Quadratische Funktionen erkunden/Wiederholung (Optional) und Wetterelemente und ihre Messung: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Quadratische Funktionen erkunden(Unterschied zwischen Seiten)
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
main>Retemirabile
(Die Seite wurde neu angelegt: „== Lufttemperatur == Die Temperatur der bodennahen Luftschicht, gemessen in Grad Celsius (°C) oder Kelvin (ohne "Grad" gesprochen). In den USA auch in Grad Fahr...“)
 
Zeile 1: Zeile 1:
{{Quadratische Funktionen erkunden}}
== Lufttemperatur ==
__NOTOC__
{{Box|Hinweis |Bevor du loslegst, dich in das neue Thema '''Quadratische Funktionen''' einzuarbeiten, kannst du auf dieser Seite dein '''bisheriges Wissen über Funktionen auffrischen'''.|Hervorhebung1}}


Die Temperatur der bodennahen Luftschicht, gemessen in Grad Celsius (°C) oder Kelvin (ohne "Grad" gesprochen). In den USA auch in Grad Fahrenheit (°F).


=='''Teste dein Wissen über (lineare) Funktionen'''==
Die Temperatur der Luft wird hauptsächlich von der Einstrahlung der Sonne beeinflusst, allerdings hauptsächlich '''indirekt''': die Strahlen der Sonne durchdringen die Atmosphäre, wärmen das Land und das Meer auf und ''diese'' erwärmen hauptsächlich die Atmosphäre, das heißt: die Luft.


{{Box|Aufgabe|
[[Datei:Wellenlaenge-verschiedene-erklaerung.png | thumb |right | Verschiedene Wellenlängen]] Dieses unterschiedliche Verhalten beim Weg "nach unten" und beim Weg "zurück in den Weltraum" hängt mit der unterschiedlichen Wellenlänge der Strahlung zusammen. Die Abbildung zeigt, wie man sich die Wellenlängen vorstellen kann.  
Lücken-Mind Map oder Kreuzworträtsel - was machst du lieber? Suche dir eine der beiden folgenden Aufgaben aus und teste dein Wissen über (lineare) Funktionen.  Mit einem Klick in das weiße Kästchen oben rechts erhältst du den Vollbildmodus.
{{Lösung versteckt|{{LearningApp|app=pbugpt1gt16|width:100%|height:700px}}
|2=Kreuzworträtsel anzeigen|3=Kreuzworträtsel verbergen}}


{{Lösung versteckt|{{LearningApp|app=pp5okr7zk16|width:100%|height:500px}}
Es gibt dazu '''zwei einfache Grundsätze'''
|2=Lücken-Mindmap anzeigen|3=Lücken-Mindmap verbergen}}
|3=Arbeitsmethode}}


# Jeder Körper, dessen Temperatur über dem absoluten Nullpunkt (-273°C = 0 K) liegt, gibt Strahlung ab.
# Je heißer ein Körper ist, desto '''kurzwelliger''' ist die von ihm abgegebene Strahlung.


=='''Graphen zu einer Sachsituation'''==
Daraus folgt, dass sowohl die Sonne als auch die Erde Strahlung abgeben und dass die Strahlung von der Sonne kurzwelliger ist als die Strahlung, die die Erde abgibt (weil die Sonne heißer als die Erde ist).


{{Box|Aufgabe|2=
Die Luft der Atmosphäre lässt die kurzwellige Sonnenstrahlung gut durch, hält aber von der langwelligen Ausstrahlung der Erde viel zurück, so dass diese langwellige Ausstrahlung länger in der Atmosphäre verweilt und die Atmosphäre erwärmt. Dies nennt man den natürlichen Treibhauseffekt. Ohne diesen Treibhauseffekt, läge die durchschnittliche Temperatur auf der Erde bei -18°C. Mit dem Treibhauseffekt liegt sie bei 15°C (siehe die folgenden Abbildungen).
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 1) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


'''a)''' Beantworte die Frage in dem Applet. ''Hinweis'': Es gibt genau eine richtige Antwort.


