Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
(Layout)
Main>Jan Wörler
(Lösung zu 2.3 eingef.)
Zeile 69: Zeile 69:
zu 1.)  
zu 1.)  
:* Die Graphen sind punktsymmetrisch zum Ursprung (0;0).  
:* Die Graphen sind punktsymmetrisch zum Ursprung (0;0).  
:  Beachte: für ist der Graph zusätzlich achsensymmetrisch zur Geraden <math>g: y=x.</math>
::  Beachte: für <math>n=1</math> ist der Graph zusätzlich achsensymmetrisch zur Geraden <math>g: y=x.</math>
:* Alle Graphen sind auf ihrem Definitionsbereich <math>\scriptstyle {\Bbb D} = {\Bbb R}\backslash \{0\}</math> streng monoton fallend.
:* Alle Graphen sind auf ihrem Definitionsbereich <math>\scriptstyle {\Bbb D} = {\Bbb R}\backslash \{0\}</math> streng monoton fallend.
:* Als Funktionswerte werden alle Werte aus <math>\scriptstyle {\Bbb R}\backslash \{0\}</math>. Damit sind Definitionsbereich und Wertebereich gleich.
:* Als Funktionswerte werden alle Werte aus <math>\scriptstyle {\Bbb R}\backslash \{0\}</math>. Damit sind Definitionsbereich und Wertebereich gleich.
Zeile 76: Zeile 76:
: '''Begründung''' für Punkt (-1;-1): An der Stelle <math>x=-1</math> ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}=\textstyle \left( \frac{\,\,1}{-1}\right)^n</math>. Da die Zahl n nach Voraussetzung ungerade ist, ist (n-1) eine gerade Zahl. Deswegen ist <math>\textstyle \left( \frac{\,\,1}{-1}\right)^n =\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{\,\,1}{-1}\right)^{n-1}=\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{1}{1}\right)^{n-1} = -1</math> für alle betrachteten n.
: '''Begründung''' für Punkt (-1;-1): An der Stelle <math>x=-1</math> ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}=\textstyle \left( \frac{\,\,1}{-1}\right)^n</math>. Da die Zahl n nach Voraussetzung ungerade ist, ist (n-1) eine gerade Zahl. Deswegen ist <math>\textstyle \left( \frac{\,\,1}{-1}\right)^n =\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{\,\,1}{-1}\right)^{n-1}=\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{1}{1}\right)^{n-1} = -1</math> für alle betrachteten n.
: '''Begründung''' für den Punkt (1;1): An der Stelle <math>x=1</math> ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math>
: '''Begründung''' für den Punkt (1;1): An der Stelle <math>x=1</math> ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math>
zu 3.) Die Punkte (-1;-1) und (1;1) bleiben von der Änderung unberührt.
: In den Intervallen ]-∞;-1[ und ]1;∞[ schmiegt sich der Graph näher an die y-Achse an, wenn n erhöht wird.
: In den Intervallen ]-1;0[ un ]0;1[ werden die Graphen steiler, wenn n erhöht wird.
}}
}}
}}
}}

Version vom 31. März 2009, 15:59 Uhr


Die Graphen der Funktionen mit f(x) = x-n, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Parabel und Hyperbel

Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen: Vorlage:Merksatz

Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a x-n mit a IR

Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen




Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen, die Stammbrüche im Exponenten haben.

Datei:Pfeil.gif   Hier geht es weiter.