Einführung in die Differentialrechnung und Ganzrationale Funktionen: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>D.Schmerenbeck
 
K (Kilian Schoeller verschob die Seite Mathematik-digital/Ganzrationale Funktionen nach Ganzrationale Funktionen)
 
Zeile 1: Zeile 1:
Achtung: Baustelle: Lernpfad zur Einführung in die Differentialrechnung
{{Lernpfad|1=
'''Herzlich willkommen zum Lernpfad zu ganzrationalen Funktionen!'''


== Einstiegsaufgaben ==
In unserer aktuellen Unterrichtseinheit geht es um Transformationen von verschiedenen Funktionen, d. h. also, ihr sollt herausarbeiten, mithilfe welcher Operationen bzw. Veränderungen in der Funktionsgleichung unterschiedliche Funktionsarten im Koordinatensystem verschoben, gestreckt bzw. gestaucht und gespiegelt werden können.
In diesem Lernpfad sollst du dich nun speziell mit den ganzrationalen Funktionen auseinandersetzen. 


===== Blumenvase =====
'''Kompetenzen'''
Unterschiedliche Gefäßformen lassen sich durch ihren Füllgraphen beschreiben. Dieser ergibt sich, wenn in ein Gefäß eine Flüssigkeit mit gleichmäßigem Zufluss einfließt. Die entstehende Zuordnung Zeit(t) -> Höhe(h) kann in ein Koordinatensystem übertragen werden und stellt die Zunahme des Wasserspiegels in Abhängigkeit von der Zeit dar.
{{2Spalten
|
Du kennst bereits:
* verschiedene Begriffe / Eigenschaften im Zusammenhang mit Funktionen allgemein (Definitions- und Wertemenge, Symmetrie, ...),
* lineare Funktionen allgemein und abschnittsweise definierte (lineare) Funktionen sowie
* Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x- und auf der y-Achse, Streckung bzw. Stauchung in Richtung der x- und y-Achse sowie Spiegelungen an der x- und y-Achse).
|
Nach Bearbeitung dieses Pfades:
* kennst du die ganzrationalen Funktionen als weitere Funktionenklasse.
* kannst du wichtige Eigenschaften der ganzrationalen Funktionen erläutern.
* weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
* weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse strecken bzw. stauchen sowie an der x- und y-Achse spiegeln kannst.
}}
Und nun  .... 
<br> 
<center>'''Viel Spaß beim Bearbeiten!!'''</center>
}}


=====Aufgabe=====
<br>
Skizziert zunächst für die beiden Gefäße '''(siehe Bild <- wird noch eingefügt)''' einen möglichen Verlauf des Füllgraphs in ein Koordinatensystem. Vergleicht eure Ergebnisse mit einer anderen Zweiergruppe und begründet eure Skizze.
{{Kurzinfo|M-digital}}
== '''Infos vor Beginn''' ==


=====Experiment=====
'''1) Lerntagebuch''': <br>
Mit dem folgenden Experiment werdet ihr eure Vermutung aus der ersten Aufgabe überprüfen.
Während der gesamten Unterrichtseinheit sollst du ein '''Lerntagebuch''' führen: Das Tagebuch dient einerseits als "normales" Heft und andererseits als Reflexionsinstrument. Das heißt, du sollst nicht nur die gegebenen Arbeitsaufträge im Lerntagebuch bearbeiten, sondern dir darüber hinaus auch (schriftlich) Gedanken über deine Lernfortschritte und die Eignung des Arbeitsmaterials machen. Das Tagebuch wird nicht bewertet, es dient ausschließlich dazu, dir selbst klar zu  machen, wie groß dein Lernfortschritt ist und wo vielleicht noch Probleme liegen.
<br>


===== Barringer-Krater =====
Folgende Bestandteile sollte das Tagebuch haben:
<br>
1)  Standortbestimmung: Was weiß ich bereits über Funktionstransformationen im Allgemeinen? Weiß ich bereits etwas über die zu bearbeitenden Funktionsarten?
<br>
2)  Ein Eintrag nach jeder Stunde während der gesamten Unterrichtseinheit - mögliche Fragen, an denen du dich dabei orientieren kannst, sind:
::* Was habe ich gelernt? Was habe ich gut verstanden, welche Fragen sind noch offen? Welche Schwierigkeiten sind bei der Lösung aufgetreten?
::* An welchen Stellen habe ich etwas für mich Neues gelernt? Hatte ich Aha-Erlebnisse?
::* Bin ich mit meiner Arbeit zufrieden? Habe ich mein Arbeitsziel in dieser Stunde erreicht? Wenn nicht, woran lag es?
::* Wie habe ich mich in dieser Stunde im Unterricht oder in der Gruppenarbeit beteiligt? Welche Note würde ich mir geben?
3) Abschlusskommentar zu jeder Phase der Unterrichtseinheit:
<br>
4)  Allgemeine Beurteilung der Einheit: Waren Aufbau und Material sinnvoll (speziell die Lernpfade)?
<br>
5)  Abschlussprodukt: Funktionenbild mit Erläuterung
 
<br>


[[Datei:Meteor.jpg|400px]]
'''2) Allgemeine Hinweise''': <br>
* Bearbeite den Lernpfad mit einem Partner oder einer Partnerin - so könnt ihr gemeinsam über die Aufgaben sprechen und schneller zu sinnvollen Ergebnissen gelangen.
* Nutze die versteckten Hinweise erst, wenn du allein bzw. ihr zu zweit bei der Aufgabe nicht mehr weiter kommt - versucht es zuerst ohne Hilfe!
* Für die versteckten Lösungen gilt: Schau sie dir erst an, wenn du die Aufgabe gelöst hast - sie dienen nur der Kontrolle!
* Übernimm alle wichtigen Definitionen, Merksätze, Erläuterungen in dein Lerntagebuch - im Regelfall wirst du allerdings an der betreffenden Stelle explizit dazu aufgefordert.
<br>
<br>


In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater.  
== '''Definition der ganzrationalen Funktionen''' ==
Eine kleine Aufgabe zum Einstieg: <br>
{{Aufgaben|1=1|2=Du hast ein quadratisches Stück Karton mit der Seitenlänge 16 cm und möchtest eine Kiste (ohne Deckel) basteln. Dazu schneidest du an jeder Ecke des Kartons ein Quadrat der Seitenlänge x aus, so dass du die übriggebliebenen Seiten nur noch hochzuklappen brauchst - die Höhe der Kiste ist demzufolge definiert als x. Stelle eine Funktion für das Volumen auf (in Abhängigkeit von der Höhe x), das heißt, bestimme V(x). Fertige zuvor eine Skizze an.}}
{{Lösung versteckt|1=<math>V(x) = (16 - 2x)^2x = 4x^3 - 64x^2 + 256x</math>}}
<br>


Der Krater hat einen Durchmesser von etwa 1200 Meter und eine Tiefe von 180 Meter. An der flachsten Stelle kann der Kraterrand durch die folgende Funktion beschrieben werden:
Die Funktion, die du gerade aufgestellt hast, ist eine sogenannte '''ganzrationale Funktion''' - sie setzt sich zusammen aus den einzelnen Summanden <math>4x^3</math>, <math>-64x^2</math> und <math>256x</math>, den Potenzfunktionen. Der höchste Exponent gibt den '''Grad der Funktion''' an, d. h. es handelt sich hier um eine ganzrationale Funktion dritten Grades. Die Vorfaktoren der einzelnen Summanden werden entsprechend den zugehörigen Exponenten von x mit <math>a_3</math> - <math>a_1</math> bezeichnet (<math>a_3 = 4</math>, <math>a_2 = -64</math>, <math>a_1 = 256</math>) - sie heißen '''Koeffizienten'''.
<math>k(x)=0,002x^2</math> für <math>0 \leq x \leq 300</math>
<br>


''Hier kommt noch ein Koordinatensystem mit der Funktion hin''
Nun in allgemeiner Form:
{{Definition|1=Ein Term der Form <math>a_nx^n + a_{n - 1}x^{n - 1} + ... + a_2x^2 + a_1x + a_0</math> mit <math>n \in N</math>; <math>a_0</math>, <math>a_1</math>, <math>a_2</math>, ..., <math>a_{n - 1}</math>, <math>a_n \in R</math> und <math>a_n \neq 0</math> heißt '''Polynom'''. Die Zahlen <math>a_0</math>, <math>a_1</math>, <math>a_2</math>, <math>a_3</math>, ..., <math>a_{n - 1}</math>, <math>a_n</math> nennt man '''Koeffizienten''' des Polynoms. Als Grad des Polynoms wird der höchste Exponent n von x bezeichnet, dessen zugehöriger Koeffizient <math>a_n</math> nicht Null ist.<br>
Eine Funktion f, deren Funktionswert f(x) als Polynom geschrieben werden kann, heißt '''ganzrationale Funktion'''. <br>
Der Grad des Polynoms heißt auch Grad der ganzrationale Funktion. Die Definitionsmenge einer ganzrationalen Funktion ist die Menge der reellen Zahlen, also R.}}
<br>


Im Krater befindet sich ein Fahrzeug, das eine Steigung von bis zu 100% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?
Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam zum Üben:
<br>
<quiz>
{ Gegeben ist die Funktion <math>f(x) = 0.5x^4 + 3x^3 + 7x^2 - 1.3x - 18</math>.
| type="{}" }
1) Der { Grad } des Polynoms ist { 4 }, da 4 der höchste vorkommende Exponent ist. <br>
2) Die { Koeffizienten } lauten wie folgt: <math>a_4</math> = { 0.5 }, <math>a_3</math> = { 3 }, <math>a_2</math> = { 7 }, <math>a_1</math> = { -1.3 }, <math>a_0</math> = { -18 }. Der Index des jeweiligen a entspricht immer den { Exponenten } des zugehörigen x. Achte auf die { Vorzeichen }! Laut Definition kommen für die Koeffizienten alle { reellen } Zahlen in Frage, wundere dich also nicht, wenn in der Funktion z. B. eine Wurzel auftaucht.<br>
3) Da für x alle möglichen Zahlen eingesetzt werden können, ist also hier entsprechend der Definition D = { R }.
</quiz>


== Von der mittleren zur momentanen Änderungsrate ==
Mit den folgenden Übungen kannst du überprüfen, ob du alles verstanden hast: <br>
{{Aufgaben|1=2|2=Bestimme Grad und Koeffizienten der folgenden ganzrationalen Funktionen in deinem Lerntagebuch: <br>
1) <math>f(x) = \frac{1}{2}x^7 - 3x^5 + \sqrt{2}x^3 - x + 13</math> <br>
2) <math>g(x) = 7</math>  <br>
3) <math>h(x) = \frac{x}{2}</math> <br> 
4) <math>i(x) = 0,12345x^6 - 9,87654x </math> <br> 
5) <math>j(x) = x^4 + x^3 - x^2 - x</math>}}


===== Blumenvase =====
{{Lösung versteckt|1=
1) Grad: 7, Koeffizienten: <math>a_7 = \frac{1}{2}, a_5 = -3, a_3 = \sqrt{2}, a_1 = -1, a_0 = 13</math>  <br>
2) Grad: 0, Koeffizienten: <math>a_0 = 7</math> <br>
3) Grad: 1, Koeffizienten: <math>a_1 = \frac{1}{2}</math>  <br>
4) Grad: 6, Koeffizienten: <math>a_6 = 0,12345</math>, <math>a_1 = 9,87654</math>  <br>
5) Grad: 4, Koeffizienten: <math>a_4 = 1</math>, <math>a_3 = 1</math>, <math>a_2 = -1</math>, <math>a_1 = -1</math>  <br>
}}
<br>


In die abgebildete Vase wird gleichmäßig Wasser eingelassen. Die Tabelle stellt dar, wie sich die Wasserhöhe (gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert.
Entscheide: Handelt es sich um eine ganzrationale Funktion? Begründe in deinem Lerntagebuch. <br>
<quiz display="simple">


:{| class="wikitable"
{ <math>f(x) = \frac{x}{\sqrt{3}}</math> } 
!'''Zeit (Sekunden)''' !! '''Höhe (cm)'''
|-
| 0 || 0,51
|-
| 3 || 1,33
|-
| 6 || 2,74
|-
| 9 || 4,91
|-
| 12 || 8,00
|-
| 15 || 12,17
|-
| 18 || 17,58
|}


'''Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.'''
+ ja
- nein


''Bsp.''<br /> In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)<br /><br />
{ <math>g(x) = 1</math>


{{Aufgaben-M|1|
+ ja
Berechnen Sie anhand der obigen Tabelle und mit dem Taschenrechner oder PC die mittlere Änderungsrate in den angegebenen Zeitabschnitten:<br />
- nein
a) in den ersten drei Sekunden<br />
b) zwischen Sekunde 3 und 6<br />
c) zwischen Sekunde 15 und 18<br />
d) zwischen Sekunde 3 und 12<br />
e) in den ersten 18 Sekunden<br />
}}
:{{Lösung versteckt|1=
a) In den ersten drei Sekunden steigt die Wasserhöhe um 1,33 cm - 0,51 cm = 0,82 cm. Pro Sekunde steigt es daher um 0,82 cm : 3 s = 2,73 cm/s.<br />
b) In den drei Sekunden von Sekunde 3 auf Sekunde 6 nimmt die Wasserhöhe um 2,74 cm - 1,33 cm = 1,41 cm zu. Die mittlere Änderungsrate ist daher 1,41 cm : 3 s = 0,471 cm/s.<br />
c) Zwischen Sekunde 15 und 18 liegen wiederum 3 Sekunden. In diesem Zeitraum steigt das Wasser um 17,58 cm - 12,17 cm = 4,17 cm. Pro Sekunde nimmt das Wasser in diesem Zeitraum daher um 4,17 cm : 3 s = 1,389 cm/s zu.<br />
d) Bei Sekunde 3 beträgt die Wasserhöhe 1,33 cm, während sie bei Sekunde 12 genau 8 cm beträgt. In diesen 9 Sekunden ist die Wasserhöhe also um 8 cm - 1,33 cm = 6,67 cm gesteigen. Die mittlere Änderungsrate zwischen Sekunde 3 und 12 beträgt daher 6,67 cm : 9 s = 0,741 cm/s.<br />
e) Das Wasser nimmt in den ersten 18 Sekunden um 17,58 cm - 0,51 cm = 17,07 cm zu. Die mittlere Änderungsrate beträgt in diesem Zeitintervall daher 17,07 cm : 18 s = 0,948 cm/s.<br />


