Flächeninhalt des Rechtecks und Winkelhalbierende, Mittelsenkrechte, Lot: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>Lisa2310
 
Main>Petra Bader
 
Zeile 1: Zeile 1:
= Flächeninhalt des Rechtecks=
{{Babel-1|M-digital}}
=Lernpfade: Winkelhalbierende, Mittelsenkrechte und Lot=
<table><tr><td>[[Bild:meisterlaempel.jpg|left]] </td>
<td>
'''<u>Beachte:</u>'''
<br> ''Lies Dir die Texte und die Aufgabenstellungen sorgfältig durch!''
<br> ''Besprich Dich bei der Bearbeitung mit Deiner Nachbarin bzw. Deinem Nachbarn! ''
<br> ''Befolge Schritt für Schritt die Arbeitsanweisungen!''
</td></tr></table>


== 1. Arbeitsauftrag - Quiz über Rechtecke ==


{{Hinweis Zeit|Für diese Aufgabe habt ihr 5 Minuten Zeit!}}
{{Lernpfad|1. Streich: [[#Die Winkelhalbierende|Winkelhalbierende]]Materialien: 1. Arbeitsblatt zur Winkelhalbierenden und 2. orange-farbenes gleichschenkliges Dreieck (Tonpapier)}}


Nun wollen wir zu Beginn erst einmal testen, was ihr denn noch über Vierecke wisst. Dazu könnt ihr jetzt ein Quiz machen.
{{Lernpfad|2. Streich: [[#Die Mittelsenkrechte|Mittelsenkrechte]] Material: Arbeitsblatt zur Mittelsenkrechten
[http://www.bartberger.de/Klasse5/Tests/vierecke/vierecke.htm Quiz zum Viereck]
}}
{{Lernpfad|3. Streich: [[#Das Lot|Lot]] Material: Arbeitsblatt zum Lot
}}
<br>


= Die Winkelhalbierende =
<table><tr><td> [[Bild:Maxmoritz.jpg|150 px|left]]</td><td></td><td></td><td></td><td>


''Max und Moritz - welch' zwei Knaben,''<br>
''die sich sehr an Scherzen laben,''<br>
''sind an ihrem Lieblingsort,''<br>
''ganz weit von den Eltern fort.''<br>
''Im Dachgeschoss, das ich da mein',''<br>
''fehlt der rechte Lichterschein.''<br>
''Sie beschließen ganz geschwind, ''<br>
''weil sie so geschickt doch sind ''<br>
''mitten in des Daches Gängen ''<br>
''soll die große Lampe hängen.''<br></td><td></td><td></td><td></td><td align="center"><div align="center">'''Haus von Max und Moritz <br>mit zwei gleichgeneigten Dachflächen'''</div><br>[[Bild:Hausdach.jpg|250px|middle]]</td></tr></table>
<br>
<br>
'''Arbeitsaufträge:'''<br>
# Nimm das orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
# Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!<br>
# Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der '''[http://www.hirnwindungen.de/wunderland/grundkons/winkelhalb.html Winkelhalbierenden]'''!
<br>
<br>


== Was ist eine Winkelhalbierende? ==
Du hast bereits herausgefunden, dass das Seil, an dem die Lampe aufgehängt ist, den Winkel den die beiden Dächer bilden halbiert.
<br>
<br>


'''<u>Definition der Winkelhalbierenden:</u>'''
Sei ein Winkel &alpha; gegeben mit den beiden Halbgerade g und h als Schenkel.<br>Die Symmetrieachse der beiden Halbgeraden g und h heißt '''Winkelhalbiernde''' des Winkels &alpha;.<br>


'''Notiere auf Dein Arbeitsblatt:'''
# Übertrage die Definition der Winkelhalbierenden auf Dein Arbeitsblatt!
# Konstruiere die Winkelhalbierende auf Deinem Arbeitsblatt!
# Notiere die Konstruktionsschritte auf Dein Arbeitsblatt!
# Experimentiere noch einmal mit der Winkelhalbierenden!
# Wann kommt in der Natur, im Alltag eine Winkelhalbierende vor? Überlege Dir mindestens drei weitere Beispiele!
<br>


