Einführung in die Differentialrechnung und Anwendungsbezogene Extremwertaufgaben: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
(Unterschied zwischen Seiten)
Main>JochenDoerr
 
Main>Karl Kirst
(Änderung 319743 von Karl Kirst (Beiträge | Diskussion) wurde rückgängig gemacht.)
 
Zeile 1: Zeile 1:
{{Lernpfad-M|
{{Lernpfad-M|
Im bisherigen Mathematikunterricht wurden bereits vielfach Funktionen und deren Wertetabellen und Graphen betrachtet. Allerdings wurde das Änderungsverhalten von Funktionen bisher nur eingeschränkt untersucht, obwohl es eine essentielle Eigenschaft von Funktionen ist. Am Ende des 17. Jahrhunderts gingen Gottfried Wilhelm Leibniz und Isaac Newton der mathematischen Bestimmung des Änderungsverhaltens von Funktionen genauer nach und entwickelten Ideen, auf deren Grundlage die Differentialrechnung entwickelt wurde. Die Differentialrechnung war ein wichtiger Baustein in der Weiterentwicklung der Mathematik und der Naturwissenschaften und ist heute eine unverzichtbare Methode in der Mathematik. Im folgenden Lernpfad lernen Sie die Ideen von Leibniz und Newton kennen.
{{Kurzinfo|M-digital|GeoGebra}}
<br><br>
Üben, Anwenden und Veranschaulichung von Extremwertaufgaben an anwendungsbezogenen Beispielen.
[[Datei:Nuvola_Icon_Kate.png|40px]]
*'''Voraussetzung:'''Kenntnisse über die Ableitungsfunktion und die Bestimmung von Extremwerten
Zur Dokumentation Ihres Lernprozesses sollen Sie die Aufgaben des Lernpfades in einer Mappe oder einem Heft nachvollziehbar aufschreiben. Ihre Aufzeichnungen werden am Ende der Reihe eingesammelt.
*'''Zeitbedarf:''' eine Unterrichtsstunde/mehrere Unterrichtsstunden
*'''Material:''' Stift und Papier, Konzentration
}}
}}
<br />


<!--= Extremwertaufgaben in der Anwendung =
-->
==Einführung==


==== Einstiegsaufgabe 1 - Blumenvase ====
Willkommen zum Lernpfad "Anwendungsbezogene Extremwertaufgaben". Hier findet ihr Aufgaben, in denen die Bestimmung von Extremwerten anhand von Beispielen aus dem Alltag eingeübt und vertieft werden kann.
{{Mathematik|
 
Unterschiedliche Gefäßformen lassen sich durch ihren Füllgraphen beschreiben. Dieser ergibt sich, wenn in ein Gefäß eine Flüssigkeit mit gleichmäßigem Zufluss einfließt. Die entstehende Zuordnung Zeit(t) -> Höhe(h) kann in ein Koordinatensystem übertragen werden und stellt die Zunahme des Wasserspiegels in Abhängigkeit von der Zeit dar.
 
'''Kurz zur Wiederholung:'''
 
Ein Extremwert ist der größte bzw. kleinste Wert einer Funktion (in einem gewissen Bereich). Hier findest du noch die formale mathematische Definition: [[Definition Extremwerte]]. Um diesen Wert zu finden, ist es sinnvoll die Ableitung der Funktion näher zu betrachten. Diese beschreibt nämlich anschaulich die Steigung einer angelegten Tangente an der ursprünglichen Funktion. Bei einem Extremwert, ist diese Tangente waagrecht, d.h. die Ableitungsfunktion an dieser Stelle ist Null.
 
 
Diesen Sachverhalt kannst du dir nochmal in folgender Skizze näher anschauen:
 