}}
{ <math>h(x) = \frac {\sqrt{3}}{x}</math> }
<br /><br />
Möchte man nun für einen Zeitpunkt (z.B. Sekunde 12) eine Änderungsrate bestimmen, so spricht man von der '''momentanen Änderungsrate'''. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in Aufgabe 2.
<br /><br />
{{Aufgaben-M|2|
Um näherungsweise die momentane Änderungsrate für Sekunde 12 zu erhalten, bestimmen Sie mit Hilfe der Schieberegler des Applets und mit Hilfe des Taschenrechners bzw. PCs die mittlere Änderungsrate ...<br />
a) ... zwischen Sekunde 12 und 15<br />
b) ... zwischen Sekunde 12 und 14<br />
c) ... zwischen Sekunde 12 und 13<br />
d) ... zwischen Sekunde 12 und 12,5<br />
e) ... zwischen Sekunde 12 und 12,3<br />
f) ... zwischen Sekunde 12 und 12,1<br />
g) ... zwischen Sekunde 12 und 12,05<br />
h) Schätzen Sie aufgrund der Ergebnisse aus a) - g), welches Ergebnis für die momentane Änderungsrate bei Sekunde 12 Ihnen plausibel erscheint.<br />
}}
<ggb_applet width="559" height="590"  version="4.2" ggbBase64="UEsDBBQACAgIANxxXUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADccV1DAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVc2XLbRhZ9dr6iiw9TUiJSvWLxSE5JlGU55cSukSc1lYdxgWCThAUCDABKlCrfNU/zlh+b290AN4CrJIrO2JYbIHq599xzl26SOvlx1A/RrUzSII5Oa6SBa0hGftwOou5pbZh16k7txzffnXRl3JWtxEOdOOl72WmNN2htMg7uGnps0IYbx8HC4bzuypZd574gdccirE496mDXspjvOzWERmnwOop/8foyHXi+vPZ7su99iH0v01P2smzw+vj47u6uUSzeiJPucbfbaozSdg2B4FF6WssvXsN0M4PumO5OMSbH//r5g5m+HkRp5kW+rCGl1DB4892rk7sgasd36C5oZ73TmnCsGurJoNsDLW0Kkh6rTgNQdSD9LLiVKQydutU6Z/1BTXfzIvX8lblC4VidGmoHt0FbJqc13LAdRm2LCywIcbngNRQngYyyvC/J1zwuZju5DeSdmVZdGZSxa4MFgjRohfK01vHCFLQKok4CiIJAyRBu0+w+lC0vKe4n8pAj+Asdggep5gLTGRhOa4yxI8c9sjE+EgIbUabWBUCyOA71pATARX8gaKhpGEJ/6Ath7nl+a5lbWzcEm4bkDx31n6turCUK5fcTjfIXplVihUJsWiGY/Uj9WPCjNZ3TiEytamBavOg8jOMVhXDXX5FPYYiR0LpTTDE6Ug0xDYXGsswjbF4DfHVDTcNNI0wfboZz05WbPtz04WwTZEtcKZR0HLK+kvRRxhwDS6tMScUCUz6SQcWiREwtCmvpf/qntCTbSM+F0G6wosUf4/dbLGjjGb4WZDUtydtlMDyZUCfHRSQ8yQVCaU/1zf02k/1Uichc7VWIIAGuY9ngBAIRFxpbRSqKiEBcwC1xkKVaGzEVnDhiyEGqH2FI+45w4D+uA5eFBMylXrRNBEOMI8EQ0R7HEaCAtNcCJpRBDyGQgEFqdaKWZRbiFtwwB3EQUPmrreIng3FwD4tTxAhiaiyxEbWQRZGtfJ5wFQosR8kOk1JkYWSpoeD04PDG2WGEg5jSBrxgEKfBGNyeDAdjq2gcg2gwzGaw8/vt4jKL53q3Y//mfA5r6aVZcQ2dIFlNUqJJXjMZ89VJ6LVkCGXFtaIBQrdeqGKEnr8TRxkqKJC/1k28QS/w02uZZTAqRV+9W++Dl8nRJfROCwH10jqRn8ihHwbtwIt+BY6oKdSEaJzXVYAu8rqw8lX8OE7a1/cpEAeNfpNJDDI5vEFcYdnUxg6xKHjbvXnCidMQjBLGHeZYHEMqTH1PEZ6JhgW5HOoe7trMchhY4D5/BoM4lETcZg7HhLncrCxvx5p5I5kWUHYT5XE5+OrmfXoeh5OXBnEQZU1vkA0TXaJBnEyUTmdRN5QaWh15odrxb1rx6Npgysxcn+8HcIeNAK1uMw7jBIE/UiGgQ962TKv7KMnGvbDug3UPXBgpaI+fE5fqHrptmVb3Aqsb0XJNSaEmwcUyQaojDUxuOFaEZsUZVTwNoyD7UNxkgX+Tq0rMgF+G/RbQbUxg6HARmErPFLWzy5DaDJWfZBXcEIXX3cozWCnvpgk6R82TG5lEMjQEjIAEw3iYGo8Ys/rVyTCVn7ysdxa1/yG74MqfPBVNM5DAdC2mB/+UftCHgeb1nGCeYsQ/QSPzalt2E5n390JdTxub6Kd42h1KL+upLpO4/z66/Qx0mxP15LjQ5yT1k2CgWI1aEN5v5IS47SD1IDm0p8eB8ilo4atABXBmCusa8oZZL050yQzuDukHfbzJYkAeAiwwWXl6KPtQLqNM8zka9mUS+GM7ZkSX4iDjMFeDiIICyowobn2FuDRn/Qma8HgB55EXDnqesjXJme3dg1h6Dbt4BWb7OW4XK+fLhqr0R/0g0tP0vZEqbGC+VhqHwww2P2CbaLL5MZLlkQsKHbW1Gil/oerqHgIY5eqqE4zkOGwDaMED0GmWGxPnyyCc3sCGItURIstjgb64CtptGY3F9SKgkzYKBMaB0hcrFxhIaZxnPHYAAOgwNMWF3DgrzfS5ZCZcaaXZUDDlH89gp3nF19UaRg5HQRh4yf2sb07D4cf9vhe1UaRrosthpHkPZZMqiUa1SVr2sGIHOkajfx+wQ9CGKFVcyCkehYjfYLn+w6zo3TFr5SuUoO+M1ypQrC13hg1RxiWUcSXKeAklxTJKrs+qrOT79Pl9v1rb5/J9buOd+n6FE5BqJ/ChLlEjtfqXf/43DB9kkJUMOBokIInqmOPvQTk5UjXnAT801eRyI3vlyMEIFRuacJlM6LTWy4XqHWSH6BQB5rCV+B4dZOgH5BxqzyxLWvK0XtnTHhXQNnS17QPa5txZbuOrHM4DfIQUpIfFVLqirbJ6/mA8fgWQ1U5sORpI1bRMszGU01uFVLkizh3RUe3DVIGpJVYltxnIpl+dK6oWJ4aPCZQ/3Tjywg9ggrm0cGWywb0qMEtZwF+eBZRFx2j5j+KlIGafgPn21CzjWSc5oE5jWaZYEcDk75EZkpriPegPwsAvh6GN0nF9Ph/XVRrW+biuU/O8LbobZuTuN5yRZ5F8H6ktCmgwB2HXAOcb1A7A2EzYFDsOdqhrc9hYHyEw/MwfflgCtrkc2Nmg0dyS5U8QNUosr1C4iCKzOj9DTFnBbjzmNC9qTF4CPtqQ0dH+MXrt9LUeozuzjN6S0BebEPpijwi9Uz4vLwj9Ly+zmVxa+O9wM/lJk2SWnVGJaW83YdrbLZmm6nB9CkgnZ4lPVr5utBkp1Rf4ieq1cnF7WRS3o4OLwyOENy1uL/ffrZ8KvHnihvdQ685R960JrFcmsF5AwxRG83z+NYBp/RtiekvTu/eFmP5tfcEBuy9kFfGNEAXY43kXJhJc2JdW16AbZz3iGEtSYs7OKZsEHrKZLRdHzVR21d1YFrldhl4m62PqI2fOTfHSXcAqEwBPQhUTxskb3LV8xn4j5UC9K/Ix+px4Uao+3bI45i5Hs5fnoL3BkzWEoDZhlg2+jAUmb+tEaISrXPxBVai44QjbsjG3LGa7VnGk8m0YoL1nBqgohKbYXQKbfUtYd/YM66kjhEpq710sKe8wuokXnsvsTsr5dJjvMyKT4FSJYTJc1S6tvTzVzRfO7fmymTcEsNFhjNqcUQvzF01oZB2jPe4NA/8LfZGtA3+xrUO5fD0ryldg1BHqqGbj89mzPSph9TmGjrUCIoHg2MKWgIaTZ6r/zwsA6xrBrm43hvB8jyCsPzeGS3B4/wTvmTzptnObTecEv+X7JlEN2IooNgvYT38FwOpPjdg6O82fTGo9N6n1zOTV94t2mtT0/mp6t0xvr9hnBlvtMuniXeaKNzqe6Gi1KhtXf0hiw+3l1xc9AJ4iVlUIm6nEGzbDBDMHW5Q6zGbOkrJjhVF2Xom39gTlogK3Go5BFdzZwhTbFqFcWDa3rW8IVW/b/c0z4PoXJm+wNyDn28eCvcv3iy8AY6nkfDc5cm5uc+T8bhfFZvUmZ+23Rl/gzPmdye1Nk9uvFlUCLD9z1rkf+neLU2f/CzPVQO8L3aoeYGucOn/Th867Ojlak3tPdHK0JwG1u2fo1p/jEHRPsFauvk9Y7+q8f0/g7+UHd/sC/5ZvX+3liXN35sQ5/6wbU2fPzfIHWG6W57n5A9ebiiNngoVFhCNcSzj2i2aznZw48//7E+dzmpevlZXqPGLnpSP6yaf6N8BiO0lJLunffh/G2d9/k0FmrmpluTM5mjrNrcjET/zR73WPaUpKNWeVuvrzPz25nlbNfdaKjj+yf07X+iJBs0QsZ2e8YoUHkLVcgC3+Uttzi9pkE1zZeriWpaUNYtm7kfdslt0XMsy80Xr0Pttjel9UqHW/nloXe6zWWcGuc4bqSCWG1fw6K/GL7coZLgpxm0rc5lriXpTE5Tv0BjFLm6DTURev13QIsb/MOS80u2DoGCkerRFHRSkyNZjj7sYUvQxPfalsHXHViEdnqFVCkYlQZE2pyl+x3ia+LxfsM/Cwok5BD8M+UmXYYKgERKfIPEQ/IPXVvPzmWt4MI6jOX0+eApaT534/53+FujMOYKR45mPqJS4A62ZekulPeKP8fVKMHVv9Agpq2ZwwZs6vWMNlLoVtPHFti3PsiOmz09VQ05VQE8B6CmxShfY03GRLuLfc1z8b3DZzLIYppy7FgLiB224QJlzqui62XS4cdyHcx9O/5kDdF7/P7M3/AFBLBwgTZGNRPAwAAH5NAABQSwECFAAUAAgICADccV1DRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIANxxXUMTZGNRPAwAAH5NAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA1AwAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />


<br />
- ja
:{{Lösung versteckt|1=
+ nein
a) Bei Sekunde 12 beträgt die Wasserhöhe genau 8 cm, während das Wasser bei Sekunde 15 die Höhe 12,167 cm hat. In den drei Sekunden ist es also um 12,167 cm - 8 cm = 4,167 cm gestiegen. Die mittlere Änderungsrate in diesem Zeitabschnitt beträgt daher 4,167 cm : 3 s = 1,389 cm/s.<br />
b) 10,648 cm - 8 cm = 2,648 cm => 2,648 cm : 2 s = 1,324 cm/s<br />
c) 1,261 cm/s<br />
d) 1,2302 cm/s<br />
e) 1,218 cm/s<br />
f) 1,206 cm/s<br />
g) 1,204 cm/s<br />
h) Der Wert scheint gegen 1,2 cm/s zu streben.<br />
}}
<br /><br />
{{Aufgaben-M|3|
Die Höhe des Wasserstandes der bisher betrachteten Vase kann mit der Funktion <math>w(t)=0,001(t+8)^3</math> beschrieben werden. Hierbei gibt <math>w(t)</math> die Höhe des Wasserstandes in cm zu einem Zeitpunkt <math>t</math> (in Sekunden) an.<br />
a) Bestimmen Sie den Näherungswert für die momentane Änderungsrate noch genauer, indem Sie mit Hilfe der Funktionsvorschrift die mittlere Änderungsrate im Zeitabschnitt von Sekunde 12 bis 12,001 bestimmen.<br />
b) Beschreiben Sie, wie Sie vorgehen müssten, um einen möglichst exakten Wert für die momentane Änderungsrate bei Sekunde 12 zu erhalten.<br />
}}
:{{Lösung versteckt|1=
a)<br />
<math>w(12)=0,001(12+8)^3=8</math><br />
<math>w(12,001)=0,001(12,001+8)^3=8,00120006</math><br />
=> Höhenzunahme: <math>8 cm - 8,00120006 cm = 0,00120006 cm</math><br />
=> mittlere Änderungsrate: <math>0,00120006 cm : 0,001 s = 1,20006 cm/s</math><br />
b) Der Zeitabschnitt für die mittlere Änderungsrate müsste immer kleiner gewählt werden, z.B. zwischen Sekunde 12 und 12,00001 usw.<br />
}}


== Von der Sekanten- zur Tangentensteigung ==
{ 4) <math>i(x) = \frac {1}{x + 1} </math> } 


===== Barringer-Krater =====
- ja
+ nein 


{ <math>j(x) = x^2</math> } 


Die durchschnittliche Steigung des Kraters zwischen den Punkten A(x<sub>0</sub>|k(x<sub>0</sub>)) und B(x<sub>1</sub>|k(x<sub>1</sub>)) kann mit <math> m=\frac{\Delta y}{\Delta x}=\frac{k(x_1)-k(x_0)}{x_1-x_0}</math> berechnet werden. Dies enspricht der Steigung der Geraden, die durch die Punkte A und B geht. Eine solche  Gerade, die den Graphen einer Funktion in zwei Punkten scheidet, nennt man '''Sekante'''. <math> m=\frac{\Delta y}{\Delta x}=\frac{k(x_1)-k(x_0)}{x_1-x_0}</math> ist dann die '''Sekantensteigung'''.
+ ja
- nein


{{Aufgaben-M|1|
</quiz>
Überlegen Sie, wo  in der Zeichnung folgende Größen zu finden sind:
<br>
<math>x_1-x_0</math> und <math>k(x_1)-k(x_0)</math>


''Achtung: Nicht auf den Monitor malen;-)''
{{Aufgaben|1=3|2=Nun weißt du genau, was eine ganzrationale Funktion ist. Übernimm die Definition in dein Lerntagebuch (sofern noch nicht geschehen) und erläutere sie an einem selbstgewählten Beispiel für eine Funktion dritten Grades. Zeichne auch den zugehörigen Graphen in dein Lerntagebuch - stelle dazu eine geeignete Wertetabelle auf.}}
}}


<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAOqzXEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADqs1xDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bOBL/u/spBsLi0NzFtqiX7Z7dRdwkvgLpdoHkDovb9BayRNtsZEkryYnd3X73G5KSLFt+O27dAkkoiUMO5zdPUkrrp8nIg0caxSzw2wqpqgpQ3wlc5g/ayjjpVxrKT69/aA1oMKC9yIZ+EI3spK0YnJK5bcW2jKZumP1K3XGbFcOx3Eqz7tQrLtGIpvbtpmHpCsAkZq/84Gd7ROPQduitM6Qj+yZw7EQwHiZJ+KpWe3p6qmasqkE0qA0GveokdhXAZfpxW0kvXuF0c4OedEGuqSqp/fruRk5fYX6c2L5DFeAijNnrH160npjvBk/wxNxkiAJrDZRjSNlgiEI165YCNU4VIiIhdRL2SGMcW7gVQiejUBFkts/7X8gr8HJ5FHDZI3Np1FbUqmYQQ7U0U4EgYtRPUhqS8qpls7QeGX2S0/ErwclQIAkCr2fzmeCvv0BTNRXOeUNko2FjWbJLlc9UXTaabAzZmJLGkMMNSWpIGkPSGKiqRxaznkfbSt/2YoSO+f0I1Zbfx8nUo2I96YOZ1OQcZYrZJyTWVcRVYo3PVfWc/1r4a/CO2ryQpMA1icY7Ms1YEs3StuepHSSpPpOzWeapmSvktNYwlYJvJahZwBZZiR/xW+KorxNzkaO8P4yhZXwREVu1zFdaqXtAPOS0qfkkdBRzh9GbYDa53RMw0TmsOpq5CaSJTV0DdAcgJhgm3pIGWLytg17HDgN0aACnIzoI7zAb+Meoi8ksMHEy/rSOTgkEGRlg6kCEUxmArgTCMdFJNR0pTBNMHMTZE41PoVtgWHinN8DANXKfrBMk1HEg3iN7DXQCOh9M6qBZYPH5iMF93WrwpeOUGlgqWIRPiG6NLi3dGekboHNpsnjG/HCczEHkjNzsMgnCXBdIjQFpFu5kgJqLhi9ant2jHmaIW65JgEfb4x4hGPUDP4HcIeWzQWSHQ+bEtzRJcFQMH+1H+8ZO6OQaqeOMt6B1Aj/+JQqSN4E3HvkxgBN4ar7mwCOFay1fNd7ohQ6j2GEWOqzCdX0p3wB7YBxT5B9EcUZuu+5bTjELDYjke9+bdiJqP4QBmxejVRPJpkXHjsdcZvv/QWPlXDguMMs9PF5luafebGYrCSL3dhqjCcPkvzQKeFwh1TrBTNo00AN0Hd1kKnssq1lVNbOhGnUTO60GLs2xue+RakPTTIuo+NNsYorGMVmXWW1YasNoElI39HoT5xOc6WOuIXtCc+EHEXfsVHB+8zbuBN7skRD/jR0m40hUDRgbIy7ThT/wqDAREW0xJTsPvWByK21Dl3PdTUO8U+UCegMBO2Bo0ExMl4O07clW0PCV5VSqoFEFhZoZG3PzftLUBIVoe7IVVGi9cmmppCQTk6gZGxaLgKYqc24jTJ/n97HPkpvsJmHOQyopkfQ/j0c9mhvQ/JTkmaZs1RYMrPVAI596qT2jJsfBOJbuWTB1lzpshLeyIwXE5sr6Ny5APnXpIKLZuj1Rj0m4RK9atNTSYzHVdRSM3vqPd2gJCwto1bJVtmInYiE3OOhhDnigM5tyWWxjCnGL47gDougOTxUIT8KhQdccJ8MgEhUXRhRsud9NwojGvKSV4AJOg3XthIe5l5MzaINWVa8qBvwdJv97qZ2J6alHR1icQSIssj/2BaNcPX1R8HE9QND7iMFwQX0FgLF/hYWC7YVDm9eEKVaePaXRHHpiuneBu4gpqkwIjnEhlCYRUiqNKUl9CEKcTrhgYTEzS08wBj9gpRkLd8wH8Yt/MdelIv9Ks5JQCMxHI9t3wRf5+xfu6cosn9gqx0XKPE6yJxdyknRoCVkRLnLYLjbAOnOfIqpEk9FBtGl0OCa2ZDm2wgFimIhyl2+Ipkja4Bef5F5K7iW4wDzqzSVK+XTBeQ6FvrML9J3vA3ojh17XjgL9DXrQAvIXKDJJ4Z5TgL1eAdwZc3zt/SKKSeYSI7/dF/4ZiBViZPYr4UQUNYnsnlEEy4k/fDkklmmMjUKPOSxZj/atF4SLcNslnEfrcfbHIxoxJ4dyJCZE0ccZAFViyEnn8M82JGsdwNSFAjjwC0GdrIX/fb8f00SYrC6grmjaUu2UapTDI/f7CLPkIPBtb4k1d6Q1Ty6wQCkh3dvBontli55H9LhJsmjOqTVntvxVTHkt6BfrQHd2AN05WdD1rwH6Wz/BIhlhWMDbWYf35Hd1l8zJyffJnfxwZCCbnmwOR31WeVTUo6S/VYD21gNKdgOUnAygxrEB3SYsTJei6u4QFtxTCQs5miRDs3FiobizDnO6A+b0ZDEXpfGJRGK6Du6rXcLG1Sa8v1zUOPIeZBWWEkSBp1vC8noXLK9PD8sjbaU3JLQyjt1dcOyeYCI7EpCXLH29ujSFdcub4x6ndy824Lm4eZsNW9jEkVl9uU003bBFWiFNd+VWXy6ru+HMZYU03U5JGuMgYRbPPPkZrpfY0/Tcc8ZWvOJZv8Z05BdZ4GR+gajlbRc4eW57WLJC1u/TiPqfqP/HOEj4y/t0uRIiqEEmxBaLXjLZymOJZzDoWzoY0dKhYWeVdw7W23GczpZJMzjo9Co9PDno8HAW6fLDq6xgr5jW8faeAjWPn0jmmQRNpvye5YHSkL/eeu/fRbYf8y9nJE3h/c1OqktDUbq3mlPecDflDU9JeY1F5dW1bZWnfUPayw58fldL2mO7aY+dtPbMrc/avkHtlcPmx91093E/3WWvw1PlEVV71kI7P/OvkMZ3GDivpfIuSsp72E15D6eoPF39zl3valUF7u2mPe8UtWcUXE/b2vdORX3livmOThJew4si+W+8zv3n/SUvkWFyf96+P8fipYIp8P4c2oB/JAX8A17e2Hf019/yXcCHM3woe+XfZRV2gsyUBc77ncA9p5JZLGSZRy39Mi7GHUF/9hWZ+BRKVTJ9pRMgBFEiXvhLGN8xV+zMf7s4h+6H7XTAN3plHUyFDvovUQtnFd6oZ7BBFd3OfqroLvm8YCtVPGOZcjxNdM+hU9LENsGMl38rq3h/t4Dmf8WApm2uJb6/OiLNRNclxYW7KS48pQJ+ce/8LattxRneWqdL49yby73O8XDY0U+heDhFPstyahtQJOAZdW0Qf3O5XxBPpTs4nx7ykdLxgjiids7x+1BgP/tIp2Km79C05l5GtzJYpDq52vB6ZoXBXV0f/VyWax7ZLKsf0Mpk9QBZ+bDO7K6u9zO7q40vo77l2uHqHK63rOLInBIuywfIr+BHuO9HtvNnpqHP2dXkc1v2zJV7n/9MK/DP8GN7UW1LTqj3U+CSrzm+5IvwLXSX/ivSRtXxSGBWxX9P8FCA7lN4j1ZUYK34eTq/z/6P8fX/AVBLBwiDdHRiwwkAAGQ5AABQSwECFAAUAAgICADqs1xDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAOqzXEODdHRiwwkAAGQ5AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAWwoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
== '''Wichtige Eigenschaften ganzrationaler Funktionen''' ==