== Konstruktion der Winkelhalbierenden mit Geogebra==
'''Auch am Computer kann man eine Winkelhalbierende konstruieren!''' <br>
Speichere folgende '''{{Ggb|Hausdach2.ggb|GeoGebra-Datei}}''' in Deinem Ordner ab und konstruiere mit Geogebra die Winkelhalbierende! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!<br>
Speichere die erstellte Konstruktion unter <<DeinName_Haus>> im Klassenverzeichnis ab!
<br>
<br>
'''Hausaufgabe:'''<br>
S. 18 / Nr. 3, 5 und 7
<br>
<br>
<br>


== Quiz zur Winkelhalbierenden ==
'''Sind die Aussagen wahr oder falsch?''' Beantworte folgende '''[http://inmare.cspsx.de/quiz_wh4.htm Quizfragen]'''.  <br>
<br>
<br>
<br>


== Vertiefung bzw. Wiederholung ==
<br>
<table><tr><td>
''Nachdem nun die Lampe angebracht,''<br>
''wird noch kein Mittagsschlaf gemacht.''<br>
''Max und Moritz schleppen an,''<br>
''drei Teppiche mit Lust und Fun.''<br>
''Diese drei sind rund nicht eckig,''<br>
''und ganz arg bunt und gar nicht fleckig.''<br>
''Für Erwachsene was für ein Kraus,''<br>
''Max rollt alle drei so aus,''<br>
''dass sie sich an beiden Wänden,''
''jeweils mit ihren Kreisrändern befänden.''<br>
</td><td></td><td></td><td>[[bild:teppiche.jpg|250px|right]]</td></tr></table>
<br>
<br>
'''Aufgaben''':
# Öffne die '''{{Ggb|Teppiche.ggb|GeoGebra-Datei}}''' und positioniere die drei unterschiedlich großen Teppiche so, dass sie die Wände berühren!
# Betrachte die Mittelpunkte der Teppiche! Was fällt auf?
# Konstruiere in der Geogebra-Datei eine Halbgerade, auf der alle Mittelpunkte von runden Teppichen liegen, die beide Wände berühren!
# Speichere die Datei unter "teppich_<<DeinName>>" im Klassenverzeichnis ab!
<br>
<br>
:::::'''''Dies nun war der erste Streich und der zweite folgt zugleich!'''''
<br>
<br>


== 2. Arbeitsauftrag - Kästchen zählen==
= Die Mittelsenkrechte =
{{Hinweis Zeit|Für diese Aufgabe habt ihr 3 Minuten Zeit!}}
<table>
Ihr kennt bereits die verschiedenen geometrischen Figuren. Heute wollen wir uns mit dem Flächeninhalt von geometrischen Figuren beschäftigen.  
<tr><td>
[[bild:sägen.jpg|170px]]</td>
<td>''In der schönen Maienzeit,''<br>
''wenn die bayerischen Dorfesleut''<br>
''viele große Stämme krachen''<br>
''schmücken und zurechte machen,''<br>
''wünschen Max und Moritz auch''<br>
''sich einen Maibaum zum Gebrauch.''<br>
''Max und Moritz, gar nicht träge,''<br>
''Sägen heimlich mit der Säge,''<br>
''Ritzeratze! voller Tücke,''<br>
''In die Birke eine Lücke.''<br>
''Max und Moritz heimlich geh'n''<br>
''wo der Maibaum nun soll steh'n''<br>
''Dieser wird nun aufgestellt''<br>
''wo es allen Leut' gefällt,''<br>
''wo die Katzen oft 'rumschleichen''<br>
''mittig zwischen den zwei Eichen''</td><td><br>[[Bild:eichen.jpg|350px|right]]</td>
</tr></table>
'''Welche besondere Eigenschaften besitzt der Maibaum?'''
<br><br><br>
'''<u>Aufgabe - Teil 1:'''</u>
# Überlege zunächst, welche besonderen Eigenschaften der Maibaum von Max und Moritz besitzen muss.
# Betrachte nun folgende Strecke [AB] und verschiebe die Punkte A und B
# Welche besonderen Eigenschaften besitzt die rote Gerade? Überlege wie man aufgrund dieser Eigenschaft die Gerade konstruieren kann! Begründe, warum die rote Gerade '''Mittelsenkrechte''' heißt!<br>
<br>
==Was ist eine Mittelsenkrechte?==
'''<u>Definition der Mittelsenkrechten</u>'''
Eine Gerade heißt '''Mittelsenkrechte''' '''auf eine Strecke [AB]''', wenn sie durch den '''Mittelpunkt'''
der Strecke verläuft (die Strecke halbiert) und '''auf ihr senkrecht''' steht.
Sie wird mit '''m[AB]''' bezeichnet.
Die Mittelsenkrechte auf eine Strecke ist eine '''Symmetrieachse''' dieser Strecke.  
<br>
<br>