<table>
<tr> <td> <ggb_applet width="805" height="469"  version="4.2" ggbBase64="UEsDBBQACAgIALOul0EAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIALOul0EAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vltc9s2Ev6c/goMP7VXSwIIvmakdOyknabjNp1z7+amHzoDkhCFim8lQEnO9Hf1D9wfuwVA6s2xGiW2JzlPHJDAYhf77OLBgp5+sykLtOKtFHU1c8gYO4hXaZ2JKp85nZqPIuebF19Mc17nPGkZmtdtydTM8caus5sHb2NiJots5jCMgywLwhEJfDbyApKMktSnoyjz5yFOoiTziYPQRornVf0TK7lsWMpv0gUv2XWdMmV0LpRqnk8m6/V6PFgf120+yfNkvJGZg2DllZw5/cNzUHcwaU2NuIsxmfznx2urfiQqqViVcgdprzrx4otn07WosnqN1iJTi5kTubC4BRf5Atz0/cBBEy3UgK8NT5VYcQlT916Nz6psHCPGKj3+zD6hYuuOgzKxEhlvZw4eUxzTMIpwQCkNaUwdVLeCV6qXJb3NyaBtuhJ8bdXqJ2PRc5Cq6yJhWiPyY/Tnn8jFLkYXuiG2caEJAjuEbR+mtnFt49nGtzKene5ZUc/KeFbGg2WuhBRJwWfOnBUSQBTVvIUAbt+lui24WVLfsQOAXIBbUrwFYbDnIIs6rP0CX3jY/Fq393wkexZV2500aMf37A3WIuy/nzX3o/yj93rn3mMv+jg8B3vE37Pn4wvzz/zexTN4cpP0LFTvDeIZFgPvhEVr4GENejgOn9hkiJ/C4HQy8M60pxokF1q234uKl1KTD40N/yCCfCCZIAS68BGJoQld6HYR8ZHnwyuJUKDbENEQBjxEUYS0HKHIsIwfwX+eHiMB8kGX7gyxfgczHvIpIoabPASMhAy/Ade5FCR8H/kwSVsn2iwNkBfAC42QBwvUzBYS3Q/z4B2Mu4gSRPVcEiI3QIGLQs2OxNOkGUR67aDURQFGgZ4K9AjUaGkRZkSIam9gUzW1FBZcrA+PotlGxeAoqqZTB9ilZTY8qvpIOqvT5dUW636EM6n2xeBw2B1B9rA4OKGeTQuW8ALO8RudCAitWKFJyliY15VCQxK4ti9vWbMQqbzhSsEsiX5nK3bNFN98B9JysG1Mm4Nzyru0EJlg1b8hS7QKrRBtz1FNu8M56nnEWknrus1ubiWkDtr8ytsa+JL4unK4tW/UvsmU6dT24nF88ANy/RDBIGd08tV2zWzD5YBr3uqd0iOmX17Lq7rYdTW1qNRL1qiuNdUOEHirV3tZ5QU3oJkjAeqGdJnUmxuLFrW6frltuA62WUCSv6yLukWw11wfvM77NrGtkdEr20phI4ONBB7gF9l2nMSukTBtYlsjBfG0S+s9JYObBA9mhDQMoTHcyzeTDLoK6SqhrocXJdJl7ymx8j91ZQJ51E87VEkeSOV0cpQ50yVvK17Y/Kggkl3dSZuw26R7Nu0k/5mpxWWV/ZPnsNd+ZpruFKi2orsVZzwVJUy0/T10TIf1X7BU25vxvOWDh4UpLy2wZhTvZ+udbqPqu7YuX1erXyBnjpY6nQz+TGXaikanJkqAf5d8l32ZkAzYO9ufB85L8CLVTAJAKg3it7piFTyXsD/nYukg1qlFDTnyw3//anN0o1imNzlvQSVsVnCXolf8LdeYA0XC7tY7teAllJdImaytupK3It1GkJnKFXzoejdHeOwebrvIOq7Dierkd2CZoyzYgQ/D9+Q5YkWzYLr+7cmgYLewyH1kjbYf66xfSC8nC104o1IAv45gX5VsA+cV6EtkXXQKrg4Qymp3dbAr63mIYE0UCGYEfmCIBmjFcMxcbPiWhQFT8RaS7zCTdvtNATcuoRqXhhRUv/3Nw/ciy3i1XS2rIPlMCIHlGu0u1juh4dzuoe3cBvw3zLOXOX2k/jZmyXHMCFwqDn7C/4+QRX3IIvykIXv4iKXHEaNj9yBg5NMJGJwmNmL64eyQxX3ICAk/85hlxzHzx8EnHzP3A2IWkCFmliM/7ZhtmhasaTU9ynOojze6iv5y8xWaIYb+gTa/fUm/Ql+jxD67+jnVz9BmtoI+jP28q8zB6+yUPmRo8cnQvpnPJVc6FD41caDkVODPx/40fnmPX27xo4AT28PNheekxy59L+zy98YOap5M2JQA6Te9sLgL7FBZ62+HiW3OBjcy2I5c//HATeuyZFWGKnMVf13p+hRccnbXQIYN4IzMnM0l1Na9q50aBi/t4JVV3Su8g7m5vmwBvfxIwJf3A06we2Y27yDdr6OljgCUljHFEY0j4mEvjGPPNzExTPTWfoG231u1e/rOdXBxtb1HBfn9fH6I0dVnghEdRyQO3SjEbkyDKAoeFqLDDH3TwnUirytWXEPeH6Xp5ak05afzU2+jLbT84aH/MKI9lZrDGTgA/a5cvZ8htucX8d959vE/KjtH2tuxKJtCpEJ9RHiuToVncUZ4Fp9jeN6xTR4/OocgJnVdcLY79sRxvbj3+eLJCwn9sR/gcqOT+PZftw4qPjvCGhNnI32ZFFyorso/7Lib20Rd3EnSl+eccS8fN0td7D0ie7ugMiSuG4d+SL2Y0kfg8r+Bn9+B/9U58L/6LOC/r8Cg4ziKg9D3Y9fzAP/If4R645gPlp8UH4QGCD9+AD74dqNaXq55q+7czib7XzHNHwv6v96/+B9QSwcIYmtGqo4HAABtIAAAUEsBAhQAFAAICAgAs66XQdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICACzrpdBYmtGqo4HAABtIAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACUIAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> </td>
 
<td valign="centre">
</tr>
</table>
 
 
Du siehst hier die Funktion <math>a \cdot x^3 + b \cdot x^2 + c \cdot x + d</math>, an der du die Werte a, b, c und d verändern kannst. Wie du siehst, gibt es an bestimmten Stellen maximale und minimale Werte. Betrachte nun folgende Aspekte:
 
 
* Welchen Einfluss haben die Parameter a, b, c und d auf die Funktion? Wo liegen die Unterschiede?
* Wo befinden sich die Maxima und Minima der Funktion
* Blende die Ableitungsfunktion ein. Welchen Zusammenhang siehst du? Wie ändert sich die Ableitung mit der Veränderung von a, b, c und d? Was erkennst du bei der Änderung von d?
* Um den Zusammenhang deutlicher zu sehen, klicke auf das Kontrollkästchen Extremwerte
 
==Wozu überhaupt Extremwerte? ==
Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. Im folgenden soll dies an drei Beispielen verdeutlicht werden. Als erstes wollen wir untersuchen, auf welchem Weg ein Ziel am schnellsten erreicht werden kann (dies ist nicht immer der direkteste Weg). Danach schauen wir uns an, wie man eine größtmögliche Schachtel aus vorgegebenen Karton basteln kann. Als letztes soll untersucht werden, in welchem Winkel man einen Ball werfen muss, um damit eine maximale Wurfweite zu erzielen.
 