<br><br>
{{Aufgaben|1=4|2=Ordne die Funktionsgleichungen den jeweiligen Bildern zu. Begründe in deinem Lerntagebuch.}}


<div class="lueckentext-quiz">
{|
|-
| [[Bild:-2x_-_1.jpg|200px]] || [[Bild:-10x^3_+_2x.jpg|200px]] || [[Bild:2x^3_+_3x.jpg|200px]] || [[Bild:2x^4_-x^2_+_3.jpg|200px]] || [[Bild:5x^3_-_2x^2_-_3.jpg|200px]]
|-


:{{Lösung versteckt|1=
| <strong>  -2x-1 </strong> || <strong> -10x<sup>3</sup>+2x </strong> || <strong>  2x<sup>3</sup>+3x </strong> || <strong> 2x<sup>4</sup>-x<sup>2</sup>+3 </strong> || <strong> 5x<sup>3</sup>-2x<sup>2</sup>-3 </strong>  
<ggb_applet width="650" height="500" version="4.0" ggbBase64="UEsDBBQACAgIAMKzXEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADCs1xDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bOBL/u/spBsLi0Nz5Ieplu2d3ETeJr0C6XSC5w+I2vYUs0TYbWdJKcmJ3t9/9hqQky5bfqRu3QBJK4pDD+c2TlNL+aTr24IFGMQv8jkJqqgLUdwKX+cOOMkkG1aby0+sf2kMaDGk/smEQRGM76SgGp2RuR7Eto6Ub5qDacNxW1XAst9pqOI2qSzSiqQO7ZVi6AjCN2Ss/+Nke0zi0HXrjjOjYvg4cOxGMR0kSvqrXHx8faxmrWhAN68NhvzaNXQVwmX7cUdKLVzjdwqBHXZBrqkrqv767ltNXmR8ntu9QBbgIE/b6hxftR+a7wSM8MjcZocBaE+UYUTYcoVCthqVAnVOFiEhInYQ90BjHFm6F0Mk4VASZ7fP+F/IKvFweBVz2wFwadRS1phnEUC3NVCCIGPWTlIakvOrZLO0HRh/ldPxKcDIUSILA69t8JvjrL9BUTYUKb4hsNGwsS3ap8pmqy0aTjSEbU9IYcrghSQ1JY0gaA1X1wGLW92hHGdhejNAxfxCh2vL7OJl5VKwnfTCXmlRQpph9QmJdRVwl1vhcVSv818Jfg3fUF4UkBa5JNNmTacaSaJa2O0/tSZLqczlbZZ6auUZOawNTKfhOgpoFbJGV+BG/JY76JjGXOcr7pzG0jK8iYrue+Uo7dQ+IR5w2NZ+EjmPuMHoLzBa3ewImOofVQDM3gbSwaWiA7gDEBMPEW9IEi7cN0BvYYYAOTeB0RAfhHWYT/xgNMZkFJk7GnzbQKYEgIwNMHYhwKgPQlUA4JjqppiOFaYKJgzh7ovEpdAsMC+/0Jhi4Ru6TDYKEOg7Ee2SvgU5A54NJAzQLLD4fMbivW02+dJxSA0sFi/AJ0a3RpaU7I30TdC5NFs+YH06SBYicsZtdJkGY6wKpMSDNw50MUAvR8EXbs/vUwwxxwzUJ8GB73CMEo0HgJ5A7pHw2jOxwxJz4hiYJjorho/1gX9sJnV4hdZzxFrRO4Me/REHyJvAmYz8GcAJPzdcceKRwreWrxhu90GEUO8xCh1W4bqzkG2APTGKK/IMozsht133LKeahAZF873uzbkTt+zBgi2K06yLZtOnE8ZjLbP8/aKycC8cF5rmHx6ss9zRarWwlQeTezGI0YZj+l0YBjyuk1iCYSVsGeoCuo5vMZI9ltWqqZjZVo2Fip9XEpTk29z1Sa2qaaREVf1otTNE4Jusya01LbRotQhqG3mjhfIIzfcg1ZE9pLvww4o6dCs5v3sbdwJs/EuK/scNkEomqAWNjxGU694ceFSYioi2mZOe+H0xvpG3ocq7bWYh3qlxAfyhgBwwNmonpcpi2fdkKGr6ynEoVNKqgUDNjY27eT1qaoBBtX7aCCq1XLi2VlGRiEjVjw2IR0FRlwW2E6fP8PvFZcp3dJMy5TyUlkv7nybhPcwNanJJ8oSnb9SUDa9/TyKdeas+oyUkwiaV7FkzdpQ4b463sSAGxubL+jQuQT106jGi2bk/UYxIu0asWLbX0WEx1FQXjt/7DLVrC0gLa9WyV7diJWMgNDvqYA+7p3KZcFtuYQtziOO6AKLrDUwXCk3Bo0DUnySiIRMWFEQVb7nfTMKIxL2kluIDTYF075WHu5fQMOqDV1MuqAX+H6f9eamdieurRMRZnkAiLHEx8wShXz0AUfFwPEPQ/YjBcUl8BYOxfY6Fge+HI5jVhipVnz2i0gJ6Y7l3gLmOKKhOCY1wIpUmElEpjSlIfghCnEy5YWMzc0hOMwfdYacbCHfNB/OJfzHWpyL/SrCQUAvPx2PZd8EX+/oV7ujLPJ7bKcZEyT5LsybmcJB1aQlaEixy28y2wzt2niCrRZHQQbRodjoktWY2tcIAYpqLc5RuiGZI2+cUnuZeSewkuMI96C4lSPl1ynqdC390H+u73Ab2RQ69rR4H+Gj1oCflzFJmkcC8owN6sAO6MOb72YRHFJAuJkd8eCv8cxCoxMvuVcCKKmkT2wCiC5cQfvhwSyzTGxqHHHJZsRvvGC8JluO0SzuPNOPuTMY2Yk0M5FhOi6JMMgBox5KQL+Gcbko0OYOpCARz4paBONsL/fjCIaSJMVhdQVzVtpXZKNcrTI/f7CLPkMPBtb4U1d6U1T8+xQCkh3d/Dovtli15E9LhJsmjOqTVntvwsprwR9PNNoDt7gO6cLOj6c4D+1k+wSEYYlvB2NuE9/V3dJ3Ny8kNyJz8cGcqmL5unoz6vPKrqUdLfOkD7mwEl+wFKTgZQ49iA7hIWZitRdfcIC+6phIUcTZKh2TyxUNzdhDndA3N6spiL0vhEIjHdBPflPmHjchveXy9qHHkPsg5LCaLA0y1hebUPllenh+WRttJbEloZx94+OPZOMJEdCcgLlr5eXZnCeuXNcZ/Tu+db8FzevM2HLW3iyLy+3CWabtkirZGmt3arL5fV23LmskaaXrckjfEkYZbPPPkZrpfYs/Tcc85WvOLZvMZ05FdZ4HRxgajlXRc4/dL2sGKFbDCgEfU/Uf+PSZDwl/fpciVEUIdMiB0WvWKytccSX8Cgb+hwTEuHht113jncbMdxOlsmzfBJp1fp4cmTDg/nkS4/vMoK9qppHW/vKVDz+IlknknQZMrvWe4pDfnrrff+bWT7Mf9yRtIU3t/spbo0FKV7qwXljfZT3uiUlNdcVl5D21V52jekvezA53e1pD22n/bYSWvP3Pms7RvUXjlsftxPdx8P0132OjxVHlG1L1po52f+VdL8DgPnlVTeeUl59/sp7/4Ulaer37nrXa6rwL39tOedovaMgutpO/veqaivXDHf0mnCa3hRJP+N17n/vLvgJTJM7yqduwoWL1VMgXcV6AD+kRTwD3h5bd/SX3/LdwEfzvCh7JV/V1XYCTJTljg/u45ZLERZBC39MC7GDcFg/hGZ+BJKVTJ1pRMgAlEi3vdLFN8xV2zMfzuvQO/Dbirg+7yyCmZCBYOXqISzKm/UM9iiiV73ME30tn1dcPwi5XiK6FWgW1LELqGMF39ra3h/v3DmP6Opa9srie+vikjz0FVJceF+iguf3TM27Jy/ZbWtOcHb6HRpmHtzcdApHg47+hkUj6bIZ1VG7QCKBDyfbozhby4Oi+GpdPu/z1qKMU/5ROl4QRxRq3D8PhTYzz/RqZrpGzStdZDRrQ0WqU4ut7ycWWNwl1dHP5Xlmkc2q8oHtDJZPEBWPWwyu8urw8zucuurqG+5driswNWORRxZUMJF+fj4FfwId4PIdv7MNPQ5u5p+7siehWrv859p/f0Zfuwsq23F+fRhClzxLcfXfA2+g+7Sf0TaqjoeCcya+N8JHgrQfQpv0YoKrBc/Tuf32X8xvv4/UEsHCDahp/6/CQAAYjkAAFBLAQIUABQACAgIAMKzXENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAwrNcQzahp/6/CQAAYjkAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABXCgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
|}
}}
</div>


<br>
<div class="lueckentext-quiz">
{|
|-
|| [[Bild:x^2-x.jpg|200px]] || [[Bild:x1^3.jpg|200px]] || [[Bild:x1^4.jpg|200px]] || [[Bild:X^4-3x^2_-_2x_-_2.jpg|200px]] || [[Bild:X^5 + 3x^2.jpg|200px]]
|-


In der Graphik der Lösung der vorherigen Aufgabe kann man den Punkt B bewegen, indem man mit der Maus auf ihn zeigt und bei gedrückter linker Maustaste die Maus bewegt.
| <strong> x<sup>2</sup>-x </strong> ||  <strong> x<sup>3</sup> </strong> || <strong>  x<sup>4</sup> </strong> || <strong> x<sup>4</sup>-3x<sup>2</sup>-2x-2 </strong> || <strong> x<sup>5</sup>+3x<sup>2</sup> </strong>
|}


<br>  
</div>
{{Kasten_blau|
Eine Sekante schneidet den Graphen in zwei Punkten. Wenn nun der Punkt B immer weiter dem Punkt A angenähert wird und bei diesem Prozess letztendlich der Punkt B mit dem Punkt A zusammenfällt, so berührt die Gerade den Graphen nur noch in einem Punkt, dem sogenannten Berührpunkt. Diese Gerade nennt man nun nicht mehr Sekante (da es keine zwei Schnittpunkte mehr gibt), sondern '''Tangente an den Graphen der Funktion k im Punkt A'''. Die Steigung der Tangenten gibt die Steigung des Graphen der Funktion im Berührpunkt an.
}}


{{Aufgaben-M|2|
<div class="lueckentext-quiz">
Vollziehen Sie den beschrieben Übergang von der Sekante zur Tangente im obigen Applet nach.
}}


==== Verallgemeinerung ====
{|
|-
|| [[Bild:X^6_+_x^2.jpg|200px]] || [[Bild:-x^3.jpg|200px]] || [[Bild:-x^4_+_3x^2.jpg|200px]] || [[Bild:-x^4.jpg|200px]]
|-
| <strong> x<sup>6</sup>+x<sup>2</sup> </strong> || <strong>  -x<sup>3</sup> </strong>  || <strong> -x<sup>4</sup>+3x<sup>2</sup> </strong> || <strong>  -x<sup>4</sup> </strong>
|}


Die Überlegungen, die wir für die Kraterfunktion angestellt haben, kann man auch für andere Funktionen durchführen.
</div>
<br><br>


{{Aufgaben-M|3|
<br>
Auf dem Arbeitsblatt, das am Pult liegt, ist der Graph der Funktion f mit <math> f(x)=x^2</math> gezeichnet.
<br>
* Zeichnen Sie die Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.
* Zeichnen Sie ebenso die Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und C(1,5<nowiki>|</nowiki>f(1,5)) und bestimmen Sie aus der Zeichnung ihre Steigung.
* Zeichnen Sie (näherungsweise) die Tangente an den Graphen im Punkt A(1<nowiki>|</nowiki>1) ein und bestimmen Sie ihre Steigung aus der Zeichnung.
}}


:{{Lösung versteckt|1=
Im Folgenden sollst du die gerade geordneten Funktionen noch einmal genauer untersuchen hinsichtlich möglicher Symmetrien sowie ihrem Verhalten für sehr große und sehr kleine x (Verhalten im Unendlichen):
* Die Steigung ist (ungefähr) 3.
<br>
* Die Steigung ist (ungefähr) 2,5.
<br>
* Die Steigung ist (ungefähr) 2.
}}




<br><br>
=== Symmetrie ===


{{Aufgaben-M|4|  
{{Aufgaben|1=5|2=Bei welcher der Funktionen kannst du eine Symmetrie erkennen (Punktsymmetrie zum Ursprung oder Achsensymmetrie zur y-Achse)? Gruppiere die Funktionen bzw. die Funktionsgleichungen entsprechend in drei Gruppen (Punktsymmetrie, Achsensymmetrie, keine Symmetrie). Formuliere einen Merksatz, woran man eine mögliche Symmetrie an der Funktionsgleichung erkennen kann.}}
Wir betrachten weiterhin die Funktion f mit <math>f(x)=x^2</math>.
* Bestimmen Sie  rechnerisch für die Werte <math>x_0=1</math> und <math>x_1=1</math> mit Hilfe der obigen Formel die Steigung der Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.
* Näheren Sie nun die Steigung der Tangenten im Punkt A(1<nowiki>|</nowiki>1) an den Graphen besser an, indem Sie für x<sub>1</sub> einen Wert wählen, der näher an x<sub>0</sub> liegt. Vergleichen Sie mit Ihrem Ergebnis aus der vorherigen Aufgabe.
* Überlegen Sie, wie man einen möglichst genauen Wert für die Steigung der Tangenten erhalten kann.
}}


:{{Lösung versteckt|1=
{{versteckt|Untersuche speziell die Exponenten. Was fällt dir bei punktsymmetrischen Funktionen an den Exponenten auf, was bei achsensymmetrischen?}}  
* Die Steigung ist <math>m=\frac{4-1}{2-1}=3</math>.
* Wählt man <math> x_1=1,5</math>, so ergibt sich <math>m=2,5</math>.
* Wenn man x<sub>1</sub> sehr dicht an 1 wählt, ist die Näherung recht genau.
{{Kasten_blau|
Die Idee bei der Annäherung der Tangente durch Sekanten ist es, den Wert x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern. Dann ergibt die Steigung der Sekanten eine immer bessere Näherung für die Tangentensteigung.
}}


}}
{{Lösung versteckt|
{{Merke|Der Graph einer ganzrationalen Funktion f verläuft genau dann
* achsensymmetrisch zur y-Achse, wenn f(x) nur Potenzen mit geraden Exponenten enthält.
* punktsymmetrisch zum Ursprung, wenn f(x) nur Potenzen mit ungeraden Exponenten enthält.}}
}}
<br>


<br><br>


=== Verhalten im Unendlichen / Verlauf des Graphen ===


{{Aufgaben|1=6|2=Wie verhalten sich die verschiedenen Graphen <br>
::* für sehr große x-Werte?
::* für sehr kleine x-Werte? <br>
Gruppiere die Funktionen begründet entsprechend ihres Verhaltens und formuliere in deinem Lerntagebuch einen Merksatz, woran man das Verhalten der Funktion für sehr große bzw. sehr kleine x-Werte ablesen kann.}}


Anstatt x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern, kann man auch die Differenz <math>h=\Delta x=x_1-x_0</math> klein werden lassen. Es ist dann <math> x_1=x_0+h</math>.
{{versteckt|Betrachte die einzelnen Summanden. Wenn du sehr große bzw. sehr kleine x-Werte einsetzt, welcher Summand bestimmt dann das Ergebnis hauptsächlich?}}


{{Aufgaben-M|5|
{{Lösung versteckt|
* Überlegen Sie, wo in der folgenden Zeichnung die Größen h, <math>x_0+h</math>, <math>f(x_0+h)</math>,  
{{Merke|1=Das Verhalten einer ganzrationalen Funktion f für sehr große x wird von dem Summanden mit der höchsten Potenz von x, d. h. dem Summanden mit dem höchsten Exponenten, bestimmt. Der Graph zur Funktion verhält sich also wie der Graph zur Funktion y = <math>a_nx^n</math>, wobei n der Grad von f ist.}}
<math>f(x_0+h)-f(x_0)</math> zu finden sind.
}}  
* Geben Sie eine Formel für die Sekantensteigung für eine Funktion f an, wenn die Sekante durch die Punkte A(x<sub>0</sub><nowiki>|</nowiki> f(x<sub>0</sub>)) und A(x<sub>0</sub>+h<nowiki>|</nowiki> f(x<sub>0</sub>)+h) gehen soll.
* Welches rechnerische Problem ergibt sich, wenn man in dieser Formel einfach h<nowiki>=</nowiki> 0 setzen würde.
}}