Betrachtet dazu die Zeichnungen und ermittelt, aus wie vielen Kästchen die Rechtecke bestehen.
== Konstruktion der Mittelsenkrechten ==
'''<u>Aufgabe - Teil 2:'''</u>
# Öffne mit dem Programm GeoGebra die '''{{Ggb|Eiche.ggb|GeoGebra-Datei}}''' mit zwei Eichen, am Punkt A und am Punkt B.
# Konstruiere die Mittelsenkrechte auf die Strecke [AB], die beide Eichen miteinander verbindet!
# Speichere die Datei unter dem Namen "Mittelsenkrechte_<<DeinName>>" im Klassenverzeichnis auf der Festplatte ab!
# Überprüfe Deine Konstruktionsschritte anhand folgender '''[http://www.hirnwindungen.de/wunderland/grundkons/mittelsenk.html Konstruktion]'''!
# Formuliere die einzelnen Konstruktionsschritte schriftlich auf einem Übungszettel! Überprüfe die Konstruktionsschritte mit Deinem Nachbarn!
<br>
<br>
'''<u>Aufgabe - Teil 3:'''</u>
# Übertrage die Definition der Mittelsenkrechten auf Dein Arbeitsblatt!
# Konstruiere die Mittelsenkrechte und formuliere die Konstruktionsschritte!
# Überlege weitere Beispiele in der Natur, wo eine Mittelsenkrechte vorkommt!
<br>
<br>'''Weiteres Anwendungsbeispiel:'''<br>
Gehe auf folgende '''[http://did.mat.uni-bayreuth.de/mmlu/dreieck/lu/za/ms/ms1.htm Internetseite]'''. Lies Dir den dabeistehenden Text sorgfältig durch und überlege!
<br><br>
:::::'''''Dies nun war der zweite Streich und der letzte folgt zugleich!'''''
<br><br>
== Puzzle zur Mittelsenkrechten ==
<br><br>
== Vertiefung und Wiederholung ==


= Das Lot =
== Das Lot errichten ==
<table><tr><td>
''Auf einem ganz bestimmten Punkt''<br>
''soll er steh'n mit ganz viel Prunk,''<br>
''der herrlich geschmückte Tannenbaum''<br>
''in Max und Moritz' schönsten Raum.''</td><td>[[Bild:tannenbaum.jpg|100px|right]]</td></tr></table>