Dies ist ein Ausschnitt aus einem breiten Anwendungsbereich von Extremwertaufgaben bzw. der Differentialrechnung. Denn auch in der Natur werden meist Zustände angenommen, die minimale Energie benötigen und somit über Extremwertbestimmungen ermittelt werden könne.
 
Nun aber zu unseren Aufgaben...
 
 
==Beispiele für anwendungsbezogene Extremwertaufgaben (mit Lösungsanleitung)==
 
===Extremwertaufgabe mit Nebenbedingung: Der schnellste Weg===
 
{{Aufgabe|
 
[[Bild:AckerStraße2.jpg|left|133px]]Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage
 
(a.) 1000m
 
(b.) 100m.
 
Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?}}
 
                            Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!
 
 
 
Ansonsten löse die Aufgabe in folgenden Schritten:
 
 
'''1. Stelle die Aufgabensituation in einer Skizze dar (Teilaufgabe a))''':
 
Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.
 
{{Siehe|/Lösung 1/}}
 
'''2. Zielfunktion für Teilaufgabe a)''' :
 
Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.
 
{{Lösung versteckt mit Rand|Der Weg des Fußgängers setzt sich aus 2 Teilstrecken zusammen, nämlich aus einem geraden Weg über den Acker von A nach D (D liegt auf der Straße), also Strecke a (braune Linie), und dem Teilstück b (rote Linie) von D nach B auf der Straße.
 
* Sei d der Abstand von C (Fußpunkt des Lotes durch A auf die Straße) und D, wobei <math>0 \le d  \le 1000</math> .
 
* Die Länge des Weges von D nach C, also die rote Strecke b, ist 1000 - d.
 
* Da der Fußgänger auf dem Acker nur halb so schnell voran kommt wie auf der Straße, müssen die dort zurückzulegenden Meter doppelt gezählt werden.
 
Die Überlegungen führen uns zu folgender '''Zielfunktion''':
 
 
<math>f(x)=2*a+(1000-d)</math>
 
 
Diese ist zu minimieren.  
}}
}}
<br>
{{Experiment|
Skizzieren Sie zunächst einen möglichen Verlauf des Füllgraphen für die Gefäße in ein Koordinatensystem. Verlgeichen Sie ihre Ergebnisse mit einer anderen Zweiergruppe und begründen ihre Skizze.<br />


Mit dem folgenden Experiment können Sie ihre Vermutung aus der ersten Aufgabe überprüfen. Dazu sollen Sie gleichmäßig Wasser in ein Gefäß füllen. Mit einer Stoppuhr wird die Zeit gemessen, wie lange der Wasserspiegel braucht um auf 0.5 cm, 1 cm, 1.5 cm, 2cm usw. zu steigen. Die Messdaten für die Zeit übertragen Sie danach vom Arbeitsblatt in die untenstehende GeoGebra-Tabelle.
 
'''3. Nebenbedingung in Zielfunktion für Teilaufgabe a)''':
<popup name="Versuchsaufbau">
 
{{Kasten blau|
Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.
'''Benötigte Materialien:'''
 
* Messbecher
{{Lösung versteckt mit Rand|Die Länge des Weges a von A nach D ist nach Pythagoras <math>a=\sqrt{400^2+d^2}</math> .
*Einfülltrichter
 
*Höhenskala
Mit dieser Nebenbedingung  <math>a=\sqrt{400^2+d^2}</math> ergibt sich durch Ersetzen von a in der [[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion|Zielfunktion]]:
*Stoppuhr (z.B. App im Smartphone)
 
*leere Plastikflasche 500ml
''' <math>f(d)=2*\sqrt{400^2+d^2}+ (1000-d)= min!</math>'''
}}
}}


Im Bild sehen Sie den Versuchsaufbau. Bei der Versuchsdurchführung ist es zum einen besonders wichtig, dass der Wasserzufluss immer gleichmäßig ist. Der obere Teil des Trichters muss daher immer mit Wasser gefüllt sein, sodass der Zufluss konstant bleibt. Zum anderen muss der „Zeitmesser“ genau beobachten, wann der Wasserspiegel die markierten Höhen erreicht, damit die Messung so exakt wie möglich ist.


''Achtung: Bei manchen Stoppuhren lassen sich Zwischenzeiten stoppen. Diese liefern für unseren Versuch die genaueren Ergebnisse, müssen aber zunächst noch addiert werden.''
'''4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):'''


[[Datei:LP_Messbecher.jpg|150px]]
Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.
</popup>


{{Lösung versteckt mit Rand|1=
'''Teilaufgabe a)'''


<popup name="GeoGebra Tabelle">
* Um den Extremwert der Zielfunktion bzw. den schnellsten Weg, um von A nach B zu kommen, zu bestimmen, benötigen wir die erste Ableitung dieser Funktion, die wir gleich 0 setzen, also <math>f'(d)=0</math>:
Wenn alle Messdaten in der Tabelle eingetragen sind, können Sie sich die dazugehörigen Punkte im Koordinatensystem anzeigen lassen. Markieren Sie als erstes alle Messwerte (Zeit und Höhe). Durch einen Rechtsklick über den markierten Werten kann im erscheinenden Kontextmenü ''Erzeuge - Liste von Punkten'' ausgewählt werden, sodass die zu den Messwerten gehörigen Punkte im Koordinatensystem erscheinen.