<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAK60XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACutFxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bRhL+nP6KAVEc4oslcfkmKSelkB1bDeA0Bew7FFfnCopcSRtTJEtStpw2//1md0mKEvUuK1EM2F6SO7uz8zwzsy+kWz9NRh7c0yhmgd9WSFVVgPpO4DJ/0FbGSb/SUH5680NrQIMB7UU29INoZCdtxeCSzG0rtmU0dcPsV+qO26wYjuVWmnWnXnGJRjS1bzcNS1cAJjF77Qe/2CMah7ZDr50hHdlXgWMnQvEwScLXtdrDw0M1U1UNokFtMOhVJ7GrAA7Tj9tKevEau5tp9KALcU1VSe2391ey+wrz48T2HaoAN2HM3vzwovXAfDd4gAfmJkM0WGugHUPKBkM0qlm3FKhxqRARCamTsHsaY9vCrTA6GYWKELN9Xv9CXoGX26OAy+6ZS6O2olY13dDrpgJBxKifpBIk1VTL+mjdM/ogO+NXQo+hQBIEXs/m/cDff4Omaiqc8oLIQsPCsmSVKp+puiw0WRiyMKWMIZsbUtSQMoaUMZCoexaznkfbSt/2YgSO+f0IScvv4+TRo2I86YOpzeQUbYrZZxTWVURVIo3PVfWU/1r4a/CK2qyRpKA1icZbKs1UEs3SNtep7WWpvtJOzVxip7VCqTR8I0PNgk5UJX7Eb0mjvsrMeY3yfj+FlvFVTGzVslhppeEB8ZDLpu6T0FHMA0Zvgtnkfk/AxOCw6ujmJpAmFnUNMByAmGCYeEsaYPGyDnodKwzQoQFcjuggosNs4B+jLjqzwMTO+NM6BiUQVGSAqQMRQWUAhhKIwMQg1XSUME0wsRFXTzTehW6BYeGd3gADx8hjsk5QUMeGeI/qNdAJ6LwxqYNmgcX7IwaPdavBh45damCpYBHeIYY1hrQMZ5RvgM6tybIZ88NxMgORM3KzyyQIcy5QGhPSNNnJBDWTC1+0PLtHPZwfrjmTAPe2xyNCKOoHfgJ5QMpng8gOh8yJr2mSYKsYPtn39pWd0MklSseZbiHrBH78axQk54E3HvkxgBN4aj7mwCOFay0fNd7ohQqjWGEWKqzCdX2h3gBrYBxT1B9EcSZuu+47LjFNDYjkB997PIuofRcGbNaMVk1MNS06djzmMtv/Dzor18JxgenMw/NVNvPUm81sJEHkXj/G6MIw+S+NAgwqvWppDdNSdbNJNIPwPPKYVjUaVVUzG6pRN5uGyaev2LF58JFqs24Sq2k0TZwlGg3SwEZZnVVVLdMysaVJDN0wUqbofc6RPaG5+YOIh3ZqOr95F58F3vSRAODcDpNxJFYNmB0jblXHH3hUOInItzglO3e9YHItvUOXfd08hninygH0BgJ4wOSAQ0OBtOzJUsjwkeVSqpBRhYSauRtz83rS1ISEKHuyFFLov3JoqaUkM5OomRoWi5SmKjOBI5yfz+9jnyVX2U3CnLvUUiLlfxmPejR3odkuyRN12arNuVjrjkY+9VKPRibHwTiWAVpwdpc6bIS3siIFxOZk/RsHIJ+6dBDRbNyeWI9JuEStWvTV0mPR1WUUjN759zfoCXMDaNWyUbZiJ2Ihdzjo4SxwR6c+5bLYxknELbbjIYimO3yyQHgSDg0G5zgZBpFYcWFOwZJH3iSMaMyXtBJcwG5wXTvhie7l5ATaoFXVi4oB/4TJ/15qJ6J76tERLs8gER7ZH/tCUU5PXyz4OA8Q9D5hOpyjrwAw1i/xULC9cGjzNWGKlWc/0mgGPdHd+8CdxxQpE4ZjZgilS4SUSmdK0hiCELsTIVgYzNTTE8zCd7jWjEU45o34xc/MdamYgaVbSSgE5qOR7bvgixn8Vx7pynRGsVWOi7R5nGRPOrKTtGkJWZEuctg6a2Cdhk8RVaLJ7CDKNDscEluyGFsRADFMxEKQb4geUbTBLz7LvZTcS3CDedabmSrl07ng2Rf6s22gP3se0Bs59Lp2EOivMILmkO+gySSFe4YAezUBPBhzfO3dMopJZiZGfrsr/FMQK8TI/FfCiShqEtkdswguJ/70ZZNYTmNsFHrMYclqtK+9IJyH2y7hPFqNsz8e0Yg5OZQj0SGaPs4AqBJDdjqDf7YlWRkApi4I4MDPJXWyEv4P/X5ME+GyuoC6omkL2SmtUfbP3B8inCUHgW97C7z5THrzpIMLlBLSvS08ulf26FlEDztJFt059ebMl7+JK68EvbMKdGcL0J2jBV3/FqC/8xNcJCMMc3g7q/Ce/KFuM3Ny8V3mTn48MpBFTxb7oz5deVTUg0x/ywDtrQaUbAcoWefFB0NUX76g2AtR7BL3xHxtI56hz7wa7p8vHhfC7W6RL9xjyRc5yiRDuXFkOfpsFeZ0C8zp0WIu1sxHkqLpKrgvtsknF98smyxF/ECbk2VYShAFnm4Jy8ttsLw8PiwPtMdeM9OVcexug2P3eHA0Dn1a8ZalL14XzmHd8ra5x+XdzhpA57d102Zz2zsyXXlukk7XbJ6WWNNdegggh9VdcxqzxJruWckaYy9j5k9D+emul9iP6YnoVK14/bN6jGnLrzLAyewAkeVNBzh5an9YMELW79OI+p+p/+c4SPiL/XS4EiKoQWbEBoNe0NnSA4sncOhrOhjR0nHi2bLoHKz24zjtLbNmsNe5Vnqsstex4jTT5cda2Uq+YlqH25UK1Dx+VplPJegy5Tcwd5SG/MXXB/8msv2Yf1MjZQpvdraiLk1F6a5rhrzhduQNj4m8xjx5dW1T8rTviL3sKOgPtcQe2449dtTsmRufwn2H7JXT5qftuPu0G3fZi/KUPKJqT7rSzt8GVEjjGSbOS0lep0Te3Xbk3R0jebr6zEPvYtkK3NuOPe8Y2TMKoadtHHvfE318wlu6bvG3o9D/hhRq67Pn88ucaexdlogLtyMuPKYly/xu4XumbcmpxcqgS7fa5293OrnAZgffd9/QSYJ65Fb7H3y3/K/bt3yjjfwBmgQVNBDacHsKshZewcsr+4b+9ns+yo8n+FDWyr+L9ugJKlLmtO50gDeXYvb5XoPFwpJZD0i/uo2Rkf70C1XxkaWqZL6XdoAARIn4lEgC+J654mTvdwTtlMP3saB++r1CxUzfGmjNnXxuaa5IKblYcyC9xN8uLg9+EMWJRzUL3O0Rnaz/EiE7gQov1ZOVXndxuZvXXaw9fj98gjyc212cwuXHzVggMyS8LZ+YvYYf4bYf2c5fGUNfsqvJl7askYSlfH35C294uvgCP7bnaVtwJLcbgWtfbB/21d8G3KX/l7GWOp4JzKpupKkAw6fw4mA9gfz8tsDg8Pa0fXuaMoBxsyp4Ot3dsO/s+M7lKRf2hwuezil0NwwefrhfwF74/6thFgiwBv7u2W7wdxd8Yfp8clf3FM5K8G/2QtGT82FYmg/PV8+Dsy8Uz3dbOR/ik5lKvuOpN7V801M8at/9w5nMWXeD+m4Z1GuWuLNQL1j6fZ3PvZYjXU/RFV83ak8GdAnmWvHfLvh99v+5b/4PUEsHCP7QjyIQCgAAPDwAAFBLAQIUABQACAgIAK60XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgArrRcQ/7QjyIQCgAAPDwAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACoCgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<br><br>


:{{Lösung versteckt|1=
{{Aufgaben|1=7|2=Betrachte die folgenden Graphen:<br>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAIu0XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACLtFxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bRhL+nP6KAVEc4oslcfkmKSelkB1bDeA0Bew7FFfnCopcSRtTJEtStpw2//1md0mKEvUuK1YC2F6SO7uz8zwzsy+kWz9NRh7c0yhmgd9WSFVVgPpO4DJ/0FbGSb/SUH5680NrQIMB7UU29INoZCdtxeCSzG0rtmU0dcPsV+qO26wYjuVWmnWnXnGJRjS1bzcNS1cAJjF77Qe/2CMah7ZDr50hHdlXgWMnQvEwScLXtdrDw0M1U1UNokFtMOhVJ7GrAA7Tj9tKevEau5tp9KALcU1VSe2391ey+wrz48T2HaoAN2HM3vzwovXAfDd4gAfmJkM0WGugHUPKBkM0qlm3FKhxqRARCamTsHsaY9vCrTA6GYWKELN9Xv9CXoGX26OAy+6ZS6O2olY13dDrpgJBxKifpBIk1VTL+mjdM/ogO+NXQo+hQBIEXs/m/cDff4Omaiqc8oLIQsPCsmSVKp+puiw0WRiyMKWMIZsbUtSQMoaUMZCoexaznkfbSt/2YgSO+f0IScvv4+TRo2I86YOpzeQUbYrZZxTWVURVIo3PVfWU/1r4a/CK2qyRpKA1icZbKs1UEs3SNtep7WWpvtJOzVxip7VCqTR8I0PNgk5UJX7Eb0mjvsrMeY3yfj+FlvFVTGzVslhppeEB8ZDLpu6T0FHMA0Zvgtnkfk/AxOCw6ujmJpAmFnUNMByAmGCYeEsaYPGyDnodKwzQoQFcjuggosNs4B+jLjqzwMTO+NM6BiUQVGSAqQMRQWUAhhKIwMQg1XSUME0wsRFXTzTehW6BYeGd3gADx8hjsk5QUMeGeI/qNdAJ6LwxqYNmgcX7IwaPdavBh45damCpYBHeIYY1hrQMZ5RvgM6tybIZ88NxMgORM3KzyyQIcy5QGhPSNNnJBDWTC1+0PLtHPZwfrjmTAPe2xyNCKOoHfgJ5QMpng8gOh8yJr2mSYKsYPtn39pWd0MklSseZbiHrBH78axQk54E3HvkxgBN4aj7mwCOFay0fNd7ohQqjWGEWKqzCdX2h3gBrYBxT1B9EcSZuu+47LjFNDYjkB997PIuofRcGbNaMVk1MNS06djzmMtv/Dzor18JxgenMw/NVNvPUm81sJEHkXj/G6MIw+S+NAgwqvWppDdNSdbNJNIPwPPKYVjUaVVUzG6pRN5uGyaev2LF58JFqs24Sq2k0TZwlGg3SwEZZnVVVLdMysaVJDN0wUqbofc6RPaG5+YOIh3ZqOr95F58F3vSRAODcDpNxJFYNmB0jblXHH3hUOInItzglO3e9YHItvUOXfd08hninygH0BgJ4wOSAQ0OBtOzJUsjwkeVSqpBRhYSauRtz83rS1ISEKHuyFFLov3JoqaUkM5OomRoWi5SmKjOBI5yfz+9jnyVX2U3CnLvUUiLlfxmPejR3odkuyRN12arNuVjrjkY+9VKPRibHwTiWAVpwdpc6bIS3siIFxOZk/RsHIJ+6dBDRbNyeWI9JuEStWvTV0mPR1WUUjN759zfoCXMDaNWyUbZiJ2Ihdzjo4SxwR6c+5bLYxknELbbjIYimO3yyQHgSDg0G5zgZBpFYcWFOwZJH3iSMaMyXtBJcwG5wXTvhie7l5ATaoFXVi4oB/4TJ/15qJ6J76tERLs8gER7ZH/tCUU5PXyz4OA8Q9D5hOpyjrwAw1i/xULC9cGjzNWGKlWc/0mgGPdHd+8CdxxQpE4ZjZgilS4SUSmdK0hiCELsTIVgYzNTTE8zCd7jWjEU45o34xc/MdamYgaVbSSgE5qOR7bvgixn8Vx7pynRGsVWOi7R5nGRPOrKTtGkJWZEuctg6a2Cdhk8RVaLJ7CDKNDscEluyGFsRADFMxEKQb4geUbTBLz7LvZTcS3CDedabmSrl07ng2Rf6s22gP/s+oDdy6HXtINBfYQTNId9Bk0kK9wwB9moCeDDm+Nq7ZRSTzEyM/HZX+KcgVoiR+a+EE1HUJLI7ZhFcTvzpyyaxnMbYKPSYw5LVaF97QTgPt13CebQaZ388ohFzcihHokM0fZwBUCWG7HQG/2xLsjIATF0QwIGfS+pkJfwf+v2YJsJldQF1RdMWslNao+yfuT9EOEsOAt/2FnjzmfTmSQcXKCWke1t4dK/s0bOIHnaSLLpz6s2ZLz+LK68EvbMKdGcL0J2jBV1/DtDf+QkukhGGObydVXhP/lC3mTm5+C5zJz8eGciiJ4v9UZ+uPCrqQaa/ZYD2VgNKtgOUPBeg+vL1xF6AYpe4JeZLG/EMXebVcP908bgQbXeLdOEeS7rIUSYZyo0jS9FnqzCnW2BOjxZzsWQ+kgxNV8F9sU06uViH99dLzwfemyzDUoIo8HRLWF5ug+Xl8WF5oC32momujGN3Gxy7x4OjcejDircsfe+6cA7rlnfNPS7vdtYAOr+rmzab292R6cJzk3S6Zu+0xJru0jMAOazumsOYJdZ0z0rWGHsZM38Yyg93vcR+TA9Ep2rF25/VY0xbfpUBTmYHiCxvOsDJU/vDghGyfp9G1P9M/T/HQcLf66fDlRBBDTIjNhj0gs6Wnlc8gUNf08GIlk4Tz5ZF52C1H8dpb5k1g72OtdJTlb1OFaeZLj/VylbyFdM63KZUoObxo8p8KkGXKb+AuaM05O+9Pvg3ke3H/JMaKVN4sbMVdWkqSjddM+QNtyNveEzkNebJq2ubkqd9Q+xlJ0F/qCX22HbssaNmz9z4EO4bZK+cNj9tx92n3bjL3pOn5BFVe9KVdv4yoEIa32HivJTkdUrk3W1H3t0xkqer33noXSxbgXvbsecdI3tGIfS0jWPvW6KPT3hL1y3+dhT6z0ihtj57fn+ZM429yxJx4XbEhce0ZJnfLXzLtC05tVgZdOlW+/ztTicX2Ozg++4bOklQj9xq/4Pvlv91+5ZvtJE/QJOgggZCG25PQdbCK3h5Zd/Q337PR/nxBB/KWvl30R49QUXKnNadDvDmUsw+n2uwWFgy6wHpR7cxMtKffqAqvrFUlcz30g4QgCgRXxJJAN8zV5zs/Y6gnXL4PhbUTz9XqJjpWwOtuZPPLc0VKSUXaw6kl/jbxeXBD6I48ahmgbs9opP1XyJkJ1DhpXqy0usuLnfzuou1x++HT5CHc7uLU7j8uBkLZIaEt+UTs9fwI9z2I9v5K2PoS3Y1+dKWNZKwlK8vf+ENTxdf4Mf2PG0LjuR2I3DBe+2v+epvA+7Sf8tYSx3PBGZVN9JUgOFTeHGwnkB+fltgcHh72r49TRnAuFkVPJ3ubth3Frxz2eCjgqdc1x8udjqn0N0wdvjZfgF64f6vhlkcwBr0u2e7od9d933pt5y5uqdwVkJ/s9eJnpwNw9JseL56Fpx9nXh+NN/LVPLtTr2p5Tue4jn77l/NZK66G9J3y5Bes76dRXrBuu+5ka6n6IovG7UnA7oEc634Lxf8Pvvf3Df/B1BLBwhuulJfCwoAADg8AABQSwECFAAUAAgICACLtFxDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAIu0XENuulJfCwoAADg8AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAowoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<br ><br>


{{untersuchen|}} Vollziehen sie im Applet den Übergang von der Sekante zur Tangente nach. Wie ändert sich dabei h?
# <math>f(x) = x^3</math>
# <math>f(x) = 3x^3</math>
# <math>f(x) = 3x^3 + 2x^2</math>
# <math>f(x) = 3x^3 + 2x^2 +5x</math>
# <math>f(x) = 3x^3 + 2x^2 + 5x - 2</math>


<gallery perrow="5">


* Sekantensteigung <math>m=\frac{f(x_0+h)-f(x_0)}{h}</math>
Datei:X^3.jpg
* Man würde durch 0 dividieren, was ja nicht erlaubt ist. Daher können wir zur Bestimmung der Tangensteigung nicht einfach h gleich 0 setzen, sondern können nur einen Grenzwert betrachten, indem wir h immer kleiner werden lassen und so der 0 annähern.
Datei:3x^3.jpg
}}
Datei:3x^3+2x^2.jpg
Datei:3x^3+2x^2+5x.jpg
Datei:3x^3+2x^2+5x-2.jpg


<br><br>
</gallery>
-------
# <math>f(x) = x^4</math>
# <math>f(x) = 2x^4</math>
# <math>f(x) = 2x^4 - 2x^3</math>
# <math>f(x) = 2x^4 - 2x^3 + 2x^2</math>
# <math>f(x) = 2x^4 - 2x^3 + 2x^2 + 3x</math>
# <math>f(x) = 2x^4 - 2x^3 + 2x^2 + 3x -3</math>


{{Aufgaben-M|6|
<gallery perrow="5">
Gegeben ist wieder die Funktion f mit <math> f(x)=x^2</math>.


Berechnen Sie für <math>h = 0,1</math> (<math>h= 0,01</math> und <math>h = 0,001</math>) die Steigung der Sekanten für <math>x_0= 1</math> und <math>x_1= 1+h </math>. (Verwenden Sie die Tabellenfunktion Ihres Taschenrechners; Schreiben Sie dazu <math>h=0,1^n}</math> mit n gleich 0, 1, 2, 3,...)
Datei:X^4.jpg
Datei:2x^4-2x^3.jpg
Datei:2x^4-2x^3+2x^2.jpg
Datei:2x^4-2x^3+2x^2+3x.jpg
Datei:2x^4-2x^3+2x^2+3x-3.jpg


''Wer das Thema Folgen hatte, kann hier in seiner Variante des Lernpfads ändern.''
</gallery>


Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1<nowiki>|</nowiki>1). Vergleichen Sie mit den Ergebnissen der vorherigen Aufgaben.
Beschreibe jeweils den Verlauf der 5 bzw. 6 Graphen. Wie beeinflussen die weiteren Summanden den Verlauf des Graphen zu <math>x^3 / 3x^3</math> bzw. <math>x^4 / 2x^4</math>, d. h. ändert sich das Gesamtbild?}}<br>
{{Lösung versteckt|
{{Merke| 1=Der Graph zur Funktion verhält sich so wie der Graph zur Funktion y = <math>a_nx^n</math>, wobei n der Grad von f ist. Alle weiteren Summanden beeinflussen den Verlauf nur geringfügig.}}
}}
}}
<br>
Mithilfe der folgenden Übung kannst du [http://www.brinkmann-du.de/mathe/rbtest/1mct_n/mct_n_002.htm Verlauf und Symmetrie von ganzrationalen Funktionen untersuchen] und so überprüfen, ob du alles verstanden hast. Fasse anschließend deine Erkenntnisse in der {{pdf|Übersicht_über_die_Eigenschaften_von_ganzrationalen_Funktionen.pdf|Tabelle}} zusammen.
<br>
<br>


:{{Lösung versteckt|1=
== '''Transformationen''' ==
Die Sekantensteigung ist <math>m=\frac{(1+h)^2-1^2}{h}=\frac{(1+0,1^n)^2-1}{0,1^n}</math>.
Dies muss für verschiedene n ausgerechnet werden. (Bei der Tabellenfunktion des Taschenrechners muss statt n als Variable x gewählt werden.)


