^2 = D^2</math>) zu:
<math>\sqrt{2}^2+1^2 = 2+1 = 3 \quad \Rightarrow \quad D = \pm \sqrt{3}.</math>-->


== Vollständiges Radizieren ==
* <font style="vertical-align:18%;"><math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3</math></font>, aber auch
[http://www.zum.de/dwu/depothp/hp-math/hpmwu01.htm Einfach Übung]


==Teilweise Radizieren==
=== Teilweise Radizieren ohne Variablen ===
[http://www.zum.de/dwu/depothp/hp-math/hpmwu02.htm 1. Übung]


[http://www.zum.de/dwu/depothp/hp-math/hpmwu03.htm 2. Übung]
<ggb_applet height="450" width="600" showMenuBar="false" showResetIcon="true"
filename="8_ax1nc_w.ggb" />


=== Teilweise Radizieren mit Variablen ===
<!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}-->
[http://www.zum.de/dwu/depothp/hp-math/hpmwu04.htm 3. Übung]


[http://www.zum.de/dwu/depothp/hp-math/hpmwu05.htm 4. Übung]
== Definitionsbereich der Wurzelfunktionen ==
==== Einschränkung auf IR<sup>+</sup> ====


==Addition und Subtraktion von Wurzeln mit Variablen==
Offenbar ergibt die Wurzelfunktion <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungeradem ''n'' sowohl für positive als auch negative ''x'' Lösungen, wie folgendes Beispiel zeigt:
[http://www.zum.de/dwu/depothp/hp-math/hpmwu11.htm 1. Übung zur Addition und Subtraktion]
*<math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3,</math>
*<math>\sqrt[3]{ 27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>


[http://www.zum.de/dwu/depothp/hp-math/hpmwu12.htm 2. Übung]


[http://www.zum.de/dwu/depothp/hp-math/hpmwu13.htm 3. Übung]
Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:
:<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>


==Multiplikation von Wurzeln mit Variablen==
[http://www.zum.de/dwu/depothp/hp-math/hpmwu21.htm 1. Übung zur Multiplikation]


[http://www.zum.de/dwu/depothp/hp-math/hpmwu22.htm 2. Übung]
Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
:<math>f(x) = \sqrt[n]{x}</math>  mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math>


[http://www.zum.de/dwu/depothp/hp-math/hpmwu23.htm 3. Übung]
==== Wurzelfunktion auf ganz IR ====


[http://www.zum.de/dwu/depothp/hp-math/hpmwu24.htm 4. Übung]
Will man eine Wurzelfunktion ''g'' dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa ''g'' derart, dass
:<math>g(x):=\begin{cases}\sqrt[n]{x}, &x\geq 0 \\ -\sqrt[n]{-x}, &x<0\end{cases}</math>.  
Dann gilt: ID<sub>g</sub> = IR.


==Teste Dein Können!==
== kurz nachgedacht ==
Auf den Seiten des Stark-Verlages kannst Du Dein können individuell testen. Probiere es aus! Wähle Deine Jahrgangsstufe und das entsprechende Thema unter [http://www.stark-verlag.de/wbt/servlet/WBTServlet/wbt?action=TA_Startseite&pageId=-179443253.239027465&component=TestManager&wbt_unit=#currentstep Test des Stark-Verlages]


{{mitgewirkt|* Petra Bader}}
* asd asd 
* asd asd asd
* aasdd
*

Version vom 28. Januar 2009, 21:48 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:


Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:


Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:


Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .


Beispiel: Quadratwurzel

Eine positive Zahl hat zwei Quadratwurzeln, eine positive und eine negative. So ist etwa

  • .

In manchen Fällen (etwa wenn es um die von Längen oder Flächeninhalten geht) ist nur die postive Lösung sinnvoll.

Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:


Die mathematisch richtige Lösung ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.



  • , aber auch


Die Datei [INVALID] wurde nicht gefunden.


Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:


Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.

kurz nachgedacht

  • asd asd
  • asd asd asd
  • aasdd