<math>f'(d)=(2d/\sqrt{400^2+d^2})-1=0</math>


<ggb_applet width="837" height="486"  version="4.2" ggbBase64="UEsDBBQACAAIALSEY0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAC0hGNDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1aW2/byBV+zv6KAR/6JEucCy9KpSxit2kWSIIgThdF3kbkWJo1xeHyIsmL/V39A/1jPXOjaMlrME0XKKoVbB/O8JtznzNnBC++P2wLtBN1I1W5DPA0DJAoM5XLcr0MuvbuKg2+f/XdYi3UWqxqju5UveXtMmBTEhzXwWjK9FqZLwPKVwmP0/AqXuXpFUtjejUnCb8iSSwwZ5yTiAcIHRr5slQf+FY0Fc/EbbYRW/5OZbw1LDdtW72czfb7/dQLn6p6PVuvV9NDkwcIFC+bZeAeXgK7R4v21MBJGOLZP96/s+yvZNm0vMxEgLRRnXz13YvFXpa52qO9zNvNMkhZGqCNkOsNWBnFOEAzDarA1EpkrdyJBpYOhsbmdlsFBsZL/f6FfUJFb06AcrmTuaiXQTilYZKkNMRpGidzwiIaIFVLUbYO7IXOPLvFToq95aufjEjtf9nIVSGWwR0vGrBJlnc1+BPUqTsYNu1DIVa89uOjNnQCIhv5C0BxwgJkXbAMEhxNQK8JicIJC0OrxkAmuKZVqjA8MXgW/YqAEEsoQr+ah8iOmRvGdpgYgkNLsHuZ6j9zPYifsceNjwa5iaFF2FtEteLeIuA+0b9x+LRFLJwn3+BIfBTLhmJTyiaE0UkCYqPoXCweyLQ8f9vWM5leYhQnX2HoIHQhiozLSUhCNNEEW0KAxLF9Fdo5CKshxBJmSWQxzC5nFsoshlkMo19h43k8vZFEb8GxRuJvS6LeszgaxBL2gvkxv2ci6XP7cHwsv0JizL4lYf8DgUn4KHd84liKHf2WcjRaqcXMF8KFUwg1G411+dWKbaNVpHOT4QijCNI4TiAhI4TnQBJdrAjCEWIRDHGKYk0TRHV9YoiiFGkcpsjkcZTCH2ZqV4wi4KUnE1vEEGUoogib7GcIvIDMDgKfEAqIKEIRLNLSsRZLY8RiGNAUMVBQ751El1AK62AMwgmiGFG9FieIxCgmKNH7DzO9LeNU6w5MCYpDFOulsAFh89mNBytSRLU1sAsq1cjeuRtRVH1UjB9lWXWt852bz7a592OrTuC5yu6vT5wteNP6ZwDBYXU8E+3h9ejIfLEo+EoU0Ffc6jxAaMcLvc0N/ztVtsjnALFz65pXG5k1t6JtYVWDfuI7/o634vAG0I1X0Ig2J/lCdFkhc8nLHyFJNAvNEPmD3VRLf7AzOrdSMqXq/PahgcxBhy+iVqBAOqWDDwNvPtg3DLNpmrB5/4G8zbjO+CichsMP7IYH94rNp/Phh8ZWstj1lvGDaLwr17XMh88/NNeqyPtwVEqW7Q2v2q42LRrUyVqb9LpcF8J41nQG0O1k9yt1uLUupZbX54cKRqGVv1rfqELVCPYjiSIAOLqy1GC0Yj0qNJjQIEIfI5n37/GcGIShK0sNCoJuVXOGYm8lDr0Y2ZhKA8yHKWYyZhl8EbINUFfK9p2dgAyV2b2zFts1H7rtChKuT2EA/EXaZs/1tXZL7MRrkOZgj6XjJ6W//dc/N+J3E7+YnWTtoqlqwfNmI0T7ZB6bA7HP49hlEyy6uxFFcTuEYsyOUIItcsAfQtdtS+95t2g+fw6He1z0LD9yxLHncLTHJeFzODYSF43ExSNxyUhcOhI3H4nD4VggHgskY4FjY4LHBgWPjQoeGxY8Ni54bGDw2MiQsZEhYyNDxkaGjI0MGRsZ8kRkRKEPbVUitLnNalWYYxrt/DOYnxkGphjUul76Os8fVKfPcaiHb1S97Qp+fWz39OzfBoebHr+1TE9QPz45ew2iGlF/hCtxceys4YU15y1YJx4t+AT8zSTys7wo1P4WehLJi7/mslXHS4B59Rl6ys+y6qu4+LmDt5+AyFr0ivOuVTdqWxWiFcNzZOhhqMRvzDclyH1j8p5DSxVOwgmH32xyRUI6j1I2uZuEL+FOo6eBEkepo8zRyNHY0cTR1NG5ozj0D54jtiyxE4Gf0gDDNHWvPTxylDmaOBo7Onc09ew9f6cC9pLJxFPq6JMaEKcgcRKIk0icBsRpRLwA4kUSpwNxOsELvwT3a7wO2CuBe7Bfjb1A7DUgvQVeEjGy7bl9dk4v7kUNuWm7yhI6u051jW1z+1b1xaJrxEfebl6X+Sexhl32kes7Ugu9g4Ue8ymHPN3CQjvv9hjXfd7foRexs7lY18L3MYX5lsx2WuZtOOxxz6YNqze12v5Q7j5DE3mi6mLm7Vk0WS0r3aqiFVza7sWxHc1lw+HKlw/XgfENWGFrSCtb3SWZXbPR+w3WcL1vKPqgdkI3TXBvgiNH9+8HcGmjv1H0vddrqDAwuwz+9HOn2j9/2csGOtvyF2gIRWnnjEgoWVsBV4jWNLhwRWiDAQuzOaEgILX6CUrb8eJvEYPgAOA32l0oENWG6y/vnmifdbldO7py1OH7VhqKI5g69L8R/17lw6hAO2hNedId1yfuADeMc8L17+SE/4ZRN4+NMu32OKtu/neseqRk2W1FLbNjChKjJyztPAMv6hndj4VgjOp4pOrY730oLWaDws23sreYSgjb4LfumogqYGdumQM/8u4gC8nrh8flarw3rv/wxsAbN394Y+gNeu6N6HK9wU69gS85N6Jzb1xwbsSn3iCXnBvJuTcuODfSU2/QS86N+bk3Ljg3cHjqDnbJyYHxuTsuOTvO2tHoorPjrB+NLjo7zhrS+KKz46wjjS86O85a0uSis+OsJ00uOjvOmtL0/zo7ZsOvwc3/qLj/Yn31b1BLBwj+hfRl+wcAAHQrAABQSwECFAAUAAgACAC0hGNDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALSEY0P+hfRl+wcAAHQrAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAkwgAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
* Durch Auflösen dieser Bedingung nach d erhält man als Lösung
</popup>
 