}}
Die ganzrationalen Funktionen, die du in diesem Lernpfad kennen gelernt hast, weisen bestimmte Transformationen auf, d. h. die Funktionsgleichung gibt an, inwiefern der Graph gestreckt oder gestaucht, in Richtung der x- oder y-Achse verschoben oder an einer der beiden Achsen gespiegelt ist.
<br>


Mit zwei Arten von ganzrationalen Funktionen hast du dich in den vergangenen Wochen im Unterricht bereits näher beschäftigt, und zwar mit den linearen und den quadratischen Funktionen. Dabei handelt es sich um nichts anderes als um ganzrationale Funktionen ersten und zweiten Grades. Eine lineare Funktion wird entsprechend der Definition als Polynom folgendermaßen geschrieben: <math>f(x) = a_1x + a_0</math> - der zugehörige Graph heißt - wie du weißt - Gerade. Die dementsprechende Schreibweise der quadratischen Funktionen sieht folgendermaßen aus: <math>g(x) = a_2x^2 + a_1x + a_0</math> (Normalform) - der zugehörige Graph heißt Parabel.
<br>
<br>


{{Aufgaben|1=8|2=Skizziere und beschreibe das Aussehen von
::* Geraden und
::* Parabeln
in deinem Lerntagebuch. Erläutere jeweils den Einfluss der Koeffizienten auf die Graphen, sofern dieser eindeutig zu erkennen ist.}}
<br>


:{| class="wikitable"
Im Folgenden sollst du dich genauer mit Verschiebungen, Streckungen / Stauchungen und Spiegelungen von ganzrationalen Funktionen (speziell dritten und vierten Grades) beschäftigen. Los geht es aber mit den einfachsten ganzrationalen Funktionen - den Geraden. Mit verschiedenen Aspekten im Zusammenhang mit linearen Funktionen hast du dich im Unterricht zwar schon beschäftigt, aber noch nicht mit Transformationen von Geraden im Koordinatensystem. Das sollst du nun nachholen:
!'''n''' !! '''h'''  !!'''x<sub>1</sub>''' !!'''Sekantensteigung m'''
<br>
|-
| 0 || 1|| 2 || 3
|-
| 1 || 0,1 || 1,1 || 2,1
|-
| 2 || 0,01 || 1,01 || 2,01
|-
| 3 || 0,001 || 1,001 || 2,001
|-
| 4 || 0,0001 || 1,0001 || 2,0001
|-
| 5 || 0,00001 || 1,00001 || 2,00001
|}


{{Aufgaben|1=9|2=Gegeben ist eine lineare Funktion mit <math>f(x) = \frac{1}{2}x + \frac{1}{2}</math>. Das folgende Bild zeigt dir verschiedene Transformationen dieser Gerade. Bestimme jeweils eine Funktionsgleichung der neuen Gerade und erläutere kurz in deinem Lerntagebuch, durch welche Veränderung in der Funktionsgleichung du die neue Gleichung entwickeln kannst.
<br>
[[Bild:Transformationen lineare Funktion.jpg|500px]]
<br>
<br>
Stelle anschließend allgemein zusammen, durch welche Veränderung in der Funktionsgleichung f(x) = a<sub>1</sub>x + a<sub>0</sub> du die jeweilige Transformation, d. h.
::* eine Streckung in Richtung der y-Achse um den Faktor a,
::* eine Spiegelung des Funktionsgraphen an der x-Achse,
::* eine Verschiebung in Richtung der y-Achse um e
::* eine Verschiebung in Richtung der x-Achse um d
darstellen kannst. Du kannst deine Vermutungen mit verschiedenen Beispielen in [http://www.geogebra.org GeoGebra] überprüfen.
Kannst du in einer Gleichung zusammenfassen: Streckung in Richtung der y-Achse um a, Verschiebung in Richtung der y-Achse um e, Verschiebung in Richtung der x-Achse um d? Formuliere einen Satz, der Auskunft darüber gibt, wie du eine lineare Funktion an der x-Achse spiegeln kannst.}}


{{Aufgaben-M|7|
{{Lösung versteckt| 1=f(x) = a(a<sub>1</sub>x - d) + (a<sub>0</sub> + e). Eine Spiegelung an der x-Achse kann erreicht werden durch die Multiplikation der gesamten Funktion mit (-1).}}
* ''das gleiche mit einer anderen Funktion''
<br>
* ''irgendwas zur zeitlichen und inhaltlichen Differenzierung''
}}


== Differenzenquotient ==
Eine Transformationsart, die bislang noch nicht betrachtet wurde, ist die '''Streckung / Stauchung in Richtung der x-Achse'''. 
{{Aufgaben|1=10|2=Eine Streckung bzw. Stauchung in Richtung der x-Achse kann erreicht werden durch Bilden von f(cx) mit einem gegebenen Wert für c, d. h. überall dort, wo in der Funktionsgleichung ein x steht, wird bx eingesetzt und aufgelöst. Untersuche, für welche Werte von c sich die drei Möglichkeiten ergeben: Streckung, Stauchung, keine Veränderung. Nimm die Funktion f(x) und experimentiere mit [http://www.geogebra.org GeoGebra]. Beschreibe deine Versuche und Ergebnisse kurz in deinem Lerntagebuch.}}


{{Aufgaben-M|1|
{{Lösung versteckt|1=Folgende Fälle lassen sich unterscheiden:
Erläutern Sie die Vorgehensweise im Abschnitt "Von der mittleren zur momentanen Änderungsrate" und im Abschnitt "Von der Sekanten- zur Tangentensteigung". Vergleichen Sie dabei die Vorgehensweisen und arbeiten Sie Gemeinsamkeiten heraus.
::* -1 < c < 1: Streckung in Richtung der x-Achse; dazu kommt für negative Werte die Spiegelung an der y-Achse <br>
}}
::* c = 1: keine Veränderung, im negativen Fall nur Spiegelung an der y-Achse
::* c < -1 bzw. c > 1: Stauchung in Richtung der x-Achse; dazu kommt für negative Fälle die Spiegelung an der y-Achse}}
Automatisch hast du jetzt also auch schon die '''Spiegelung an der y-Achse''' als weitere Transformationsart mit bearbeitet.
<br>
<br>


Plenumsphase?
{{Aufgaben|1=11|2=Untersuche den Graphen zu <math>f(x) = \frac{1}{2}x + \frac{1}{2}</math>. Bilde g(x) = f(cx) mit c = 4 und zeichne beide Geraden in dein Lerntagebuch. Untersuche, ob du einen anderen Weg findest, um mithilfe von bereits bekannten Transformationen ausgehend von f(x) zu g(x) zu gelangen. Erläutere in deinen Lerntagebuch. Wenn du möchtest, kannst du zur zeichnerischen Überprüfung [http://www.geogebra.org GeoGebra] nutzen.
Möglicher Inhalt:
<br>
Verbindung zwischen durchschnittlicher Änderungsrate, Sekantenssteigung und Differenzenquotient (allgemeine Beschreibung für die beiden Konzepte) herstellen.
Formuliere abschließend: Ist es notwendig, im Zusammenhang mit linearen Funktionen die Streckung in Richtung der x-Achse gesondert zu betrachten?}}
{{Lösung versteckt|Es ist möglich, zu g(x) zu gelangen, indem man f(x) mit dem Faktor 4 in Richtung der y-Achse streckt und um <math>+\frac{1}{2}</math> auf der y-Achse verschiebt. Demzufolge ist es bei linearen Funktionen nicht notwendig, die Streckung / Stauchung in Richtung der x-Achse gesondert zu betrachten. Um eine Spiegelung an der y-Achse hervorzurufen, gibt es allerdings keine andere Möglichkeit.}}
<br>


== Differentialquotient ==
{{Aufgaben|1=12|2=Mit den quadratischen Funktionen und möglichen Transformationen haben wir uns im Unterricht bereits ausführlich beschäftigt, allerdings haben wir dabei hauptsächlich die Scheitelpunktform betrachtet. Nun sollst du dich mit der Normalform auseinandersetzen und überprüfen, inwiefern du an dieser Schreibweise der Funktionsgleichung Transformationen ablesen kannst.<br>
Zuvor erstmal eine kurze Wiederholung: Wie hängen Scheitelpunktform und Normalform einer quadratischen Funktion zusammen? Wähle eine Beispielfunktion in Scheitelpunktform. Gib anschließend die zugehörige Normalform an. Wie gehst du vor, um die Normalform zu erhalten? Überprüfe dein Ergebnis, indem du beide Funktionen zeichnest - hast du richtig gerechnet? [http://www.geogebra.org GeoGebra].<br>
Überführe die Normalform anschließend rechnerisch zurück in die Scheitelpunktform.            .....        Na, geschafft? Falls nicht, kleiner Tipp: Quadratische Ergänzung!!!.
<br>
<br>
<br>
Du siehst also, Scheitelpunktform und Normalform sind nur zwei verschiedene Darstellungsformen für ein und dieselbe Funktionsgleichung. Beide Varianten können beliebig ineinander überführt werden.}}
<br>
<br>


{{Kastendesign1|
Die Überführung der Normalform in die Scheitelpunktform ist allerdings nur bei quadratischen Funktionen so einfach möglich. Ganzrationale Funktionen mit n > 2 werden im Regelfall in Polynomschreibweise angegeben und lassen sich nicht in eine Art "Scheitelpunktform" überführen, an der alle Transformationsarten ablesbar sind. <br>
BORDER = #97BF87|
Auch für die Funktionen mit n > 2 gibt es eine Art "Scheitelpunktform", also eine Funktionsgleichung, an der direkt die verschiedenen Transformationen abgelesen werden können. Aber diese Gleichung kann nicht wie bei den quadratischen Funktionen durch die quadratische Ergänzung aus der Polynomschreibweise hergeleitet werden - man kann lediglich diese "Scheitelpunktform" durch Ausmultiplizieren in die Polynomschreibweise überführen. Beide Schreibweisen werden im Rahmen der Unterrichtseinheit betrachtet - ihr sollt euch mit der etwas schwierigeren Polynomschreibweise auseinandersetzen, während die andere Darstellungsform von der Gruppe "Potenzfunktionen" bearbeitet wird.
BACKGROUND = #AADDAA|
<br>
BREITE =100%|
Du hast ja bereits herausgefunden, wie die verschiedenen Transformationen sich bei linearen Funktionen (also den einfachsten der ganzrationalen Funktionen) in die Funktionsgleichung einbauen lassen; im Folgenden sollst du versuchen, dein Wissen bezüglich der einzelnen Transformationsarten auf ganzrationale Funktionen zweiten, dritten und vierten Grades zu übertragen.
INHALT= Der Differentialquotient  f'(x<sub>0 </sub>) ist definiert als Grenzwert eines Differenzenquotienten
<br>
<br>


Differentialquotient  <math> f'(x_0) = \lim_{x_1\to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}</math>
Beginnen wir mit der '''Streckung bzw. Stauchung in Richtung der y-Achse''':
<br>


Der Differentialquotient  f'(x<sub>0</sub>) wird auch als ''Ableitung der Funktion f an der Stelle  x<sub>0</sub>'' bezeichnet.
{{Aufgaben|1=13|2=Du siehst auf dem folgenden Bild zwei Funktionsgraphen: f(x) ist die Ausgangsfunktion mit der angezeigten Funktionsgleichung - g(x) ist demgegenüber in Richtung der y-Achse gestreckt. Bestimme die Funktionsgleichung zu g(x). <br>  
|
[[Bild:Streckung in y-Richtung quadratisch.jpg|400px]]
BILD=Nuvola_Icon_Kate.png|
<br>
ÜBERSCHRIFT=Information|
* Bestimme zuerst den Faktor a, mit dem du f(x) strecken oder stauchen musst, um g(x) zu erhalten.
}}
* Durch welche mathematische Operation kannst du nun zur Funktionsgleichung von g(x) kommen?
* Welche Punkte des Graphen verändern sich durch eine Streckung in Richtung der y-Achse, welche nicht?
* Stauche f(x) um den Faktor a = <math>\frac {1}{2}</math>. Wie lautet die Funktionsgleichung zur neuen Funktion h(x)? Überprüfe mit dem GeoGebra-Link unten.
<br>
* Überprüfe mithilfe des Links, ob deine Erkenntnisse sich auch auf Funktionen dritten und vierten Grades übertragen lassen. Welche Fälle für a lassen sich unterscheiden? Wähle für jeden Fall zwei entsprechende Beispiele und überprüfe - notiere in deinem Lerntagebuch. Was ändert sich im Fall a < 0?
* Formuliere einen Merksatz, der erklärt, wie du eine beliebige ganzrationale Funktion mit einem Faktor strecken oder stauchen kannst (Wie muss der Faktor jeweils aussehen?). Welche Punkte des Graphen werden durch eine Streckung / Stauchung nicht verändert? <br>
Falls du nicht weiter weißt, nutze den versteckten Hinweis. Falls du zeichnerisch ausprobieren möchtest, kannst du das hier tun: [http://www.geogebra.org GeoGebra].}}


{{versteckt|1=Zur Bestimmung des Streckfaktors wähle dir einen Wert, also z. B. x = 1. Lies die zugehörigen Funktionswerte für beide Funktionen an den Graphen ab - in welcher Beziehung stehen die beiden Funktionswerte zueinander? Überprüfe mithilfe weiterer Werte und überlege dir, wie du diesen Streckfaktor mit der Funktionsgleichung von f in Verbindung setzen kannst.}}


Der Differentialquotient f'(x<sub>0 </sub>)
{{Lösung versteckt|
{{Merke|1=Eine Streckung bzw. Stauchung einer ganzrationalen Funktion wird erreicht durch die Multiplikation der '''gesamten''' Funktion mit dem Streckfaktor a. Für a lassen sich drei verschiedene Fälle unterscheiden: <br>
::* -1 < a < 1: Es handelt sich um eine Stauchung; im Falle eines negativen Streckfaktors kommt eine Spiegelung an der x-Achse hinzu.
::* a = 1: Die Funktionsgleichung ändert sich nicht, es handelt sich weder um eine Stauchung noch um eine Streckung.
::* a > 1 bzw. a < -1: Es handelt sich um eine Streckung. Für negatives a ist es zusätzlich eine Spiegelung an der x-Achse. <br>
Durch eine Streckung oder Stauchung ändern sich alle Werte der Funktion mit Ausnahme der Nullstellen - Nullstellen bleiben von Streckungen (bzw. Stauchungen) in Richtung der y-Achse grundsätzlich unberührt.}}
}}
<br>


* beschreibt die momentane Änderungsrate der Funktion f an der Stelle  x<sub>0 </sub> und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen  x<sub>0</sub> und  x<sub>1</sub> den Wert  x<sub>1</sub> immer mehr dem Wert  x<sub>0</sub> annnährt,
Mit Bearbeitung dieser Aufgabe hast du bereits implizit die '''Spiegelung an der x-Achse''' mit untersucht und damit bereits eine weitere Transformationsart "abgehakt".
* beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x<sub>0</sub>|f(x<sub>0</sub>)) und entsteht, wenn man in Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten  A(x<sub>0</sub>|f(x<sub>0</sub>)) und  B(x<sub>1</sub>|f(x<sub>1</sub>)) den Punkt  B(x<sub>1</sub>|f(x<sub>1</sub>)) immer mehr dem Punkt  A(x<sub>0</sub>|f(x<sub>0</sub>)) annähert.
<br>
<br>