{{LearningApp|app=p563afae517|width:100%|height:500px}}
Abb. Einstrahlung-Ausstrahlung (OHNE Treibhauseffekt)


'''b)''' Überlege dir eine Begründung für die richtige Darstellung der Entfernung zum Startpunkt.
Abb. Einstrahlung-Ausstrahlung (MIT Treibhauseffekt)


{{Lösung versteckt|Zeichne eine Skizze der Laufbahn in deinen Hefter und trage für ein paar Punkte auf der Bahn die Luftlinien zum Startpunkt ein. Wo ist der Abstand am größten? Wo ist er am geringsten?|Hilfe anzeigen|Hilfe verstecken}}
Die Temperatur der Luft ist am Boden am höchsten und nimmt mit zunehmender Höhe ab. Das liegt zum einen daran, dass die Atmosphäre "von unten" beheizt wird (durch die Erdoberfläche). Zum anderen nimmt der Luftdruck nach oben hin ab – und geringerer Luftdruck bewirkt ebenfalls niedrigere Temperaturen.
{{Lösung versteckt|Der Graph beginnt im Ursprung des Koordinatensystems. Da Start und Ziel identisch sind, endet der Graph auf der x-Achse. Sein Verlauf lässt sich durch die Bewegung der Läufer beschreiben:


[[Datei:Skizee 400m Bahn mit Luftlinien.PNG|rahmenlos|300px|Sportfest]]
==Luftdruck==


Zunächst bewegen sich die Läufer von dem Startpunkt weg. In der zweiten Kurve wird ihr Abstand (Luftlinie) zum Start wieder geringer, bis sie genau gegenüber vorbeilaufen. Ab diesem Punkt steigt der Abstand (Luftlinie) noch einmal an und nähert sich schließlich ab der dritten Kurve wieder dem Startpunkt an.|Lösung anzeigen|Lösung verbergen}}
Der Luftdruck entsteht durch das Gewicht der Luft, die aufgrund der Erdanziehung auf die Erdoberfläche drückt. Jedes Objekt auf der Erde erfährt Druck von allen Seiten (auch von unten nach oben), weil die Gase der Atmosphäre frei beweglich sind.
|3=Arbeitsmethode}}


Der Luftdruck hat großen Einfluss auf das Wetter, z.B. weil Druckunterschiede in der Atmosphäre zu Ausgleichsströmungen führen (diese nennen wir "Wind") und weil große Druckgebilde mit tieferem oder höherem Druck als in der Umgebung (Tief- und Hochdruckgebiete) bestimmte Wettererscheinungen verursachen.


=='''Zeigt der Graph einen funktionalen Zusammenhang?'''==
===Messung===


{{Box|Aufgabe|
Der Luftdruck wird mit '''[http://de.wikipedia.org/wiki/Barometer Barometern] ''' gemessen. Häufig verwendete Barometertypen sind Dosenbarometer und Flüssigkeitsbarometer. Die gängige '''[http://de.wikipedia.org/wiki/Luftdruck#Einheiten Maßeinheit]'''  für den Luftdruck ist '''Hektopascal''' (hPa) oder Bar (bar). Der Normaldruck auf Meereshöhe beträgt 1013 hPa, was etwas mehr als 1 bar entspricht (1000 hPa = 1 bar).


{{LearningApp|app=pohhfm2vj16|width:100%|height:500px}}
|3=Arbeitsmethode}}




=='''Videos und Merksätze'''==
Eine ältere Maßeinheit ist Millimeter Quecksilbersäule (mmHg) – diese Maßeinheit beruht auf dem ersten entwickelten Barometer, das ein Flüssigkeitsbarometer mit Quecksilber als Steigflüssigkeit war und dessen Steighöhe in Millimeter angegeben wurde (s.u.).


====Dosenbarometer====


Daniel Jung hat auf Youtube in seinem Channel ''Mathe by Daniel Jung'' zu den verschiedensten Themen Erklärvideos erstellt. Hier kannst du dir Videos zu dem Thema ''Was ist eine Funktion?'' bzw. eine Übersicht über ''Lineare Funktionen'' anschauen. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist.
[[Datei:Dosenbarometer Prinzip.png | thumb | right |Funktionsprinzip eines Dosenbarometers ]] Das Funktionsprinzip von [http://de.wikipedia.org/wiki/Quecksilberbarometer#Dosenbarometer Dosenbarometern]  beruht darauf, dass eine hohle Dose (meist aus Metall) vom Luftdruck verformt wird. Über einen Anzeigemechanismus, der an der Dose befestig ist, wird die Verformung auf einer Skala ablesbar.  