<math>d=\sqrt{\frac{400^2}{3}}\approx230.94</math>
 
* Um nachzuprüfen, ob an dieser Stelle ein lokales Minimum (schnellster Weg) vorliegt, berechnen wir die zweite Ableitung der Zielfunktion f<nowiki>''</nowiki>(d) und prüfen, ob durch Einsetzen von unserer Lösung in f<nowiki>''</nowiki>(d) eine Zahl größer als 0 vorliegt, also ob f<nowiki>''</nowiki>(d)>0:
 
Es gilt <math>f''(d)=[2*\sqrt{400^2+d^2}-d^2/\sqrt{400^2+d^2}]/(400^2+d^2)</math>
 
und somit <math>f''(\sqrt{\frac{400^2}{3}})>0</math>
 
* Die Weglänge über die Straße, also die Entfernung von Punkt D zu B, beträgt also
 
<math>1000-\sqrt{\frac{400^2}{3}}\approx769.04</math>.
 
Die Weglänge über den Acker beträgt
 
<math>a=\sqrt{400^2+\sqrt{400^2/3} }\approx461.8</math>.
 
                                     
'''Teilaufgabe b)'''
 
* Wenn allerdings der Abstand zwischen B und C nur 100m beträgt, so lautet die zu minimierende Zielfunktion
 
<math>f(d)=2*\sqrt{400^2+d^2}+(100-d)</math>
 
 
* Die Ableitung hiervon ist die gleiche wie in Teilaufgabe a) schon betrachtet:
 
<math>f'(d)=(2d/\sqrt{400^2+d^2})-1</math>.
 
Setzt man diese Ableitung gleich 0, so hat sie für <math>0\le d\le100</math> keine Nullstelle bzw. keine Lösung. Hiermit gibt es in diesem Fall kein lokales Minimum. Die Funktion ist im Intervall [0,100] also streng monoton, weshalb der minimale Wert am Rand des Definitionsbereiches liegen muss, also entweder bei <math>d=0</math> oder bei <math>d=100</math>.
 
 
* Durch Einsetzen von d = 0 erhält man <math>f (0)=2*400+100=900</math>
 
Durch Einsetzen von d = 100 erhält man <math>f (100)=2*412+100-100=824</math>
 
Da der Funktionswert für d=100 der kleinere ist, führt folglich der kürzeste Weg von A nach B auf gerader Linie direkt über den Acker.
}}
}}


<br>
===Bastelstunde: Falten einer Schachtel===
{{Aufgaben-M|1|
 
'''a)''' Vergleichen Sie die Versuchsdaten mit ihren Skizzen und beschreiben den Verlauf des Füllgraphen. Inwiefern kann man die Form des Gefäßes am Füllgraphen ablesen?<br />
{{Aufgabe|
'''b)''' Um weitere Erkenntnisse über den Füllvorgang zu erhalten soll nun die Geschwindigkeit des Anstiegs des Wasserspiegels untersucht werden. Ist es  möglich, diese Geschwindigkeit zum Zeitpunkt <math>t = 3s</math> zu ermitteln? Begründen Sie ihre Antwort kurz.<br />
Von einem rechteckigen Karton mit Seitenlängen '''a''' und '''b''' (mit '''b''' <math>\le</math> '''a''') schneidet man an den Ecken Quadrate der Seitenlänge '''x''' aus, so dass man damit eine oben offene Schachtel falten kann. Die Schachtel besteht dabei aus der Grundfläche '''G''' und den Seitenflächen '''S1''' bis '''S4'''.
}}
 
<br>
 
<br>
::a.) Berechne '''x''' in Abhängigkeit von '''a''' und '''b''' für den Fall, dass das Schachtelvolumen möglichst groß ist.
 
::b.) Was ergibt sich im Sonderfall '''a''' <math>=</math> '''b'''?
 
::c.) Wie groß ist das maximale Volumen für '''a''' <math>=</math> 21 und '''b''' <math>=</math> 16?}}
 
            Schreibe deine Gedanken, den Rechenweg und deine Ergebnisse auf einem Blatt Papier nieder.
      Falls du an einer Stelle nicht weiterkommst, oder du zum Schluss die Lösungen vergleichen möchtest,
                                  kannst du folgende Hinweise zu Hilfe nehmen:
 
 
Fertige zuerst eine Skizze der Aufgabenstellung an, in welche die gegebenen und gesuchten Variablen eingezeichnet werden. Dadurch sind die Zusammenhänge leichter ersichtlich.
 
{{Lösung versteckt mit Rand|Falls du die Aufgabenstellung richtig gelesen und verstanden hast, müsste deine Skizze jetzt so aussehen:
 
 
[[bild:lernpfad.jpg|left]]
 
 
 
 
 
 
 
 
Wie man im Bild (links) leicht erkennen kann, wird die längere Seite der ausgeschnittenen Schachtel mit <math> (a-2 \cdot x) </math> und die kürzere mit <math> (b-2 \cdot x) </math> bezeichnet.
 