<br><br>
Weiter geht es mit den '''Verschiebungen in Richtung der beiden Achsen''': <br>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIACq1XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAqtVxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb/W/bNhr+ufsrCGEYGlwckxT11dkdkjbJFUjXAckdhlt7gyzRthpZUiU5sbv1f7+XpGTLlr8Tp26vaEJJpEi+z/N+kWJav4wGIbrjaRbEUVsjJ1hDPPJiP4h6bW2Ydxu29svLH1o9Hvd4J3VRN04Hbt7WmGgZ+G3NNZmjM6PbsDzfaTDP9BuO5VkNn1BCcdd1mKlrCI2y4EUU/+oOeJa4Hr/2+nzgXsWem8uB+3mevGg27+/vT8qhTuK01+z1OiejzNcQTDPK2lpx8QK6m3npXpfNKcak+fvbK9V9I4iy3I08riEhwjB4+cOz1n0Q+fE9ug/8vA8CUxvk6POg1wehHMvUUFO0SgCRhHt5cMczeLdyK4XOB4kmm7mRqH+mrlA4kUdDfnAX+Dxta/iE6ky3DA3FacCjvGhBipGaZR+tu4Dfq87ElRyHaSiP47Djin7Q338jiilGx6IgqqBQmKaqwuoZ1lVBVcFUYag2TL3OVFOm2jDVhgFRd0EWdELe1rpumAFwQdRNgbTJfZaPQy7nUzyYykyOQaYs+AyNdQyoKqThOcbH4seEHyYqmrNCksqoeTrcctBySEJNuvmY9EGS6ivlpMYSOc0VgyrBNxLUqIwJQ8n/8qc2or5KzPkR1f3DBjTZk4jYapa20irMA2V90bZQn5wPMmEwuoMMR+g9QQYYh2mBmhuIOFBYFIE5IGIgZsAtsZEpSgvpFlQwpCMbiXZER9I6DBt+MUt2ZiIDOhNPLTBKRGAghgwdEWlUDIEpIWmYYKRUhxaGgQx4SQxPqOhCNxEz4U63EYM5Cpu0CDTU4UW4h+Ep0gnSxcvEQtREpuiPMGHrpi2mDl1SZGJkEtEhmDWYtDJnaG8jXUhTerMgSob5DETewC8v8ziZcAGtwSFNnZ1yUDO+8FkrdDs8hPhwLZhE6M4NhUXIgbpxlKOJQapnvdRN+oGXXfM8h7cy9NG9c6/cnI8uoHVWji3benGU/ZbG+as4HA6iDCEvDvFkznFIKtd0Mmu40SsVrFphVCrMyrW1cNwYatAw4zB+nGZlc9f334gWU9cASL6LwvFZyt3bJA5mxWg1Zahp8aEXBn7gRv8GZRWjCFzQNPIIf1VGHstxypnEqX89zkCF0eg/PI3BAMwTnWCHEZtgAyKJpaFxUaObJw62wJvbOsWWAzWZ5wrbow7UEFO3MKGWTU0Ghjku6qCXE4PqFB7rtmUa2FJD87sJRe6IT6TvpcKyC8nFzZvsLA6nj6T8r9wkH6YyaQDnmAqhTqNeyKWOSHcLEdm77cSja6UcuurrZpzAHVYT6PQk7gh8AzUgXvaKsqNK2UbMbNIKyzZYtsCltgX+pJ44VLaQZUeVshWor5paISkpxSS4HCbIpEfD2ozdSN0X4X0YBflVeZMH3m0hKVHtfx0OOnyiQbNdkkfqstWc07DWLU8jHhYKDUwO42Gm7LOi6z73ggHcqooCEFeQ9S+YgHrq817Ky3mHMh1TcMlaXFXV2mPZ1UUaD95EdzegCXMTaDXLWbYyLw0SoXCoA0Hglk91yg8yF2KIX31PWCCI7olYAfDkAhqwzWHej1OZcIFLgVIY3ihJeSYyWgUugm4grR0JP/d8dITaaPTf5/RI9spDPoCkDOVSEbvDSPY/YaUr0zwBP4o7H8EJzrFWwRXqlygmcsOk74pMsIAodMc8nQFNdvc29uehBKakvOAPEqUJCedKh/LCdFAC3UnLq0xmquA5+N5byDAzaYWTl8TFPwPf5zLuKm1SUEioBwM38lEk4/ZvwsC1aRxxscBFyTzMyyenqpPi1Rqy0ktMYDtdA+vUaqqoEqqcgiwLp7BPbMlibKXeZ2gkl0uYGAZhlBqQPjsWeLWxegwe26AGcQxq68TW0Ge1uFKLC4GF8IMzsVM9nTOnh7Jytg0rZ98HK1QsTcfFEvXRcb8Cy5qD/RTkJQXWM+i7q9EXRjoB193N0xhkJk6K212xnyLYoCeOY9oOs5iNmUVMm0lEMTy2GbMNy2KWY2BqFQA74p9BbJNYpk4Na1cnBEnIp0i9kqngFwySMPCCfDUp12GczLPi1ugYrKYjGg54GngTxAeyQ0BoWCpM3dybNdLKVc1KkzF0yZpgay5CkJWcvet2M54LiphyNQ1KF1Jay3MeHgbepRBpe3HkhgtM4EyZwOgUkpwa7p0tzKBTN4NZRPcbcSs2QAo3ggs3Qid9PZlar4T8dBXk3haQewcL+YL4+sQMvIlyyLkBkznwvVXgj/7E24Rd0XyXwCs2W3qq6Kji4RQsyWgaeC+xdBm6ndXoku3QJQeDbpmZ7AnOTdzFeCGm/hbuwj8Ud4FLNEnFXczl3YfksM9WMcC3YIAfLAPs6WPkMh/CV6F9vo0HOV8H99M5ELzXpc0yKBWGEk6/BuXFNlBeHB6UT7JYXxPo6qheboPq5eGgSp8S1ddB8Xl3YaS7rC/HO6K9f7oG3Pl14PS1ufXgguXwxj53zWJriWiXS3ca1Bwv1+z3LBHt8mxetAUbALuLNr8fK/aXw9wdF3uy00nI70+rZ1y8+RWmO5qdLqjDptMd7VVxFkw36HZ5yqPPPPo0jHNx6KCYu0IPNVEp0QYSLOhsw32RR7CDa94b8No+59kyC++tVv+s6K2UrfegPbdi9+ZB+51Vz7lky01F+oYB9boFDRwTO0zX97THJuEMxe7qJGaBZtW/It1ynoiPd++im9SNMnEsSLWpfJ3aitPCtRWruxlW+9ux2j8gVhfFwSqrEC+xSaEB1h1smOZmtNJviNdym+pPXOM12I7X4BviVdQz0yTModCOMGx8p7zWffDH7Vj9uBur5QGBglaC6WMuCpZ86Gio7THmYEJsi4lDFN+ZF75QrJ7WWL3djtXbQ2R10ebm/4exni9bN4Tb0RoeIq20dLr2ZrtPh0JcPXG/4aNcrCtkrv6TSLd/fv9aZOpo9P64/f4YkqMGBNL3x6iN4Jdqgf6Bnl+5N/z3PyYrkw9H8FDVqt+LEv0cBtPmRt5tX/Ex6Q0yKcssasXBwgwWJt3pITx5kAxrJV9FBwBBmsvDEQrGt4EvtxX+OD1Glx8240AsRescjCUH3efAwlFDFPgIraHi8mw3Ki7XHcXYf66zPyIuj9FZjYhNvJjIIZcuEqLtPFn0FT0Z3TLtwPvaVf/a8eiixmKyHYvJVzeTjRfw3zKJS3YjV9pj4QFfvd5pRxJee9o9M+F1YdBFobeNQD4kAu9KX//q9W6+vhD1oa7oISe/9ufrAbRjAd+HyvDTQ0wNo/h+SJ2dFHCpGykoOV/zcWqJ8p1fPPH+slADGHRRzgEqpzIOVKYcq3Tw/GI3HTxf+2HuW044zo/RxYaZH5kh4XV97/sF+hG976au91fJ0JfyavSlrWpmUsQvfxVZ+xf0Y3uetgWb67sRuO6My35PBGxAXfHHX2uZU+mQyRzHgkW5RW1KbccpT804TDcwxrpli792sZzqR8Xl3uPGjXpLN7DqZ6Y/rXYaM0cxPu2Ge3kAVCEv7x7l1K7clKQ2MzDDDrircttj78djwGh2PKb7qYb/YN0Br9pB3eKI14zDrkHRXM3UI5/UfeSjuIu9FZ3xVoWa8yjLedAbRj3U/clN4uxn6Yemvgfg2sXF0K+u6gvchEUMAxumrjs6KHSRTJxQoB4b2BR7eZatL/MSzeqfFIn78k/PX/4PUEsHCFV70NjKCgAAFz8AAFBLAQIUABQACAgIACq1XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAKrVcQ1V70NjKCgAAFz8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABiCwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Der Abwechselung halber betrachten wir nun eine Funktion 3. Grades.


<br><br />
{{Aufgaben|1=14|2=Beschreibe anhand des folgenden Bildes kurz in deinem Lerntagebuch, wie der Graph zu g aus dem Graphen zu f hervorgeht.
<br>
<br>
[[Bild:Verschiebungen bei ganzrationalen Funktionen.jpg|600px]]
<br>
Gegeben sind die Funktionsgleichungen
::* <math>f(x) = 3x^3 - 4x^2 + 1</math>
::* <math>g(x) = 3(x - 3)^3 - 4(x - 3)^2 + 1 - 2 = 3x^3 - 31x^2 + 105x - 118</math>
Wo finden sich die Verschiebungen in der Funktionsgleichung wieder? Kannst du eine Gleichung der Form g(x) = ... aufstellen, in der du allgemein f(x) nutzt (anstatt <math>3x^3 - 4x^2 + 1</math>) und die ausdrückt, dass f um 3 Einheiten in Richtung der x-Achse und um 2 Einheiten in Richtung der y-Achse verschoben ist?}}


{{Protokollieren|}}Schreiben Sie die Definition des Differentialquotienten zusammen mit einer Skizze in Ihr Heft.
{{versteckt|1=Die Verschiebung des Graphen kann ausgedrückt werden durch g(x) = f(x - 3) - 2. Überall dort, wo in der Funktionsgleichung zu f(x) ein x steht, wird (x - 3) eingesetzt und abschließend an die gesamte Funktion ein -2 angehängt.}}
<br>


{{Aufgaben|1=15|2=Formuliere einen Merksatz, indem du erläuterst, wie sich eine Verschiebung um e in Richtung der y-Achse und eine Verschiebung um d in Richtung der x-Achse bei ganzrationalen Funktionen in der Funktionsgleichung darstellen lassen.}}
<br>
<br>


{{Aufgaben-M|17|
{{Lösung versteckt|
Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.
{{Merke|1=Eine Verschiebung um d in Richtung der x-Achse lässt sich darstellen durch (x - d), das überall dort in die Funktionsgleichung eingesetzt wird, wo vorher ein x stand. Eine Verschiebung um e in Richtung der y-Achse lässt sich darstellen durch das Anhängen von e an die gesamte Gleichung. Formal kann diese Verschiebung des Graphen um (d / e) ausgedrückt werden durch g(x) = f(x - d) + e.}}
}}  
}}
<br>


Nun ein konkretes Beispiel:
{{Aufgaben|1=16|2=Gegeben ist eine Funktion <math>f(x) = x^4 + 2x^3 - x^2 + 2</math>. Der Graph soll verschoben werden um +2 in x-Achsenrichtung und +3 in y-Achsenrichtung. Bestimme die verschobene Funktion g(x). Benenne Grad und Koeffizienten von g und zeichne beide Graphen in dein Lerntagebuch.}}


Andere Schreibweise:
{{versteckt|1=g(x) = f(x - 2) + 3}}


Statt den Wert x<sub>1</sub> immer mehr dem Wert x<sub>0</sub> anzunähern, können wir auch die Differenz der beiden Werte <math> h=x_1-x_0</math> immer kleiner werden lassen.
{{Lösung versteckt|1=<math>g(x) = (x - 2)^4 + 2(x - 2)^3 - (x - 2)^2 + 2 + 3 = x^4 - 6x^3 + 11x^2 - 4x + 1</math>}}
<br>
<br>


{{Aufgaben-M|18|
Zum Abschluss noch die '''Streckung / Stauchung in Richtung der x-Achse''':
Ersetzen Sie in der Definition des Differentialquotienten  den Wert x<sub>1</sub> durch x<sub>0</sub>+h.
<br>
}}


:{{Lösung versteckt|1=
{{Aufgaben|1=17|2=Versuche, deine Kenntnisse bezüglich Streckung in x-Achsenrichtung bei linearen und quadratischen Funktionen zu übertragen auf ganzrationale Funktionen im Allgemeinen: Gegeben ist die Funktion <math>f(x) = 2x^3 - 6x^2 + 3x</math>.
<math> f'(x_0)=\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}</math>
* Wie kannst du den Streckungs- bzw. Stauchungsfaktor <math>c = \frac{1}{2}</math> in die Gleichung einbauen? Zeichne die Funktionen mit [http://www.geogebra.org GeoGebra]. Handelt es sich um eine Streckung oder um eine Stauchung in Richtung der x-Achse?
* Überprüfe deine Ergebnisse bzgl. der möglichen Fälle für c aus Aufgabe 8 - sind sie übertragbar auf ganzrationale Funktionen im Allgemeinen? Wähle je drei Beispiele für eine Streckung, Stauchung und eine reine Spiegelung an der y-Achse für Funktionen 3. und Funktionen 4. Grades - skizziere die Graphen in deinem Lerntagebuch. Zur Überprüfung: [http://www.geogebra.org GeoGebra].
* Untersuche, ob die Betrachtung dieser Transformationsart auch bei ganzrationalen Funktionen im Allgemeinen durch andere Transformationsarten ersetzt werden kann.}}
<br>


<br><br>
{{Lösung versteckt|1=
* <math>f(\frac{1}{2}x) = 2(\frac{1}{2}x)^3 - 6(\frac{1}{2}x)^2 + 3(\frac{1}{2}x)</math>
* Die Fallbetrachtungen für c können übertragen werden.
* Prinzipiell sind die Transformationsarten auch bei ganzrationalen Funktionen im Allgemeinen durcheinander ersetzbar, aber in der Polynomschreibweise ist es kaum möglich, dies ohne weiteres zu sehen und einzubauen.}}
<br>
<br>


Dies nennt man die ''h-Schreibweise'' des Differentialquotienten.
=== '''Übungen''' ===
 
<br>
<br><br>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAGu1XEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABrtVxDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVb+2/bthb+ufsrCGEYGiyOSYp6dXaHpE2yAuk6ILkXw117B1mibTWypEhyYnfr/34PScmWLb8TJ+nusEYPHpE833cefLn182gQolueZkEctTVyhDXEIy/2g6jX1oZ5t2FrP7/+rtXjcY93Uhd143Tg5m2NCcnAb2uuyRydGd2G5flOg3mm33Asz2r4hBKKu67DTF1DaJQFr6L4V3fAs8T1+KXX5wP3IvbcXDbcz/PkVbN5d3d3VDZ1FKe9Zq/XORplvoagm1HW1oqbV1DdzEd3uhSnGJPm7+8vVPWNIMpyN/K4hoQKw+D1dy9ad0Hkx3foLvDzPihMbdCjz4NeH5RyLFNDTSGVACIJ9/LglmfwbeVRKp0PEk2KuZEof6HuUDjRR0N+cBv4PG1r+IjqTLcMDcVpwKO8kCBFS82yjtZtwO9UZeJOtsM0lMdx2HFFPejvvxHFFKNDcSHqQuFimqoIq3dYVxeqLkxdDCXD1OdMiTIlw5QMA6JugyzohLytdd0wA+CCqJsCaZPnLB+HXPaneDHVmRyCTlnwBYR1DKgqpOE9xofinwn/mChozipJKq3m6XDLRssmCTXp5m3Se2mqr9STGkv0NFc0qhTfSFGj0iY0Jf+X/2ot6qvUnG9RPd+vQZM9ioqtZukrrcI9UNYXsoX55HyQCYfRHWQ4wu4JMsA5TAvM3EDEgYtFEbgDIgZiBjwSG5niaiHdggKGdGQjIUd0JL3DsOEPs2RlJjKgMvHWAqdEBBpiyNARkU7FELgSko4JTkp1kDAMZMBHonlCRRW6iZgJT7qNGPRR+KRFQFCHD+EZmqdIJ0gXHxMLUROZoj7ChK+btug6VEmRiZFJRIXg1uDSyp1B3ka60KaMZkGUDPMZiLyBX97mcTLhAqQhIE2DnQpQM7HwRSt0OzyE/HApmETo1g2FR8iGunGUo4lDqne91E36gZdd8jyHrzL02b11L9ycj85AOivblrJeHGW/pXH+Jg6HgyhDyItDPOlzHJLKPZ30Gh70SgGrFhiVArNyby1sN4YSNMw4tB+nWSnu+v47ITENDYDkhygcn6TcvU7iYFaNVlOmmhYfemHgB270bzBW0YrABU0zj4hXZeaxHKfsSZz6l+MMTBiN/sPTGByAHkHYxjqjlmURSi0NjYsSUz8yTIfaxCGOTkWAyTxX+B48HBGdMGLDN5ZjMkg/46KMYPvIJBbFBsOWYxtQJpvmtxOK3BGfaN9LhWcXmouHd9lJHE5fSf3fuEk+TOWgAYJjKpQ6jnohlzYiwy1kZO+6E48ulXHoqq6rcQJPWHWg05O4I4gN1IAO94prR12ljOjZRApLGSwlcGltgT8pJw6VEvLaUVcpBearulZoSko1CS6bCTIZ0bA24zfS9kV6H0ZBflE+5IF3XWhKlPyvw0GHTyxotkryQFW2mnMW1rrmacTDwqCByWE8zJR/Vmzd514wgEdVUADiCrL+BR1Qb33eS3nZ71AOxxRcshRXTbX2WlZ1lsaDd9HtFVjCXAdazbKXrcxLg0QYHOpAErjmU5vyg8yFHOJXvxMeCKp7IlcAPLmABnxzmPfjVA64IKTAVTjeKEl5Jka0ClwE1cCwdiTi3MvRAWqj0X9f0gNZKw/5AAZlKJeG2B1Gsv4JK105zBPwo7jzGYLgHGsVXKF8iWEiN0z6rhgJFhCF7pinM6DJ6t7H/jyUwJTUF+JBoiwh4VzZUF64DkqgOul5lc5MDTyH2HsNI8xMeuHkI3HzS+D7XOZdZU0KCgn1YOBGPopk3v5NOLg2zSMuFrgonYd5+eZYVVJ8WkNWRokJbMdrYJ16TRVVQlVQkNciKOwTW7IYW2n3GRrJ6RImhkEYpQYMnx0LotpYvdYJNqhBHIPaOrE19EVNrtTkQmAh4uBM7lRv59zpvqycbMPKyT+DFSqmpuNiivrguF+AZ83Bfgz6kgLrGfTd1egLJ52A6+4WaQwykyfF467YTxFs0CPHMW2HWczGzCKmzSSiGF7bjNmGZTHLMbAYikiAHfGfQWwYVpg6NaxdgxAMQm4i9Ummkl8wSMLAC/LVpFyGcTLPilujY7Cajmg44GngTRAfyAoBoWFpMHV3b9ZIK2c1K13G0CVrgq25DEFWcvah2814LihiKtQ0KF1IaW2cc/808CGFTNuLIzdc4AInygVGxzDIqeHe2cINOnU3mEV0vxm34gOkCCO4CCN0UtejmfVKyI9XQe5tAbn3bCFfkF8fmYF3UQ5jbsBkDnxvFfijP/E2aVeI75J4xWJLT1066nJ/CpaMaBp4L7l0Gbqd1eiS7dAlT4Wuvmxkci84oUKYbIshknwH1vNj//5hZLwQa3+LMOI/lzCCS5RJJYzMjcefUyA/WcUA34IB/mwZYI+fO5fFFr4K7dNtIsvpbiP2fYRtvNcpzzIoFYYSTr8G5dk2UJ49PygfZRK/JgHWUT3fBtXzHePBPmCljwnr26DY912Y6s7r8/SOkPeP16A7P0GcfjY3UVwwT9446K6ZhS1R7XzpEoTq4/mahaAlqp2fzKu2YGVgd9XmF2rFwnOYu+NisXbaCbkxtbrHxZdP0N3RbHfBHDbt7mivhrOgu0G3y1MefeHRzTDOxWmEou8KPdREpUYbaLCgsg0XTB7ADy55b8BrC6Anyzy8t9r8s6K2UrfevRbjimWdey2EViPnkrU4leobBpTrFgg4JnaYru9p8U3CGYpl10nSAsuqby9dc56IXb0P0VXqRpk4L6RkKttWW3FahLZi2jfDan87VvvPiNVFebDKKuRLbFIQwLqDDdPcjFb6DfFarl/9iWu8BtvxGnxDvIpyZpqEORTkCMPGP5TXegz+vB2rn3djtTw5UNBKMH3IWcGSHZCGWjdjDibEtphB9Z0X4J8pq2eK1eMaq9fbsXr9HFldtOr5/+Gsp8vmDeF2tIbPkVZaBl17s+Wnb4k4kTaXjoui7ciLnpA8umWkxftaSXxqFzyrsZhsx2LyjEZBa+Ys3zKJSxZgVvpjsTLw5u1OizDw2ZOvLy010qKPp2uWe5eodnq21wWbWdWu3Ki3dLhaPzp1s1qjmZ2Xm918rzwHolSRTw9yeEdOQajNDMywA1iWg5y974bx0a6ndW5q+A/W7fPWzusUO70z1lSDormaqQc+sPPAJ3LqS3pXfJTTYhHvB7EO91Nh5jzKch70hlEPdX9wkzj76SXEqIO2EkI/IoAL/qpH9XfRql8O9WuzjT21qUPkSHN5/BGpAYNpWDB2t7Ch28yyTVKcjDrCFqW6oWMHxu+6zqobDetBJTOgvq0vdr5C36OP3dT1/vr4ViyaovHX8m70ta1Kui/l9vxBQ94cfP2r/xV9P6Xg5YV7xX//Y8FK6qeDXbhZd9Jhv/u/QSbVmU2kxW9CMvDU7uQnQPInAFgro8ZSXpnjWDADs6hNqe045dkJh+kGBse2bGw5luVsRyyk0yqz/Tb6eIjmKZmk3t2IKFL29ltvc2Pq+xzn3ICO8ucsa/mQeL0PfLkP9weY8iGCcc6nSvPTk4kNo9j8p85mhIgNkyohQMcqTo7Pd+PkeMF26Aah/yGnqPuj5PgQnS+hg5qSDt3cjA2x21Zho4xtHw/bHw/nwhlaw9T5yW5Mna87iL7/qcz+mDo/RCefNqMCRseLqADMSyJQycQqGk7PdqPhdMGpjI2C2DfBw+khOqvx0Kz+yEg8lz9Gf/0/UEsHCMMt92XWCgAAKT8AAFBLAQIUABQACAgIAGu1XENFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAa7VcQ8Mt92XWCgAAKT8AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABuCwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />


<br> <br>
{{Aufgaben|1=18|2=Der Graph zu <math>f(x) = 0.5x^4</math> soll transformiert werden. Gib jeweils den Funktionsterm zu dem neuen Graphen an.
* Verschiebung um -2 in y-Richtung
* Verschiebung um 2 Einheiten in x-Richtung nach rechts
* Streckung in y-Richtung mit Faktor 2
* Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der x-Achse.}}


{{untersuchen|}} Vergleichen Sie die beiden Applets und untersuchen Sie die Veränderungen.
{{Lösung versteckt|1=<math>f(x) = 0.5x^4</math>
}}
* Verschiebung um -2 in y-Richtung: <math>f(x) = 0.5x^4-2</math>
<br /><br />
* Verschiebung um 2 Einheiten in x-Richtung nach rechts: <math>f(x) = 0.5(x-2)^4</math>
{{Aufgaben-M|19|
* Streckung in y-Richtung mit Faktor 2: <math>f(x) = 2(0.5x^4) = x^4</math>
Bearbeiten Sie nun folgende Aufgaben:
* Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der x-Achse: <math>f(x) = -4(0.5x^4) = -2x^4</math>
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue1.htm Übung1]
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue2.htm Übung 2]
}}
}}
<br>
<br>


{{Aufgaben|1=19|2=Je eine Funktionsgleichung aus Gruppe 1 und eine aus Gruppe 2 beschreiben den gleichen Graphen - sortiere sie entsprechend zusammen und erläutere kurz, warum sie zusammen gehören:}}
{| class="wikitable"
|-
! Gruppe 1                                    !! Gruppe 2
|-
| <math>f_1(x) = 8x^3 - 3</math>              || <math>g_1(x) = 81x^4 + 3</math>
|-
| <math>f_2(x) = (3x)^4 + 3</math>            || <math>g_2(x) = -0.0625x^4</math>
|-
| <math>f_3(x) = (-0.5x)^4</math>            || <math>g_3(x) = (2x)^3 - 3</math>
|-
| <math>f_4(x) = (b(x - c))^4</math>          || <math>g_4(x) = -8x^3 - 72x^2 - 216x + 30</math>
|-
| <math>f_5(x) = (-2(x + 3))^3 + 3</math>    || <math>g_5(x) = b^4(x - c)^4</math>
|}


{{Aufgaben-M|8|
{{Lösung versteckt|1=
''Rohfassung'' Betrachten Sie  noch einmal die beiden Einstiegsaufgaben:
* <math>f_1(x) = g_3(x)</math>
* Was waren die Problemstellungen?
* <math>f_2(x) = g_1(x)</math>
* Was waren die ersten Lösungsansätze?
* <math>f_3(x) = g_2(x)</math>
* Wie sieht die mathematische Lösung aus?
* <math>f_4(x) = g_5(x)</math>
* <math>f_5(x) = g_4(x)</math>
}}
}}
<br>
<br>


== Ableitungsfunktion ==
{{Aufgaben|1=20|2=Gegeben ist f(x) = x<sup>3</sup> + x<sup>2</sup>. Der Graph von g geht aus dem Graphen von f durch Verschiebung hervor. Zeichne die Graphen von f und g mit [http://www.geogebra.org GeoGebra] und bestimme damit für g eine Darstellung der Form g(x) = (x - d)<sup>3</sup> + (x - d)<sup>2</sup> + b.<br>
a) g(x) = x<sup>3</sup> - 5x<sup>2</sup> + 8x - 1<br>
  g(x) = ?
b) g(x) = x<sup>3</sup> + 4x<sup>2</sup> + 5x - 4<br>
  g(x) = ?
c) g(x) = x<sup>3</sup> - 35x<sup>2</sup> + 408x - 1569<br>
  g(x) = ?
}}
{{Lösung versteckt|1=
a) g(x) = (x - 2)<sup>3</sup> + (x - 2)<sup>2</sup> + 3<br>
b) g(x) = (x + 1)<sup>3</sup> + (x + 1)<sup>2</sup> - 6<br>
c) g(x) = (x - 12)<sup>3</sup> + (x - 12)<sup>2</sup> + 15<br>
}}


{{Aufgaben-M|20|
=== Zusammenfassung ===
Die Füllhöhe der Blumenvase aus der Einstiegsaufgabe ist gegeben durch  <math>w(t)=0,001(t+8)^3</math>.
* Berechnen Sie (wie in der vorherigen Aufgabe) die Steigung der Tangenten an den Graphen von w an der Stelle ?.
*  Berechnen Sie (wie in der vorherigen Aufgabe) die Steigung der Tangenten an den Graphen von w zu einem allgemeinen Zeitpunkt  t<sub>0</sub>.
}}
Treffen Sie sich mit einem weiteren Lernteam und vergleichen Sie Ihre Lösung.


{{Aufgaben-M|21|
{{Aufgaben|1=21|2=Fasse zusammen, was du über Transformationen von ganzrationalen Funktionen gelernt hast. Erstelle mithilfe der {{pdf|Übersicht_über_die_Transformationsmöglichkeiten_von_ganzrationalen_Funktionen.pdf|Tabelle}} eine Liste mit den Transformationsarten und der jeweiligen Einbindung in die Funktionsgleichung.}}
Die Höhe des Kraters aus der Einstiegsaufgabe wird duch die Funktion <math>k(x)=0,002x^2</math> beschrieben.
<br>
* Berechnen Sie (wie in der vorherigen Aufgabe) die Steigung der Tangenten an den Graphen von k an der Stelle ?.
<br>
*  Berechnen Sie (wie in der vorherigen Aufgabe) die Steigung der Tangenten an den Graphen von k an einer allgemeinen Stelle x<sub>0</sub>.
}}


Treffen Sie sich mit einem weiteren Lernteam und vergleichen Sie Ihre Lösung.
== '''Zusatzaufgabe''' ==


[http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/07_ableitung.htm Ableitungsfunktion]
{{blau|Falls du vor der vereinbarten Zeit mit der Bearbeitung des Lernpfades fertig sein solltest, entwirf ein kleines Funktionenbild oder -muster mithilfe von ganzrationalen Funktionen. Nutze dazu [http://www.geogebra.org GeoGebra].}}
''Applet als Link übernehmen?Passt doch eigentlich so.''


Kontext plus Übung


''Diagnoseinstrument''
{{SORTIERUNG:{{SUBPAGENAME}}}}
[[Kategorie:Ganzrationale Funktionen]]
[[Kategorie:ZUM2Edutags]]
[[Kategorie:Mathematik]][[Kategorie:Koffer gepackt]]
<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Ganzrationale Funktionen,Mathematik,Ganzrationale Funktion,Funktionen,11. Klasse,Oberstufe,Lernpfad</metakeywords>

Version vom 2. September 2018, 11:27 Uhr

Lernpfad
Herzlich willkommen zum Lernpfad zu ganzrationalen Funktionen!

In unserer aktuellen Unterrichtseinheit geht es um Transformationen von verschiedenen Funktionen, d. h. also, ihr sollt herausarbeiten, mithilfe welcher Operationen bzw. Veränderungen in der Funktionsgleichung unterschiedliche Funktionsarten im Koordinatensystem verschoben, gestreckt bzw. gestaucht und gespiegelt werden können. In diesem Lernpfad sollst du dich nun speziell mit den ganzrationalen Funktionen auseinandersetzen.

Kompetenzen

Du kennst bereits:

  • verschiedene Begriffe / Eigenschaften im Zusammenhang mit Funktionen allgemein (Definitions- und Wertemenge, Symmetrie, ...),
  • lineare Funktionen allgemein und abschnittsweise definierte (lineare) Funktionen sowie
  • Transformationen im Zusammenhang mit quadratischen Funktionen (Verschiebung auf der x- und auf der y-Achse, Streckung bzw. Stauchung in Richtung der x- und y-Achse sowie Spiegelungen an der x- und y-Achse).

Nach Bearbeitung dieses Pfades:

  • kennst du die ganzrationalen Funktionen als weitere Funktionenklasse.
  • kannst du wichtige Eigenschaften der ganzrationalen Funktionen erläutern.
  • weißt du, wie du diese Funktionen auf der x- und y-Achse verschieben kannst.
  • weißt du, wie du diese Funktionen in Richtung der x- und der y-Achse strecken bzw. stauchen sowie an der x- und y-Achse spiegeln kannst.

Und nun ....

Viel Spaß beim Bearbeiten!!



Vorlage:Kurzinfo

Infos vor Beginn

1) Lerntagebuch:
Während der gesamten Unterrichtseinheit sollst du ein Lerntagebuch führen: Das Tagebuch dient einerseits als "normales" Heft und andererseits als Reflexionsinstrument. Das heißt, du sollst nicht nur die gegebenen Arbeitsaufträge im Lerntagebuch bearbeiten, sondern dir darüber hinaus auch (schriftlich) Gedanken über deine Lernfortschritte und die Eignung des Arbeitsmaterials machen. Das Tagebuch wird nicht bewertet, es dient ausschließlich dazu, dir selbst klar zu machen, wie groß dein Lernfortschritt ist und wo vielleicht noch Probleme liegen.

Folgende Bestandteile sollte das Tagebuch haben:
1) Standortbestimmung: Was weiß ich bereits über Funktionstransformationen im Allgemeinen? Weiß ich bereits etwas über die zu bearbeitenden Funktionsarten?
2) Ein Eintrag nach jeder Stunde während der gesamten Unterrichtseinheit - mögliche Fragen, an denen du dich dabei orientieren kannst, sind:

  • Was habe ich gelernt? Was habe ich gut verstanden, welche Fragen sind noch offen? Welche Schwierigkeiten sind bei der Lösung aufgetreten?
  • An welchen Stellen habe ich etwas für mich Neues gelernt? Hatte ich Aha-Erlebnisse?
  • Bin ich mit meiner Arbeit zufrieden? Habe ich mein Arbeitsziel in dieser Stunde erreicht? Wenn nicht, woran lag es?
  • Wie habe ich mich in dieser Stunde im Unterricht oder in der Gruppenarbeit beteiligt? Welche Note würde ich mir geben?

3) Abschlusskommentar zu jeder Phase der Unterrichtseinheit:
4) Allgemeine Beurteilung der Einheit: Waren Aufbau und Material sinnvoll (speziell die Lernpfade)?
5) Abschlussprodukt: Funktionenbild mit Erläuterung


2) Allgemeine Hinweise:

  • Bearbeite den Lernpfad mit einem Partner oder einer Partnerin - so könnt ihr gemeinsam über die Aufgaben sprechen und schneller zu sinnvollen Ergebnissen gelangen.
  • Nutze die versteckten Hinweise erst, wenn du allein bzw. ihr zu zweit bei der Aufgabe nicht mehr weiter kommt - versucht es zuerst ohne Hilfe!
  • Für die versteckten Lösungen gilt: Schau sie dir erst an, wenn du die Aufgabe gelöst hast - sie dienen nur der Kontrolle!
  • Übernimm alle wichtigen Definitionen, Merksätze, Erläuterungen in dein Lerntagebuch - im Regelfall wirst du allerdings an der betreffenden Stelle explizit dazu aufgefordert.



Definition der ganzrationalen Funktionen

Eine kleine Aufgabe zum Einstieg:

Aufgabe 1
Du hast ein quadratisches Stück Karton mit der Seitenlänge 16 cm und möchtest eine Kiste (ohne Deckel) basteln. Dazu schneidest du an jeder Ecke des Kartons ein Quadrat der Seitenlänge x aus, so dass du die übriggebliebenen Seiten nur noch hochzuklappen brauchst - die Höhe der Kiste ist demzufolge definiert als x. Stelle eine Funktion für das Volumen auf (in Abhängigkeit von der Höhe x), das heißt, bestimme V(x). Fertige zuvor eine Skizze an.


Die Funktion, die du gerade aufgestellt hast, ist eine sogenannte ganzrationale Funktion - sie setzt sich zusammen aus den einzelnen Summanden , und , den Potenzfunktionen. Der höchste Exponent gibt den Grad der Funktion an, d. h. es handelt sich hier um eine ganzrationale Funktion dritten Grades. Die Vorfaktoren der einzelnen Summanden werden entsprechend den zugehörigen Exponenten von x mit - bezeichnet (, , ) - sie heißen Koeffizienten.

Nun in allgemeiner Form:

Definition

Ein Term der Form mit ; , , , ..., , und heißt Polynom. Die Zahlen , , , , ..., , nennt man Koeffizienten des Polynoms. Als Grad des Polynoms wird der höchste Exponent n von x bezeichnet, dessen zugehöriger Koeffizient nicht Null ist.
Eine Funktion f, deren Funktionswert f(x) als Polynom geschrieben werden kann, heißt ganzrationale Funktion.

Der Grad des Polynoms heißt auch Grad der ganzrationale Funktion. Die Definitionsmenge einer ganzrationalen Funktion ist die Menge der reellen Zahlen, also R.




Nicht erschrecken, die Definition sieht viel komplizierter aus als das Ganze in Wirklichkeit ist. Hier nochmal langsam zum Üben:

  

Gegeben ist die Funktion .

1) Der

des Polynoms ist

, da 4 der höchste vorkommende Exponent ist.
2) Die

lauten wie folgt: =

, =

, =

, =

, =

. Der Index des jeweiligen a entspricht immer den

des zugehörigen x. Achte auf die

! Laut Definition kommen für die Koeffizienten alle

Zahlen in Frage, wundere dich also nicht, wenn in der Funktion z. B. eine Wurzel auftaucht.
3) Da für x alle möglichen Zahlen eingesetzt werden können, ist also hier entsprechend der Definition D =

.


Mit den folgenden Übungen kannst du überprüfen, ob du alles verstanden hast:

Aufgabe 2

Bestimme Grad und Koeffizienten der folgenden ganzrationalen Funktionen in deinem Lerntagebuch:
1)
2)
3)
4)

5)


1) Grad: 7, Koeffizienten:
2) Grad: 0, Koeffizienten:
3) Grad: 1, Koeffizienten:
4) Grad: 6, Koeffizienten: ,

5) Grad: 4, Koeffizienten: , , ,


Entscheide: Handelt es sich um eine ganzrationale Funktion? Begründe in deinem Lerntagebuch.

1

ja
nein

2

ja
nein

3

ja
nein

4 4)

ja
nein

5

ja
nein


Aufgabe 3
Nun weißt du genau, was eine ganzrationale Funktion ist. Übernimm die Definition in dein Lerntagebuch (sofern noch nicht geschehen) und erläutere sie an einem selbstgewählten Beispiel für eine Funktion dritten Grades. Zeichne auch den zugehörigen Graphen in dein Lerntagebuch - stelle dazu eine geeignete Wertetabelle auf.


Wichtige Eigenschaften ganzrationaler Funktionen

Aufgabe 4
Ordne die Funktionsgleichungen den jeweiligen Bildern zu. Begründe in deinem Lerntagebuch.


-2x - 1.jpg -10x^3 + 2x.jpg 2x^3 + 3x.jpg 2x^4 -x^2 + 3.jpg 5x^3 - 2x^2 - 3.jpg
-2x-1 -10x3+2x 2x3+3x 2x4-x2+3 5x3-2x2-3
X^2-x.jpg X1^3.jpg X1^4.jpg X^4-3x^2 - 2x - 2.jpg X^5 + 3x^2.jpg
x2-x x3 x4 x4-3x2-2x-2 x5+3x2
X^6 + x^2.jpg -x^3.jpg -x^4 + 3x^2.jpg -x^4.jpg
x6+x2 -x3 -x4+3x2 -x4



Im Folgenden sollst du die gerade geordneten Funktionen noch einmal genauer untersuchen hinsichtlich möglicher Symmetrien sowie ihrem Verhalten für sehr große und sehr kleine x (Verhalten im Unendlichen):


Symmetrie

Aufgabe 5
Bei welcher der Funktionen kannst du eine Symmetrie erkennen (Punktsymmetrie zum Ursprung oder Achsensymmetrie zur y-Achse)? Gruppiere die Funktionen bzw. die Funktionsgleichungen entsprechend in drei Gruppen (Punktsymmetrie, Achsensymmetrie, keine Symmetrie). Formuliere einen Merksatz, woran man eine mögliche Symmetrie an der Funktionsgleichung erkennen kann.