<div class="grid">
In der Dose herrscht ein Unterdruck, aber kein Vakuum. Diese Restluft in der Dose dient dazu, den Einfluss der Temperatur auf den Luftdruck auszugleichen. Der Luftdruck in einem geschlossenen Behälter steigt, wenn die Temperatur der Luft darin steigt. Dies gilt im Prinzip auch für die Atmosphäre, auch wenn hier andere Einflüsse dazu kommen.
<div class="width-1-2">
{{#widget:YouTube|id=tywU-wn6tF4}}


</div>
====Flüssigkeitsbarometer====
<div class="width-1-2">
{{#widget:YouTube|id=MgUqwCat-Ho}}


</div>
[[Datei:Quecksilber-Barometer Prinzip.png|thumb|right|Funktionsprinzip eines Flüssigkeitsbatometers]] Bei einem [http://de.wikipedia.org/wiki/Quecksilberbarometer#Fl.C3.BCssigkeitsbarometer Flüssigkeitsbaromter] wirkt der Luftdruck auf eine bestimmte Menge Flüssigkeit, die dadurch in einem Steigrohr steigt oder sinkt und damit den Luftdruck anzeigt.
</div>


====Barograph====


{{Box|Merke|
[[Datei:Barograph.JPG | thumb|right | Barograph ]] Barographen werden eingesetzt, wenn man die Veränderung des Luftdrucks über einen längeren Zeitraum aufzeichnen möchte. Ein Barograph ist oft ein Dosenbarometer, an dessen Zeiger ein Stift befestigt ist, der auf eine sich drehende Papierrolle schreibt (s. Abb.)


* Eine '''Funktion''' ordnet jedem Element einer Ausgangsmenge (Definitionsmenge) genau ein Element der Zielmenge (Ergebnismenge) zu. Ein Element aus der Ergebnismenge kann mehreren Elementen der Definitionsmenge zugeordnet werden.
==Wind==
[[Datei:Kein funktionaler Zusammenhang.PNG|rahmenlos|Kein fkt. Zsmh.|250px]] [[Datei:Funktionaler Zusammenhang.PNG|rahmenlos|Fkt. Zsmh.|250px]]


* '''Lineare Funktionen''' liegen in der Form <math>y=mx+b</math> vor, wobei m die Steigung der Geraden und b den y-Achsenabschnitt angibt.
==Luftfeuchtigkeit==


* Funktionen mit dem Term <math>y=mx</math> nennt man '''proportionale Funktionen'''. Sie sind ein Spezialfall der linearen Funktionen.|Merksatz}}
==Niederschlag==
 
 
 
[[Datei:Pfeil Hier geht's weiter.png|rahmenlos|rechts|link=Mathematik-digital/Quadratische Funktionen erkunden/Quadratische Funktionen im Alltag]]
 
 
 
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]])

Version vom 2. Juni 2009, 21:30 Uhr

Lufttemperatur

Die Temperatur der bodennahen Luftschicht, gemessen in Grad Celsius (°C) oder Kelvin (ohne "Grad" gesprochen). In den USA auch in Grad Fahrenheit (°F).

Die Temperatur der Luft wird hauptsächlich von der Einstrahlung der Sonne beeinflusst, allerdings hauptsächlich indirekt: die Strahlen der Sonne durchdringen die Atmosphäre, wärmen das Land und das Meer auf und diese erwärmen hauptsächlich die Atmosphäre, das heißt: die Luft.

Verschiedene Wellenlängen

Dieses unterschiedliche Verhalten beim Weg "nach unten" und beim Weg "zurück in den Weltraum" hängt mit der unterschiedlichen Wellenlänge der Strahlung zusammen. Die Abbildung zeigt, wie man sich die Wellenlängen vorstellen kann.

Es gibt dazu zwei einfache Grundsätze

  1. Jeder Körper, dessen Temperatur über dem absoluten Nullpunkt (-273°C = 0 K) liegt, gibt Strahlung ab.
  2. Je heißer ein Körper ist, desto kurzwelliger ist die von ihm abgegebene Strahlung.