 
 
 
 
 
 
 
 
 
 
 
 


==== Einstiegsaufgabe 2 - Barringer-Krater ====
''Die Idee zu dieser Aufgabe entstammt dem Schulbuch Lambacher-Schweizer, Analysis Leistungskurs Gesamtband, Ausgabe A, Klett Verlag, Stuttgart 2001, ISBN 3127321805.''
{{Mathematik|
In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater. Der Krater hat einen Durchmesser von bis zu 1200 Meter und eine Tiefe von 180 Meter. An einer sehr flachen Stelle kann der Teilquerschnitt des Kraters bis zum Rand durch die Funktion <math>k(x)=0,002x^2</math> für <math>0 \leq x \leq 300</math> beschrieben werden.
}}
<br>
[[Datei:Meteor.jpg|400px]]
<br><br>
[[Datei:LP_Krater.png]]
<br>


{{Aufgaben-M|2|
Im Krater befindet sich ein Fahrzeug, das eine Steigung von bis zu 115% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?
<popup name="Was bedeuten 115% Steigung? Hilfe">
Wird eine Steigung, wie z.B. bei einem Verkehrschild [[Datei:LP_Steigungsschild.png|100px]] angegeben, so bedeutet die Prozentangabe eine Höhenveränderung von 20m je 100m horizontaler Strecke. Im nachstehenden Bild finden Sie die genauen Angaben. Beachten Sie insbesondere auch die Länge der tatsächlich zurückgelegten Strecke je 100m, sowie den realen Winkel der Höhenänderung.


[[Datei:LP_Steigungsdreick_10P.png|400px]]


</popup>
}}
<br>


[[Media:AB Einstiegsaufgabe.pdf|Arbeitsblätter zu den Einstiegsaufgaben]]
Die folgende interaktive Skizze (unten) ist dazu gedacht, dass du die Zusammenhänge der Aufgabenvariablen besser erkennst und ein bisschen mit diesen "herumspielen" kannst.


<br>
Benutze dafür den Schieberegler. Ziehst du den Reglerpunkt nach links, werden die auszuschneidenden Quadrate kleiner, nach rechts werden sie größer. Zeitgleich verändert sich rechts neben der y-Achse das Volumen der "zusammengefalteten" Schachtel, welches als grüner Graph dargestellt wird. Außerdem wird dir zu jedem Volumen der zugehörige Wert der Quadratseitenlänge in türkis auf der x-Achse abgebildet. Als konkretes Beispiel dient ein Karton mit den Maßen 14cm x 10 cm.
<br>


== Von der mittleren zur momentanen Änderungsrate ==


===== Blumenvase =====


[[Datei:VaseFuellvorgang.jpg|130px]]
<ggb_applet width="960" height="590" filename="Schachtelfertig3.ggb" showResetIcon="true" />


In der Einstiegsaufgabe haben Sie in Gefäßen gleichmäßig Wasser eingelassen und die Höhe des Wasserstandes gemessen. Betrachten wir nun die abgebildete Vase, in die ebenfalls gleichmäßig  Wasser eingelassen wird. Die Tabelle stellt dar, wie sich die Wasserhöhe (hier gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert. Im Gegensatz zum Vorgehen zur Einstiegsaufgabe wurde nun alle drei Sekunden die Höhe des Wasserstandes gemessen.


:{| class="wikitable"
Für welches '''x''' bastelt man die Schachtel mit dem größten Volumen?
!'''Zeit (Sekunden)''' !! '''Höhe (cm)'''
|-
| 0 || 0,51
|-
| 3 || 1,33
|-
| 6 || 2,74
|-
| 9 || 4,91
|-
| 12 || 8,00
|-
| 15 || 12,17
|-
| 18 || 17,58
|}


'''Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.'''


''Bsp.''<br /> In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)<br /><br />
Versuche es durch Ausprobieren und Ablesen!


{{Aufgaben-M|3|
Berechnen Sie anhand der obigen Tabelle und mit dem Taschenrechner oder PC die mittlere Änderungsrate in den angegebenen Zeitabschnitten:<br />
a) in den ersten drei Sekunden<br />
b) zwischen Sekunde 3 und 6<br />
c) zwischen Sekunde 12 und 15<br />
d) zwischen Sekunde 3 und 12<br />
e) in den ersten 18 Sekunden<br />
}}
}}


<popup name="Lösung">
a) In den ersten drei Sekunden steigt die Wasserhöhe um 1,33 cm - 0,51 cm = 0,82 cm. Pro Sekunde steigt es daher um 0,82 cm : 3 s = 0,273 cm/s.<br />
b) In den drei Sekunden von Sekunde 3 auf Sekunde 6 nimmt die Wasserhöhe um 2,74 cm - 1,33 cm = 1,41 cm zu. Die mittlere Änderungsrate ist daher 1,41 cm : 3 s = 0,47 cm/s.<br />
c) Zwischen Sekunde 12 und 15 liegen wiederum 3 Sekunden. In diesem Zeitraum steigt das Wasser um 12,17 cm - 8 cm = 4,17 cm. Pro Sekunde nimmt das Wasser in diesem Zeitraum daher um 4,17 cm : 3 s = 1,39 cm/s zu.<br />
d) Bei Sekunde 3 beträgt die Wasserhöhe 1,33 cm, während sie bei Sekunde 12 genau 8 cm beträgt. In diesen 9 Sekunden ist die Wasserhöhe also um 8 cm - 1,33 cm = 6,67 cm gesteigen. Die mittlere Änderungsrate zwischen Sekunde 3 und 12 beträgt daher 6,67 cm : 9 s = 0,741 cm/s.<br />
e) Das Wasser nimmt in den ersten 18 Sekunden um 17,58 cm - 0,51 cm = 17,07 cm zu. Die mittlere Änderungsrate beträgt in diesem Zeitintervall daher 17,07 cm : 18 s = 0,948 cm/s.<br />
</popup>


<br /><br />
'''Lösungsweg zu Teilaufgabe a.)'''