Vorlage:Versteckt

Merke

Der Graph einer ganzrationalen Funktion f verläuft genau dann

  • achsensymmetrisch zur y-Achse, wenn f(x) nur Potenzen mit geraden Exponenten enthält.
  • punktsymmetrisch zum Ursprung, wenn f(x) nur Potenzen mit ungeraden Exponenten enthält.



Verhalten im Unendlichen / Verlauf des Graphen

Aufgabe 6

Wie verhalten sich die verschiedenen Graphen

  • für sehr große x-Werte?
  • für sehr kleine x-Werte?
Gruppiere die Funktionen begründet entsprechend ihres Verhaltens und formuliere in deinem Lerntagebuch einen Merksatz, woran man das Verhalten der Funktion für sehr große bzw. sehr kleine x-Werte ablesen kann.


Vorlage:Versteckt

Merke
Das Verhalten einer ganzrationalen Funktion f für sehr große x wird von dem Summanden mit der höchsten Potenz von x, d. h. dem Summanden mit dem höchsten Exponenten, bestimmt. Der Graph zur Funktion verhält sich also wie der Graph zur Funktion y = , wobei n der Grad von f ist.


Aufgabe 7

Betrachte die folgenden Graphen:


Beschreibe jeweils den Verlauf der 5 bzw. 6 Graphen. Wie beeinflussen die weiteren Summanden den Verlauf des Graphen zu bzw. , d. h. ändert sich das Gesamtbild?


Merke
Der Graph zur Funktion verhält sich so wie der Graph zur Funktion y = , wobei n der Grad von f ist. Alle weiteren Summanden beeinflussen den Verlauf nur geringfügig.


Mithilfe der folgenden Übung kannst du Verlauf und Symmetrie von ganzrationalen Funktionen untersuchen und so überprüfen, ob du alles verstanden hast. Fasse anschließend deine Erkenntnisse in der Pdf20.gif Tabelle zusammen.

Transformationen

Die ganzrationalen Funktionen, die du in diesem Lernpfad kennen gelernt hast, weisen bestimmte Transformationen auf, d. h. die Funktionsgleichung gibt an, inwiefern der Graph gestreckt oder gestaucht, in Richtung der x- oder y-Achse verschoben oder an einer der beiden Achsen gespiegelt ist.

Mit zwei Arten von ganzrationalen Funktionen hast du dich in den vergangenen Wochen im Unterricht bereits näher beschäftigt, und zwar mit den linearen und den quadratischen Funktionen. Dabei handelt es sich um nichts anderes als um ganzrationale Funktionen ersten und zweiten Grades. Eine lineare Funktion wird entsprechend der Definition als Polynom folgendermaßen geschrieben: - der zugehörige Graph heißt - wie du weißt - Gerade. Die dementsprechende Schreibweise der quadratischen Funktionen sieht folgendermaßen aus: (Normalform) - der zugehörige Graph heißt Parabel.

Aufgabe 8

Skizziere und beschreibe das Aussehen von

  • Geraden und
  • Parabeln
in deinem Lerntagebuch. Erläutere jeweils den Einfluss der Koeffizienten auf die Graphen, sofern dieser eindeutig zu erkennen ist.


Im Folgenden sollst du dich genauer mit Verschiebungen, Streckungen / Stauchungen und Spiegelungen von ganzrationalen Funktionen (speziell dritten und vierten Grades) beschäftigen. Los geht es aber mit den einfachsten ganzrationalen Funktionen - den Geraden. Mit verschiedenen Aspekten im Zusammenhang mit linearen Funktionen hast du dich im Unterricht zwar schon beschäftigt, aber noch nicht mit Transformationen von Geraden im Koordinatensystem. Das sollst du nun nachholen:

Aufgabe 9

Gegeben ist eine lineare Funktion mit . Das folgende Bild zeigt dir verschiedene Transformationen dieser Gerade. Bestimme jeweils eine Funktionsgleichung der neuen Gerade und erläutere kurz in deinem Lerntagebuch, durch welche Veränderung in der Funktionsgleichung du die neue Gleichung entwickeln kannst.
Transformationen lineare Funktion.jpg

Stelle anschließend allgemein zusammen, durch welche Veränderung in der Funktionsgleichung f(x) = a1x + a0 du die jeweilige Transformation, d. h.

  • eine Streckung in Richtung der y-Achse um den Faktor a,
  • eine Spiegelung des Funktionsgraphen an der x-Achse,
  • eine Verschiebung in Richtung der y-Achse um e
  • eine Verschiebung in Richtung der x-Achse um d

darstellen kannst. Du kannst deine Vermutungen mit verschiedenen Beispielen in GeoGebra überprüfen.

Kannst du in einer Gleichung zusammenfassen: Streckung in Richtung der y-Achse um a, Verschiebung in Richtung der y-Achse um e, Verschiebung in Richtung der x-Achse um d? Formuliere einen Satz, der Auskunft darüber gibt, wie du eine lineare Funktion an der x-Achse spiegeln kannst.


f(x) = a(a1x - d) + (a0 + e). Eine Spiegelung an der x-Achse kann erreicht werden durch die Multiplikation der gesamten Funktion mit (-1).


Eine Transformationsart, die bislang noch nicht betrachtet wurde, ist die Streckung / Stauchung in Richtung der x-Achse.

Aufgabe 10
Eine Streckung bzw. Stauchung in Richtung der x-Achse kann erreicht werden durch Bilden von f(cx) mit einem gegebenen Wert für c, d. h. überall dort, wo in der Funktionsgleichung ein x steht, wird bx eingesetzt und aufgelöst. Untersuche, für welche Werte von c sich die drei Möglichkeiten ergeben: Streckung, Stauchung, keine Veränderung. Nimm die Funktion f(x) und experimentiere mit GeoGebra. Beschreibe deine Versuche und Ergebnisse kurz in deinem Lerntagebuch.


Folgende Fälle lassen sich unterscheiden:

  • -1 < c < 1: Streckung in Richtung der x-Achse; dazu kommt für negative Werte die Spiegelung an der y-Achse
  • c = 1: keine Veränderung, im negativen Fall nur Spiegelung an der y-Achse
  • c < -1 bzw. c > 1: Stauchung in Richtung der x-Achse; dazu kommt für negative Fälle die Spiegelung an der y-Achse

Automatisch hast du jetzt also auch schon die Spiegelung an der y-Achse als weitere Transformationsart mit bearbeitet.

Aufgabe 11

Untersuche den Graphen zu . Bilde g(x) = f(cx) mit c = 4 und zeichne beide Geraden in dein Lerntagebuch. Untersuche, ob du einen anderen Weg findest, um mithilfe von bereits bekannten Transformationen ausgehend von f(x) zu g(x) zu gelangen. Erläutere in deinen Lerntagebuch. Wenn du möchtest, kannst du zur zeichnerischen Überprüfung GeoGebra nutzen.

Formuliere abschließend: Ist es notwendig, im Zusammenhang mit linearen Funktionen die Streckung in Richtung der x-Achse gesondert zu betrachten?
Es ist möglich, zu g(x) zu gelangen, indem man f(x) mit dem Faktor 4 in Richtung der y-Achse streckt und um auf der y-Achse verschiebt. Demzufolge ist es bei linearen Funktionen nicht notwendig, die Streckung / Stauchung in Richtung der x-Achse gesondert zu betrachten. Um eine Spiegelung an der y-Achse hervorzurufen, gibt es allerdings keine andere Möglichkeit.


Aufgabe 12

Mit den quadratischen Funktionen und möglichen Transformationen haben wir uns im Unterricht bereits ausführlich beschäftigt, allerdings haben wir dabei hauptsächlich die Scheitelpunktform betrachtet. Nun sollst du dich mit der Normalform auseinandersetzen und überprüfen, inwiefern du an dieser Schreibweise der Funktionsgleichung Transformationen ablesen kannst.
Zuvor erstmal eine kurze Wiederholung: Wie hängen Scheitelpunktform und Normalform einer quadratischen Funktion zusammen? Wähle eine Beispielfunktion in Scheitelpunktform. Gib anschließend die zugehörige Normalform an. Wie gehst du vor, um die Normalform zu erhalten? Überprüfe dein Ergebnis, indem du beide Funktionen zeichnest - hast du richtig gerechnet? GeoGebra.
Überführe die Normalform anschließend rechnerisch zurück in die Scheitelpunktform. ..... Na, geschafft? Falls nicht, kleiner Tipp: Quadratische Ergänzung!!!.


Du siehst also, Scheitelpunktform und Normalform sind nur zwei verschiedene Darstellungsformen für ein und dieselbe Funktionsgleichung. Beide Varianten können beliebig ineinander überführt werden.



Die Überführung der Normalform in die Scheitelpunktform ist allerdings nur bei quadratischen Funktionen so einfach möglich. Ganzrationale Funktionen mit n > 2 werden im Regelfall in Polynomschreibweise angegeben und lassen sich nicht in eine Art "Scheitelpunktform" überführen, an der alle Transformationsarten ablesbar sind.
Auch für die Funktionen mit n > 2 gibt es eine Art "Scheitelpunktform", also eine Funktionsgleichung, an der direkt die verschiedenen Transformationen abgelesen werden können. Aber diese Gleichung kann nicht wie bei den quadratischen Funktionen durch die quadratische Ergänzung aus der Polynomschreibweise hergeleitet werden - man kann lediglich diese "Scheitelpunktform" durch Ausmultiplizieren in die Polynomschreibweise überführen. Beide Schreibweisen werden im Rahmen der Unterrichtseinheit betrachtet - ihr sollt euch mit der etwas schwierigeren Polynomschreibweise auseinandersetzen, während die andere Darstellungsform von der Gruppe "Potenzfunktionen" bearbeitet wird.
Du hast ja bereits herausgefunden, wie die verschiedenen Transformationen sich bei linearen Funktionen (also den einfachsten der ganzrationalen Funktionen) in die Funktionsgleichung einbauen lassen; im Folgenden sollst du versuchen, dein Wissen bezüglich der einzelnen Transformationsarten auf ganzrationale Funktionen zweiten, dritten und vierten Grades zu übertragen.

Beginnen wir mit der Streckung bzw. Stauchung in Richtung der y-Achse:

Aufgabe 13

Du siehst auf dem folgenden Bild zwei Funktionsgraphen: f(x) ist die Ausgangsfunktion mit der angezeigten Funktionsgleichung - g(x) ist demgegenüber in Richtung der y-Achse gestreckt. Bestimme die Funktionsgleichung zu g(x).
Streckung in y-Richtung quadratisch.jpg

  • Bestimme zuerst den Faktor a, mit dem du f(x) strecken oder stauchen musst, um g(x) zu erhalten.
  • Durch welche mathematische Operation kannst du nun zur Funktionsgleichung von g(x) kommen?
  • Welche Punkte des Graphen verändern sich durch eine Streckung in Richtung der y-Achse, welche nicht?
  • Stauche f(x) um den Faktor a = . Wie lautet die Funktionsgleichung zur neuen Funktion h(x)? Überprüfe mit dem GeoGebra-Link unten.


  • Überprüfe mithilfe des Links, ob deine Erkenntnisse sich auch auf Funktionen dritten und vierten Grades übertragen lassen. Welche Fälle für a lassen sich unterscheiden? Wähle für jeden Fall zwei entsprechende Beispiele und überprüfe - notiere in deinem Lerntagebuch. Was ändert sich im Fall a < 0?
  • Formuliere einen Merksatz, der erklärt, wie du eine beliebige ganzrationale Funktion mit einem Faktor strecken oder stauchen kannst (Wie muss der Faktor jeweils aussehen?). Welche Punkte des Graphen werden durch eine Streckung / Stauchung nicht verändert?
Falls du nicht weiter weißt, nutze den versteckten Hinweis. Falls du zeichnerisch ausprobieren möchtest, kannst du das hier tun: GeoGebra.


Vorlage:Versteckt

Merke

Eine Streckung bzw. Stauchung einer ganzrationalen Funktion wird erreicht durch die Multiplikation der gesamten Funktion mit dem Streckfaktor a. Für a lassen sich drei verschiedene Fälle unterscheiden:

  • -1 < a < 1: Es handelt sich um eine Stauchung; im Falle eines negativen Streckfaktors kommt eine Spiegelung an der x-Achse hinzu.
  • a = 1: Die Funktionsgleichung ändert sich nicht, es handelt sich weder um eine Stauchung noch um eine Streckung.
  • a > 1 bzw. a < -1: Es handelt sich um eine Streckung. Für negatives a ist es zusätzlich eine Spiegelung an der x-Achse.
Durch eine Streckung oder Stauchung ändern sich alle Werte der Funktion mit Ausnahme der Nullstellen - Nullstellen bleiben von Streckungen (bzw. Stauchungen) in Richtung der y-Achse grundsätzlich unberührt.


Mit Bearbeitung dieser Aufgabe hast du bereits implizit die Spiegelung an der x-Achse mit untersucht und damit bereits eine weitere Transformationsart "abgehakt".

Weiter geht es mit den Verschiebungen in Richtung der beiden Achsen:
Der Abwechselung halber betrachten wir nun eine Funktion 3. Grades.

Aufgabe 14

Beschreibe anhand des folgenden Bildes kurz in deinem Lerntagebuch, wie der Graph zu g aus dem Graphen zu f hervorgeht.

Verschiebungen bei ganzrationalen Funktionen.jpg
Gegeben sind die Funktionsgleichungen

Wo finden sich die Verschiebungen in der Funktionsgleichung wieder? Kannst du eine Gleichung der Form g(x) = ... aufstellen, in der du allgemein f(x) nutzt (anstatt ) und die ausdrückt, dass f um 3 Einheiten in Richtung der x-Achse und um 2 Einheiten in Richtung der y-Achse verschoben ist?


Vorlage:Versteckt

Aufgabe 15
Formuliere einen Merksatz, indem du erläuterst, wie sich eine Verschiebung um e in Richtung der y-Achse und eine Verschiebung um d in Richtung der x-Achse bei ganzrationalen Funktionen in der Funktionsgleichung darstellen lassen.


Merke
Eine Verschiebung um d in Richtung der x-Achse lässt sich darstellen durch (x - d), das überall dort in die Funktionsgleichung eingesetzt wird, wo vorher ein x stand. Eine Verschiebung um e in Richtung der y-Achse lässt sich darstellen durch das Anhängen von e an die gesamte Gleichung. Formal kann diese Verschiebung des Graphen um (d / e) ausgedrückt werden durch g(x) = f(x - d) + e.


Nun ein konkretes Beispiel:

Aufgabe 16
Gegeben ist eine Funktion . Der Graph soll verschoben werden um +2 in x-Achsenrichtung und +3 in y-Achsenrichtung. Bestimme die verschobene Funktion g(x). Benenne Grad und Koeffizienten von g und zeichne beide Graphen in dein Lerntagebuch.


Vorlage:Versteckt



Zum Abschluss noch die Streckung / Stauchung in Richtung der x-Achse:

Aufgabe 17

Versuche, deine Kenntnisse bezüglich Streckung in x-Achsenrichtung bei linearen und quadratischen Funktionen zu übertragen auf ganzrationale Funktionen im Allgemeinen: Gegeben ist die Funktion .

  • Wie kannst du den Streckungs- bzw. Stauchungsfaktor in die Gleichung einbauen? Zeichne die Funktionen mit GeoGebra. Handelt es sich um eine Streckung oder um eine Stauchung in Richtung der x-Achse?
  • Überprüfe deine Ergebnisse bzgl. der möglichen Fälle für c aus Aufgabe 8 - sind sie übertragbar auf ganzrationale Funktionen im Allgemeinen? Wähle je drei Beispiele für eine Streckung, Stauchung und eine reine Spiegelung an der y-Achse für Funktionen 3. und Funktionen 4. Grades - skizziere die Graphen in deinem Lerntagebuch. Zur Überprüfung: GeoGebra.
  • Untersuche, ob die Betrachtung dieser Transformationsart auch bei ganzrationalen Funktionen im Allgemeinen durch andere Transformationsarten ersetzt werden kann.


  • Die Fallbetrachtungen für c können übertragen werden.
  • Prinzipiell sind die Transformationsarten auch bei ganzrationalen Funktionen im Allgemeinen durcheinander ersetzbar, aber in der Polynomschreibweise ist es kaum möglich, dies ohne weiteres zu sehen und einzubauen.



Übungen


Aufgabe 18

Der Graph zu soll transformiert werden. Gib jeweils den Funktionsterm zu dem neuen Graphen an.

  • Verschiebung um -2 in y-Richtung
  • Verschiebung um 2 Einheiten in x-Richtung nach rechts
  • Streckung in y-Richtung mit Faktor 2
  • Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der x-Achse.


  • Verschiebung um -2 in y-Richtung:
  • Verschiebung um 2 Einheiten in x-Richtung nach rechts:
  • Streckung in y-Richtung mit Faktor 2:
  • Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der x-Achse:


Aufgabe 19
Je eine Funktionsgleichung aus Gruppe 1 und eine aus Gruppe 2 beschreiben den gleichen Graphen - sortiere sie entsprechend zusammen und erläutere kurz, warum sie zusammen gehören:
Gruppe 1 Gruppe 2



Aufgabe 20

Gegeben ist f(x) = x3 + x2. Der Graph von g geht aus dem Graphen von f durch Verschiebung hervor. Zeichne die Graphen von f und g mit GeoGebra und bestimme damit für g eine Darstellung der Form g(x) = (x - d)3 + (x - d)2 + b.
a) g(x) = x3 - 5x2 + 8x - 1

  g(x) = ?

b) g(x) = x3 + 4x2 + 5x - 4

  g(x) = ?

c) g(x) = x3 - 35x2 + 408x - 1569

g(x) = ?

a) g(x) = (x - 2)3 + (x - 2)2 + 3
b) g(x) = (x + 1)3 + (x + 1)2 - 6

c) g(x) = (x - 12)3 + (x - 12)2 + 15

Zusammenfassung

Aufgabe 21
Fasse zusammen, was du über Transformationen von ganzrationalen Funktionen gelernt hast. Erstelle mithilfe der Pdf20.gif Tabelle eine Liste mit den Transformationsarten und der jeweiligen Einbindung in die Funktionsgleichung.



Zusatzaufgabe

Falls du vor der vereinbarten Zeit mit der Bearbeitung des Lernpfades fertig sein solltest, entwirf ein kleines Funktionenbild oder -muster mithilfe von ganzrationalen Funktionen. Nutze dazu GeoGebra.

<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Ganzrationale Funktionen,Mathematik,Ganzrationale Funktion,Funktionen,11. Klasse,Oberstufe,Lernpfad</metakeywords>