Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Zeile 40: Zeile 40:
=== Ungerade Potenzen ===
=== Ungerade Potenzen ===


'''Wir betrachten nun die Graphen der Funktionen mit <math>f(x) = x^n</math>, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..'''  
'''Wir betrachten nun die Graphen der Funktionen mit f(x) = x<sup>n</sup>, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..'''  


{| <!--class="prettytable sortable" -->
{| <!--class="prettytable sortable" -->
Zeile 59: Zeile 59:
::* Die Graphen der Potenzfunktionen sind alle monoton steigend; '''Beachte:''' für <math>n\in\{3,5,7,...\}</math> haben die Funktionen im Ursprung einen Terassen- bzw. Sattelpunkt, sind dort also nicht streng-monoton steigend.
::* Die Graphen der Potenzfunktionen sind alle monoton steigend; '''Beachte:''' für <math>n\in\{3,5,7,...\}</math> haben die Funktionen im Ursprung einen Terassen- bzw. Sattelpunkt, sind dort also nicht streng-monoton steigend.
::* Der Wertebereich der Funktion ist ganz <math>{\Bbb R}</math>, alle Werte werden durchlaufen (die Funktion ist damit ''surjektiv'').
::* Der Wertebereich der Funktion ist ganz <math>{\Bbb R}</math>, alle Werte werden durchlaufen (die Funktion ist damit ''surjektiv'').
: zu 2) Man findet die drei Punkte (-1;-1), (0;0) und (1;1) unabhängig von <math>n</math> in allen Graphen.<br />
: zu 2) Man findet die drei Punkte (-1;-1), (0;0) und (1;1) unabhängig von n in allen Graphen.<br />
:: '''Begründung''' für den Punkt (-1;-1): An der Stelle <math>x=-1</math> ist <math>f(x)=f(-1)=(-1)^n=(-1)\cdot(-1)^{n-1}.</math> Da <math>n</math> nach Voraussetzung ungerade ist, ist <math>n-1</math> eine gerade Zahl. Deswegen gilt weiter: <math>(-1)\cdot(-1)^{n-1}=(-1)\cdot 1 = -1.</math>
:: '''Begründung''' für den Punkt (-1;-1): An der Stelle x<math>=</math>-1 ist <math>f(x)=f(-1)=(-1)^n=(-1)\cdot(-1)^{n-1}.</math> Da n nach Voraussetzung ungerade ist, ist n-1 eine gerade Zahl. Deswegen gilt weiter: <math>(-1)\cdot(-1)^{n-1}=(-1)\cdot 1 = -1.</math>
:: '''Begründung''' für die Punkte (0;0) und (1;1): Es gilt <math>0^r = 0</math> und <math>1^r=1</math> für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>.
:: '''Begründung''' für die Punkte (0;0) und (1;1): Es gilt 0<sup>r</sup><math>=</math>0 und 1<sup>r</sup><math>=</math>1 für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>.
}}
}}
}}
}}
Zeile 68: Zeile 68:
=== Teste dein Wissen ===
=== Teste dein Wissen ===
{{Arbeiten|NUMMER=3|ARBEIT=  
{{Arbeiten|NUMMER=3|ARBEIT=  
Wir betrachten die Funktionen mit f(x) = x<sup>n</sup>, n eine natürliche Zahl
Wir betrachten die Funktionen der Form f(x) = x<sup>n</sup>, n eine natürliche Zahl
# Für welches n verläuft der Graph durch den Punkt P(2;32)?  
# Für welches n verläuft der Graph durch den Punkt P(2;32)?  
# Für welches n verläuft der Graph durch Q(1,5;3,375)?
# Für welches n verläuft der Graph durch Q(1,5;3,375)?
:{{Lösung versteckt|
:{{Lösung versteckt|
:Der Punkt P(2;32) wird für <math>n=5</math> durchlaufen: <math>f \left( 2 \right ) = 2^5 = 32</math>.<br>
:Der Punkt P(2;32) wird für n<math>=</math>5 durchlaufen: <math>f \left( 2 \right ) = 2^5 = 32</math>.<br>
:Der Punkt Q(1,5;3,375) wird für <math>n=3</math> durchlaufen: <math>f \left( 1,\!5 \right ) = \left( 1,\!5 \right )^3 = 3,\!375</math>.
:Der Punkt Q(1,5;3,375) wird für n<math>=</math>3 durchlaufen: <math>f \left( 1,\!5 \right ) = \left( 1,\!5 \right )^3 = 3,\!375</math>.
}}
}}
}}
}}
Zeile 85: Zeile 85:
| {{Arbeiten|NUMMER=4|ARBEIT=  
| {{Arbeiten|NUMMER=4|ARBEIT=  
# Es sei zunächst n = 2, also <math>f(x) = a \cdot x^2</math>. Beschreibe die Veränderung des Graphen von f bei der Veränderung des Parameters a!  
# Es sei zunächst n = 2, also <math>f(x) = a \cdot x^2</math>. Beschreibe die Veränderung des Graphen von f bei der Veränderung des Parameters a!  
# Beschreibe die Veränderung der Graphen mit <math>f(x) = a \cdot x^n </math> bei der Veränderung des Parameter a! Unterscheide dabei wieder zwischen geraden und ungeraden Exponenten.
# Beschreibe die Veränderung der Graphen von <math>f(x) = a \cdot x^n </math> bei der Veränderung des Parameter a! Unterscheide dabei wieder zwischen geraden und ungeraden Exponenten.
{{ Lösung versteckt |  
{{ Lösung versteckt |  
: zu 1.)
: zu 1.)
:* Für <math>1 < a</math> wird der Graph der Funktion gestreckt und wird für <math>0<a<1</math> gestaucht.
:* Für 1 < a wird der Graph der Funktion gestreckt und wird für 0<a<1 gestaucht.
:* Für <math>a=1</math> bleibt er unverändert
:* Für a<math>=</math>1 bleibt er unverändert
:* Für <math>a=0</math> wird die Funktion zur ''Nullfunktion'' mit <math>f(x)=0</math> für alle <math>x</math>.  
:* Für a<math>=</math>0 wird die Funktion zur ''Nullfunktion'' f(x)<math>=</math>0 für alle x.  
:* Der Wert <math>a=-1</math> bewirkt eine Spiegelung des Graphen an der x-Achse; alle übrigen Fälle ergeben sich daraus.
:* Der Wert a<math>=</math>-1 bewirkt eine Spiegelung des Graphen an der x-Achse; alle übrigen Fälle ergeben sich daraus.
: zu 2.)
: zu 2.)
:: Die Beobachtungen aus 1.) übertragen sich auch für beliebige Exponenten.
:: Die Beobachtungen aus 1.) übertragen sich auch für beliebige Exponenten.

Version vom 17. Januar 2011, 09:46 Uhr

Vorlage:Potenzfunktionen


Die Graphen der Funktionen mit f(x) = xn, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit f(x) = xn, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a xn, mit a IR

Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen



Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten.

Datei:Pfeil.gif   Hier geht es weiter.