<br>
Nun gilt es, mit Hilfe der Variablen in der Skizze die Formel für das Schachtel-Volumen aufzustellen. Weißt du noch, wie man das Volumen eines Quaders berechnet?
{{Mathematik|
 
Möchte man nun für einen Zeitpunkt (z.B. Sekunde 12) eine Änderungsrate bestimmen, so spricht man von der '''momentanen Änderungsrate'''. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in der folgenden Aufgabe.
{{Lösung versteckt mit Rand|Wie du dich vielleicht erinnerst, berechnet man das Volumen eines Quaders mit dem Merksatz "Länge mal Breite mal Höhe". Hier in unserem Fall lautet die Formel also:
 
 
<math> \begin{matrix} V(x) &=& (a-2x) \cdot (b-2x) \cdot x \\ \ &=&(ab-2ax-2bx+4x^2) \cdot x \\ \ &=&4x^3-2ax^2-2bx^2+abx \end{matrix} </math>
}}
}}
<br>
 
{{Aufgaben-M|4|
Jetzt bilden wir die erste Ableitung der Volumenformel '''V(x)''' und setzen diese gleich Null, um "Kandidaten" für Extrempunkte zu bekommen.
Um näherungsweise die momentane Änderungsrate für den Zeitpunkt <math>t = 12</math> Sekunden  zu erhalten, bestimmen Sie mit Hilfe der Schieberegler des Applets und mit Hilfe des Taschenrechners bzw. PCs die mittlere Änderungsrate im Zeitintervall von ...<br />
 
a) ... <math>t = 12</math> Sekunden und <math>t1 = 13</math> Sekunden<br />
{{Lösung versteckt mit Rand|<math> \begin{matrix} V^\prime(x) &=&12x^2-4ax-4bx+ab \\ \ &=&12x^2-4(a+b)x+ab  \end{matrix} \qquad \qquad \stackrel{!}{=} \ 0 </math>
b) ... <math>t = 12</math> Sekunden und <math>t1 = 12,5</math> Sekunden<br />
 
c) ... <math>t = 12</math> Sekunden und <math>t1 = 12,1</math> Sekunden<br />
 
d) ... <math>t = 12</math> Sekunden und <math>t1 = 12,05</math> Sekunden<br />
Mit Hilfe der "Mitternachtsformel" erhalten wir maximal 2 mögliche Extremstellen (da dies ein Polynom zweiten Grades ist):
e) Schätzen Sie aufgrund der Ergebnisse aus a) - d), welches Ergebnis für die momentane Änderungsrate bei Sekunde 12 Ihnen plausibel erscheint.<br />  
 
 
<math> \begin{matrix} x_{1,2} &=&\frac {4(a+b)\pm \sqrt{16(a+b)^2-4 \cdot 12 \cdot ab}}{24} \\ \ &=&\frac{4a+4b \pm \sqrt{16a^2+32ab+16b^2-48ab}}{24} \\ \ &=&\frac{4a+4b \pm \sqrt{16a^2-16ab+16b^2}}{24} \\ \ &=&\frac{4a+4b \pm 4\sqrt{a^2-ab+b^2}}{24} \\ \ &=&\frac{a+b \pm \sqrt{a^2-ab+b^2}}{6}\end{matrix} </math>
 
 
:<math> \Rightarrow \qquad x_1 =\frac{a+b+ \sqrt{a^2-ab+b^2}}{6} \quad , \quad x_2 =\frac{a+b- \sqrt{a^2-ab+b^2}}{6}</math>
}}
}}


<popup name="Applet">
Für welchen unserer Extremstellen-"Kandidaten" das Schachtelvolumen maximal wird, sehen wir nun durch sukzessives Einsetzen der erhaltenen Punkte in die zweite Ableitung der Volumenformel '''V(x)'''.
 