'''Wie wird der Ort, an dem der Tannenbaum aufgestellt werden soll, beschrieben?'''
<br>
<br>
'''<u>Aufgabe:</u>'''
# Nimm ein Blatt Papier zur Hand und zeichne eine 6cm-lange Strecke [AB]!
# Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke <u>'''''nicht'''''</u> halbiert!
# '''Überlege:''' Wie konstruiert man eine senkrechte Gerade, die durch den Punkt P verläuft? Diese senkrechte Gerade wird auch als '''Lot''' bezeichnet! Überprüfe Deine Konstruktionsschritte anhand der [http://www.roro.muc.kobis.de/cgi-bin/card.php?ID=165 linken Skizzen]!
[[Bild:loterrichten.jpg|250px|center]]
'''<u>Definition des Lotes:</u>'''
<br>
Eine Senkrechte in einem Punkt P zu einer Geraden g nennt man '''Lot'''.
<br>Der Schnittpunkt des Lotes l mit g heißt '''Lotfußpunkt'''.
<br>
<br> 
=== Konstruktion: Errichten eines Lotes auf einer Geraden g im Punkt P === 
Überlege Dir die einzelnen Konstruktionsschritte um ein Lot im Punkt P auf einer Geraden g zu errichten! 
Überprüfe Deine Überlegungen mit Deinem/r NachbarIn! 
<br>
<br> 
'''<u>Merke:</u>''' 
Gilt P &isin; g, so sagt man auch: Im Punkt P wird das Lot zu g '''errichtet'''. 
<br> 
<br> 
'''<u>Arbeitsaufträge:</u>''' 
# Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt! 
# Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)! 
# Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt! 
# Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du? 
<br>     
<br>


== Das Lot fällen ==
<table><tr><td>
[[Bild:maxhähnchen.jpg|250px]]</td><td>''Durch den Schornstein mit Vergnügen''<br>
''Sehen sie die Hühner liegen,''<br>
''Die schon ohne Kopf und Gurgeln''<br>
''Lieblich in der Pfanne schmurgeln.''<br>


''Max und Moritz auf dem Dache''<br>
''sind jetzt tätig bei der Sache.''<br>
''Max hat schon mit Vorbedacht''<br>
''Eine Angel mitgebracht.''<br>


 
''Schnupdiwup! Da wird nach oben''<br>
=== 1. Rechteck ===
''Schon ein Huhn heraufgehoben.''<br>
 
''Schnupdiwup! jetzt Numro zwei;''<br>
[[Bild:Rechteck01.png]]
''Schnupdiwup! jetzt Numro drei;''<br>
 
''Und jetzt kommt noch Numro vier:''<br>
 
''Schnupdiwup! Dich haben wir!''</td></tr></table><br><br>
=== 2. Rechteck ===
<br>
 
'''Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können?'''
[[Bild:Rechteck02.png]]
=== Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g ===
 
Überlege Dir die einzelnen Konstruktionsschritte um ein Lot von einem Punkt P auf eine Geraden g zu fällen!  
 
Überprüfe Deine Überlegungen mit Deinem/r NachbarIn! <br>Überprüfe Deine Konstruktionsschritte anhand der [http://www.roro.muc.kobis.de/cgi-bin/card.php?ID=165 rechten Skizzen]!
=== 3. Rechteck ===
<br>
{{Hinweis Achtung|Vorsicht: Hier müsst ihr auch die halben Kästchen zählen!!!}}
<br>
 
'''<u>Merke:</u>'''
[[Bild:Rechteck030.png]]
Gilt P &notin; g, so sagt man auch: Im Punkt P wird das Lot auf g '''gefällt'''.
 
<br>
== 3. Arbeitsauftrag - Zeichnen ==
<br>  
{{Hinweis Zeit|Für diese Aufgabe habt ihr 5 Minuten Zeit!}}
'''<u>Arbeitsaufträge:</u>'''
Fertigt nun folgende Aufgabe in euerem Heft an:
# Konstruiere auf dem Arbeitsblatt vom Punkt P das Lot l auf die Geraden g! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
Zeichnet ein Rechteck mit Flächeninhalt 16 Kästchen.
# Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
 
# Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?
= Flächeninhalt eines Rechtecks =
Ihr seht im nächsten Bild 3 verschiedene Rechtecke abgebildet:
[[Bild:mehrere Rechtecke.png]]
 
Wie ihr leicht sehen könnt, besteht das Rechteck R1 aus 6 Kästchen. Gleichzeitig sind die Seitenlängen des Rechtecks a = c = 3cm
und b = d = 2cm.
 