Daraus folgt, dass sowohl die Sonne als auch die Erde Strahlung abgeben und dass die Strahlung von der Sonne kurzwelliger ist als die Strahlung, die die Erde abgibt (weil die Sonne heißer als die Erde ist).

Die Luft der Atmosphäre lässt die kurzwellige Sonnenstrahlung gut durch, hält aber von der langwelligen Ausstrahlung der Erde viel zurück, so dass diese langwellige Ausstrahlung länger in der Atmosphäre verweilt und die Atmosphäre erwärmt. Dies nennt man den natürlichen Treibhauseffekt. Ohne diesen Treibhauseffekt, läge die durchschnittliche Temperatur auf der Erde bei -18°C. Mit dem Treibhauseffekt liegt sie bei 15°C (siehe die folgenden Abbildungen).


Abb. Einstrahlung-Ausstrahlung (OHNE Treibhauseffekt)

Abb. Einstrahlung-Ausstrahlung (MIT Treibhauseffekt)

Die Temperatur der Luft ist am Boden am höchsten und nimmt mit zunehmender Höhe ab. Das liegt zum einen daran, dass die Atmosphäre "von unten" beheizt wird (durch die Erdoberfläche). Zum anderen nimmt der Luftdruck nach oben hin ab – und geringerer Luftdruck bewirkt ebenfalls niedrigere Temperaturen.

Luftdruck

Der Luftdruck entsteht durch das Gewicht der Luft, die aufgrund der Erdanziehung auf die Erdoberfläche drückt. Jedes Objekt auf der Erde erfährt Druck von allen Seiten (auch von unten nach oben), weil die Gase der Atmosphäre frei beweglich sind.

Der Luftdruck hat großen Einfluss auf das Wetter, z.B. weil Druckunterschiede in der Atmosphäre zu Ausgleichsströmungen führen (diese nennen wir "Wind") und weil große Druckgebilde mit tieferem oder höherem Druck als in der Umgebung (Tief- und Hochdruckgebiete) bestimmte Wettererscheinungen verursachen.

Messung

Der Luftdruck wird mit Barometern gemessen. Häufig verwendete Barometertypen sind Dosenbarometer und Flüssigkeitsbarometer. Die gängige Maßeinheit für den Luftdruck ist Hektopascal (hPa) oder Bar (bar). Der Normaldruck auf Meereshöhe beträgt 1013 hPa, was etwas mehr als 1 bar entspricht (1000 hPa = 1 bar).


Eine ältere Maßeinheit ist Millimeter Quecksilbersäule (mmHg) – diese Maßeinheit beruht auf dem ersten entwickelten Barometer, das ein Flüssigkeitsbarometer mit Quecksilber als Steigflüssigkeit war und dessen Steighöhe in Millimeter angegeben wurde (s.u.).

Dosenbarometer

Funktionsprinzip eines Dosenbarometers

Das Funktionsprinzip von Dosenbarometern beruht darauf, dass eine hohle Dose (meist aus Metall) vom Luftdruck verformt wird. Über einen Anzeigemechanismus, der an der Dose befestig ist, wird die Verformung auf einer Skala ablesbar.

In der Dose herrscht ein Unterdruck, aber kein Vakuum. Diese Restluft in der Dose dient dazu, den Einfluss der Temperatur auf den Luftdruck auszugleichen. Der Luftdruck in einem geschlossenen Behälter steigt, wenn die Temperatur der Luft darin steigt. Dies gilt im Prinzip auch für die Atmosphäre, auch wenn hier andere Einflüsse dazu kommen.

Flüssigkeitsbarometer

Funktionsprinzip eines Flüssigkeitsbatometers

Bei einem Flüssigkeitsbaromter wirkt der Luftdruck auf eine bestimmte Menge Flüssigkeit, die dadurch in einem Steigrohr steigt oder sinkt und damit den Luftdruck anzeigt.

Barograph

Barograph

Barographen werden eingesetzt, wenn man die Veränderung des Luftdrucks über einen längeren Zeitraum aufzeichnen möchte. Ein Barograph ist oft ein Dosenbarometer, an dessen Zeiger ein Stift befestigt ist, der auf eine sich drehende Papierrolle schreibt (s. Abb.)

Wind

Luftfeuchtigkeit

Niederschlag