Das Rechteck R2 besteht aus 2 Kästchen. Wie sind denn hier die Seitenlängen?
 
Das Rechteck R3 besteht aus 12 Kästchen. Könnt ihr auch hier die Seitenlängen angeben?
 
Was fällt euch dabei auf?
 
== 4. Arbeitsauftrag ==
 
=== Hefteintrag ===
 
{{Hinweis Zeit|Für diese Aufgabe habt ihr 10 Minuten Zeit!}}
 
Übertragt die Rechtecke in euer Heft.
Schreibt dabei unter jedes Rechteck die Seitenlängen und den Flächeninhalt.
 
Aus unseren Beobachtungen sehen wir, dass die Anzahl der Kästchen eines Rechtecks
immer gleich des Produkts der beiden Seitenlängen ist.
 
:Im Rechteck R1 haben wir die Seitenlängen a = 2 und b = 3 und der Flächeninhalt beträgt 2 x 3 = 6
:Im Rechteck R2 haben wir die Seitenlängen e = 2 und f = 1 und der Flächeninhalt beträgt 2 x 1 = 2
:Im Rechteck R3 haben wir die Seitenlängen i = 4 und j = 3 und der Flächeninhalt beträgt 4 x 3 = 12
 
 
 
 
 
{{Hinweis Achtung|Das F steht hier für den Flächeninhalt!!!}}
 
 
 
 
 
 
 
 
 
 
 
Daher übertragen wir noch folgenden Satz in unserer Heft:
<div style="border: 2px solid #cc0000; background-color:#fffdf5; align:center; padding:4px;">
<font>'''Flächeninhalt des Rechtecks'''</font>
<br>
<br>
#Die Fläche eines Rechtecks ergibt sich aus dem Produkt der Seitenlängen.
<br> 
#Es gilt also: F = a x b
'''<u>Konstruieren mit GeoGebra:</u>'''
</div>
# Speichere folgende {{Ggb|Maxhähnchen.ggb|Datei}} in Deinem Ordner ab!
# Fälle das Lot vom Punkt P auf die Gerade g! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!<br>
# Speichere die erstellte Konstruktion unter "Lotfaellen_<<DeinName_Haus>>" im Klassenverzeichnis ab!
<br>
<br>
<br>
<br>
== Rätsel zum Lot ==
<br><br>
== Vertiefung und Wiederholung ==
<br><br>


== Ein anschauliches Beispiel ==
'''Hausaufgabe: S. 18 Nr 6''' ''Welches Buch? Titel''
Zum Schluss könnt ihr nun noch beobachten, wie sich der Flächeninhalt eines Rechtecks ändert, wenn man die Seitenlängen verändert.
<br>
Wenn ihr die Punkte der Schieberegler e und f nach links und rechts bewegt, ändert sich auch der Flächeninhalt des Rechtecks.
<br>
{{ggb|Test.ggb|Rechteck}}


= Weitere Aufgaben zum Flächeninhalt des Rechtecks =


== Andere geometrische Figuren ==
Wie könnte man den Flächeninhalt von diesen Figuren berechnen ohne die Kästchen zu zählen?


{{Hinweis Zeit|Für diese Aufgabe habt ihr 8 Minuten Zeit!}}
<br>
 
[[Benutzer:Petra Bader|Petra Bader]] 26. Oktober 2006 (METDST)
[[Bild:Vieleck1.png]]   
 
 
 
[[Bild:Vieleck2.png]]
 
== Anwendungsaufgabe: Kinderzimmer ==
 
{{Hinweis Zeit|Für diese Aufgabe habt ihr 10 Minuten Zeit!}}
 
Nora und Paul besichtigen die neue Wohnung, in die sie umziehen wollen.
 
Paul misst die beiden Kinderzimmer aus: Das erste ist 5 m lang und 4 m breit, das zweite 6 m lang und 3 m breit.
 
Nora sagt: "Beide Zimmer sind gleich groß, denn 5 plus 4 ist 9 und 6 plus 3 ist auch 9."
 
Was meinst du?
 
= Für die ganz Schnellen bzw. für zu Hause =
Klickt auf den folgenden Link und bearbeitet die Aufgaben zum Flächeninhalt.
{{Vorlage:Hinweis Hausaufgabe1}}
 
[[Benutzer:Markus Bergmann]]

Version vom 23. Februar 2007, 20:51 Uhr

Vorlage:Babel-1

Lernpfade: Winkelhalbierende, Mittelsenkrechte und Lot

Meisterlaempel.jpg
Beachte:

Lies Dir die Texte und die Aufgabenstellungen sorgfältig durch!
Besprich Dich bei der Bearbeitung mit Deiner Nachbarin bzw. Deinem Nachbarn!
Befolge Schritt für Schritt die Arbeitsanweisungen!


Lernpfad
1. Streich: WinkelhalbierendeMaterialien: 1. Arbeitsblatt zur Winkelhalbierenden und 2. orange-farbenes gleichschenkliges Dreieck (Tonpapier)


Lernpfad
2. Streich: Mittelsenkrechte Material: Arbeitsblatt zur Mittelsenkrechten


Lernpfad
3. Streich: Lot Material: Arbeitsblatt zum Lot



Die Winkelhalbierende

Maxmoritz.jpg

Max und Moritz - welch' zwei Knaben,
die sich sehr an Scherzen laben,
sind an ihrem Lieblingsort,
ganz weit von den Eltern fort.
Im Dachgeschoss, das ich da mein',
fehlt der rechte Lichterschein.
Sie beschließen ganz geschwind,
weil sie so geschickt doch sind
mitten in des Daches Gängen

soll die große Lampe hängen.
Haus von Max und Moritz
mit zwei gleichgeneigten Dachflächen

Hausdach.jpg



Arbeitsaufträge:

  1. Nimm das orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
  2. Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!
  3. Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der Winkelhalbierenden!



Was ist eine Winkelhalbierende?

Du hast bereits herausgefunden, dass das Seil, an dem die Lampe aufgehängt ist, den Winkel den die beiden Dächer bilden halbiert.

Definition der Winkelhalbierenden:
Sei ein Winkel α gegeben mit den beiden Halbgerade g und h als Schenkel.
Die Symmetrieachse der beiden Halbgeraden g und h heißt Winkelhalbiernde des Winkels α.

Notiere auf Dein Arbeitsblatt:

  1. Übertrage die Definition der Winkelhalbierenden auf Dein Arbeitsblatt!
  2. Konstruiere die Winkelhalbierende auf Deinem Arbeitsblatt!
  3. Notiere die Konstruktionsschritte auf Dein Arbeitsblatt!
  4. Experimentiere noch einmal mit der Winkelhalbierenden!
  5. Wann kommt in der Natur, im Alltag eine Winkelhalbierende vor? Überlege Dir mindestens drei weitere Beispiele!


Konstruktion der Winkelhalbierenden mit Geogebra

Auch am Computer kann man eine Winkelhalbierende konstruieren!
Speichere folgende Geogebra.svg GeoGebra-Datei in Deinem Ordner ab und konstruiere mit Geogebra die Winkelhalbierende! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
Speichere die erstellte Konstruktion unter <<DeinName_Haus>> im Klassenverzeichnis ab!

Hausaufgabe:
S. 18 / Nr. 3, 5 und 7


Quiz zur Winkelhalbierenden

Sind die Aussagen wahr oder falsch? Beantworte folgende Quizfragen.



Vertiefung bzw. Wiederholung


Nachdem nun die Lampe angebracht,
wird noch kein Mittagsschlaf gemacht.
Max und Moritz schleppen an,
drei Teppiche mit Lust und Fun.
Diese drei sind rund nicht eckig,
und ganz arg bunt und gar nicht fleckig.
Für Erwachsene was für ein Kraus,
Max rollt alle drei so aus,
dass sie sich an beiden Wänden, jeweils mit ihren Kreisrändern befänden.

Teppiche.jpg



Aufgaben:

  1. Öffne die Geogebra.svg GeoGebra-Datei und positioniere die drei unterschiedlich großen Teppiche so, dass sie die Wände berühren!
  2. Betrachte die Mittelpunkte der Teppiche! Was fällt auf?
  3. Konstruiere in der Geogebra-Datei eine Halbgerade, auf der alle Mittelpunkte von runden Teppichen liegen, die beide Wände berühren!
  4. Speichere die Datei unter "teppich_<<DeinName>>" im Klassenverzeichnis ab!



Dies nun war der erste Streich und der zweite folgt zugleich!



Die Mittelsenkrechte

Sägen.jpg In der schönen Maienzeit,

wenn die bayerischen Dorfesleut
viele große Stämme krachen
schmücken und zurechte machen,
wünschen Max und Moritz auch
sich einen Maibaum zum Gebrauch.
Max und Moritz, gar nicht träge,
Sägen heimlich mit der Säge,
Ritzeratze! voller Tücke,
In die Birke eine Lücke.
Max und Moritz heimlich geh'n
wo der Maibaum nun soll steh'n
Dieser wird nun aufgestellt
wo es allen Leut' gefällt,
wo die Katzen oft 'rumschleichen

mittig zwischen den zwei Eichen

Eichen.jpg

Welche besondere Eigenschaften besitzt der Maibaum?


Aufgabe - Teil 1:

  1. Überlege zunächst, welche besonderen Eigenschaften der Maibaum von Max und Moritz besitzen muss.
  2. Betrachte nun folgende Strecke [AB] und verschiebe die Punkte A und B
  3. Welche besonderen Eigenschaften besitzt die rote Gerade? Überlege wie man aufgrund dieser Eigenschaft die Gerade konstruieren kann! Begründe, warum die rote Gerade Mittelsenkrechte heißt!


Was ist eine Mittelsenkrechte?

Definition der Mittelsenkrechten
Eine Gerade heißt Mittelsenkrechte auf eine Strecke [AB], wenn sie durch den Mittelpunkt
der Strecke verläuft (die Strecke halbiert) und auf ihr senkrecht steht.
Sie wird mit m[AB] bezeichnet.
Die Mittelsenkrechte auf eine Strecke ist eine Symmetrieachse dieser Strecke. 



Konstruktion der Mittelsenkrechten

Aufgabe - Teil 2:

  1. Öffne mit dem Programm GeoGebra die Geogebra.svg GeoGebra-Datei mit zwei Eichen, am Punkt A und am Punkt B.
  2. Konstruiere die Mittelsenkrechte auf die Strecke [AB], die beide Eichen miteinander verbindet!
  3. Speichere die Datei unter dem Namen "Mittelsenkrechte_<<DeinName>>" im Klassenverzeichnis auf der Festplatte ab!
  4. Überprüfe Deine Konstruktionsschritte anhand folgender Konstruktion!
  5. Formuliere die einzelnen Konstruktionsschritte schriftlich auf einem Übungszettel! Überprüfe die Konstruktionsschritte mit Deinem Nachbarn!



Aufgabe - Teil 3:

  1. Übertrage die Definition der Mittelsenkrechten auf Dein Arbeitsblatt!
  2. Konstruiere die Mittelsenkrechte und formuliere die Konstruktionsschritte!
  3. Überlege weitere Beispiele in der Natur, wo eine Mittelsenkrechte vorkommt!



Weiteres Anwendungsbeispiel:
Gehe auf folgende Internetseite. Lies Dir den dabeistehenden Text sorgfältig durch und überlege!

Dies nun war der zweite Streich und der letzte folgt zugleich!



Puzzle zur Mittelsenkrechten



Vertiefung und Wiederholung

Das Lot

Das Lot errichten

Auf einem ganz bestimmten Punkt
soll er steh'n mit ganz viel Prunk,
der herrlich geschmückte Tannenbaum

in Max und Moritz' schönsten Raum.
Tannenbaum.jpg

Wie wird der Ort, an dem der Tannenbaum aufgestellt werden soll, beschrieben?

Aufgabe:

  1. Nimm ein Blatt Papier zur Hand und zeichne eine 6cm-lange Strecke [AB]!
  2. Wähle einen beliebigen Punkt P auf der Strecke, der die Strecke nicht halbiert!
  3. Überlege: Wie konstruiert man eine senkrechte Gerade, die durch den Punkt P verläuft? Diese senkrechte Gerade wird auch als Lot bezeichnet! Überprüfe Deine Konstruktionsschritte anhand der linken Skizzen!
Loterrichten.jpg
Definition des Lotes:

Eine Senkrechte in einem Punkt P zu einer Geraden g nennt man Lot.
Der Schnittpunkt des Lotes l mit g heißt Lotfußpunkt.



Konstruktion: Errichten eines Lotes auf einer Geraden g im Punkt P

Überlege Dir die einzelnen Konstruktionsschritte um ein Lot im Punkt P auf einer Geraden g zu errichten! Überprüfe Deine Überlegungen mit Deinem/r NachbarIn!

Merke: Gilt P ∈ g, so sagt man auch: Im Punkt P wird das Lot zu g errichtet.

Arbeitsaufträge:

  1. Übertrage die Definition und die Merkregel vom Lot auf Dein Arbeitsblatt!
  2. Konstruiere auf dem Arbeitsblatt im Punkt P auf der Geraden g das Lot l! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  3. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  4. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Das Lot fällen

Maxhähnchen.jpgDurch den Schornstein mit Vergnügen

Sehen sie die Hühner liegen,
Die schon ohne Kopf und Gurgeln
Lieblich in der Pfanne schmurgeln.

Max und Moritz auf dem Dache
sind jetzt tätig bei der Sache.
Max hat schon mit Vorbedacht
Eine Angel mitgebracht.

Schnupdiwup! Da wird nach oben
Schon ein Huhn heraufgehoben.
Schnupdiwup! jetzt Numro zwei;
Schnupdiwup! jetzt Numro drei;
Und jetzt kommt noch Numro vier:

Schnupdiwup! Dich haben wir!




Welchen "Weg" muss die Angelschnur nehmen, damit Max und Moritz die Hähnchen erangeln können?

Konstruktion: Fällen eines Lotes vom Punkt P auf eine Gerade g

Überlege Dir die einzelnen Konstruktionsschritte um ein Lot von einem Punkt P auf eine Geraden g zu fällen! Überprüfe Deine Überlegungen mit Deinem/r NachbarIn!
Überprüfe Deine Konstruktionsschritte anhand der rechten Skizzen!

Merke: Gilt P ∉ g, so sagt man auch: Im Punkt P wird das Lot auf g gefällt.

Arbeitsaufträge:

  1. Konstruiere auf dem Arbeitsblatt vom Punkt P das Lot l auf die Geraden g! Beschrifte Deine Zeichnung (Lot, Lotfußpunkt etc.)!
  2. Übertrage, die (korrigierten) Konstruktionsschritte auf Dein Arbeitsblatt!
  3. Welche weiteren Beispiele für ein Lot aus Deinem Alltag kennst Du?



Konstruieren mit GeoGebra:

  1. Speichere folgende Geogebra.svg Datei in Deinem Ordner ab!
  2. Fälle das Lot vom Punkt P auf die Gerade g! Orientiere Dich dabei an den Konstruktionsschritten auf dem Arbeitsblatt!
  3. Speichere die erstellte Konstruktion unter "Lotfaellen_<<DeinName_Haus>>" im Klassenverzeichnis ab!



Rätsel zum Lot



Vertiefung und Wiederholung



Hausaufgabe: S. 18 Nr 6 Welches Buch? Titel



Petra Bader 26. Oktober 2006 (METDST)