{{Lösung versteckt mit Rand|<math> {V^\prime}^\prime (x) = 24x-4a-4b </math>
 
 
:<math> \Rightarrow </math>


<ggb_applet width="559" height="590"  version="4.2" ggbBase64="UEsDBBQACAgIABFpYUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAARaWFDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVcW3PiRhZ+nvyKLh62PInBfdVl1p6UjeeWmmSmdmZTW3nYKSEa0CAkIgkbu/K79mnf8sf2dLcEAgkMGHtw1omndWl1n/Od71y6ET79cToK0ZVM0iCOzhqkhRtIRn7cDaL+WWOS9ZpO48eX3532ZdyXncRDvTgZedlZg7doY/4cnLX0s0EXThwHC4fzpis7dpP7gjQdi7Am9aiDXctivu80EJqmwYso/sUbyXTs+fKTP5Aj733se5kecpBl4xcnJ9fX161i8lac9E/6/U5rmnYbCASP0rNGfvAChlt46Jrp7hRjcvKvn9+b4ZtBlGZe5MsGUkpNgpffPTu9DqJufI2ug242OGsIx2qggQz6A9DSpiDpieo0BlXH0s+CK5nCo6VTrXM2Gjd0Ny9S95+ZIxTO1GmgbnAVdGVy1gCoOLGYQ6mgQrg2a6A4CWSU5V1JPuVJMdjpVSCvzajqyICMXRsMEKRBJ5RnjZ4XpqBUEPUSABTkSSZwmmY3oex4SXE+F4ccw3/QIbiVaiywnEHhrMEYO3bcYxvjYyGwEaU0L+CRxXGoByWALfoDQUNNwxD6Qx8Ic87zU8uc2roh2DQkv+mof1x1Yq1RKD+fa5RfKKvECoVYWSEY/Vj9WvCrNV3SiJRmNTCtnnQZxtmMYMfNZ+QlDDESWneKKUbHqiGmodBYlrmFzTXAVzfUNNw0wvTh5nFuunLTh5s+nG2DbIUrhZKOQzZXkt7LmDNgaZ0pqVhhynsyqJiUiNKkMJf+X/9WpmRb6bkS2i1mtPh9/H6HCW28wNeCrKYlebsOhr0JdXpSRMLTXCCUDlTf3G8zOUqViMzVXoUIEuA6lg1OIBBxobFVpKKICMQFnBIHWaq1EVPBiSOGHKT6EYa07wgH/uE6cFlIwFjqom0iGGIcCYaI9jiOAAWkvRYwoQx6CIEEPKRmJ2paZiFuwQlzEAcBlb/aKn4yeA7OYXKKGEFMPUtsRC1kUWQrnydchQLLUbLDoBRZGFnqUXB6cHjj7PCEg5jSBrxgHKfBDNyBDMczq2gcg2g8yRaw80fd4jCLl3p3Y394sYS19NKsOIZOkKzmGdEkr4WE+ew09DoyhKrik6IBQldeqGKEHr8XRxkqKJBf6yfeeBD46SeZZfBUir56V957L5PT19A7LQTUU+s8fionfhh0Ay/6FTiihlADollaVwG6SOvCymfx4zjpfrpJgTho+ptMYpDJ4S3iCsumNnaIRcHbbswdTpyWYJQw7jDH4tiBW6nvKcYz0bIEIVD3cMjnlsPABDf5PXiKQ0nEbeZwTJjLhZlbXs1086YyLcDsJ8rncvjVybv0Ig7nl8ZxEGVtb5xNEl2jQaRMlFbnUT+UGlwde6Hc8YedePrJoMrMWJ9vxnCGjQCdfjsO4wSpkkQI6JC3HdPqPkqyWS+s+2DdAxdmCrqz+8SluoduO6bVvcDuRrRcU1KoSXAxTZDqWAODG5YVwVmxRlVPkyjI3hcnWeAPc1WJeeCXyagDhJtRGDpcBqbUM1Xt4jSksUDmvcyCW6Lwuyt5DjPl3TRFl8h5OpRJJENDwQhIMIknqfGJGa+fnU5S+dHLBudR9x+yD8780VPxNAMJTNdiePBQ6QcjeNBc57m2ihH/BI3M1a7sJzLv74W6oDY20Xdx2SEql/VQr5N49C66+gx0WxL19KTQ5zT1k2CsWI06EOCHck7cbpB6kB665edA+RS08FWoAjgzhXUDeZNsECe6ZgaHhwSEPgyzGJCHEAtMVr4eyhEUzCjTfI4mI5kE/syOGdG1OMg4ydUgsEDJGa3siOLOVwhNS+afwwm3V5AeeeF44Cljk5za3g3IpSexiysw2s9xt5g6nzZUxT8aBZEeZuRNVW0D43XSOJxksPwB40Tz5Y+RLA9eUOuoxdVUOQxVRzcQwyhXR71gKmeRG1ALboFPi+SYe18GEXUIa4pUh4gsDwb64G3Q7cpoJq4XAZ+0VSA2jpW+WPnAWErjPbNnxwCAjkMlMuTWudNOnyt2woWnLlhpMRaUHOQB7LSs+KZaw5OTaRAGXnKz6JxlOPx4NPKiLop0WfR6EmniQ+WkqqJpY56ZPazYgU7Q9N9H7DloQ5QqLmQVj0LIb7Fc/0lW9O6ZufIZKtD3ZnMVKDbWO8OWKOMKyrgWZbyGkmIdJTdnVVZxftqyHtr367V9KN/nNn5U369xAlLvBD4UJupJrf7rP/8bhrcyyCoGnI4TkER1zPH3oKKcqrLziD83BeV6I3vVyMFIEeI3NuE6mdBZY5ALNTjKnqMzBJjDauJ7dJShH5DzXHtmVdKKpw2qnnavgLalq+0e0Lbnznobv83hPMLHSEH6vBhKl7R1Vs9vzJ6/A8h6J7YcDaRqOqbZGsryaiFVrohzR3RaNqwKiIXzH1gR3JbqTS2/qsDNMKx8danGWp0mPiRQDfXjyAvfg0GWksRbkxtuVL1ZyQn++pyg7DvDzr8XSwUxywYFwK5EraLb1FvKt3Uw7xzc5O+ReSQ1lX0wGoeBXw1RW6Xq5nKubqoUrXN1U6ftZcv0t8zW/SecrReRfBep9QtosARh3wDnG9SOwPSM2JbtcMEtRjDj9jEq0UAwQriJvwvAttcDuxhQ2jtyfg8RpcL5GoWXI4zR+QEizB3sxjNO86L+5BXgoy0ZHR0eozdObZsxurfI6LJ9hW1TwhcIrX9EldCX2xD68oAIXdW3NmOKvfB5fbHof/k2C821i4JHXGh+1CRZZGdUYdqrbZj2akemqRpdbxHS+Ubj3krbrRYqlWoD58XGvblYKXxfF4Xv9Ojy+THC2xa+rw/frfcF3jJxwxuofJeo+8oE1rcmsF5CwxRGy3z+NYBh/SExvaXpPfhCTP+uPuCA3RdyF/GNEAXYs3FXJhJc2JfW16BbZz3iGEtSYjbWKZsHHrKdLVdHzVT21dlMFrlbhl4n633qo5qlVol385F3MQiwJlQRYpbKwXmr2/FDKcfqA5QP0efEi1L1JszqCLwe20GekQ4GXdKybYsJy2Eux5gKLF41idAQ13n8rXqEtARxXOjs2rYDl52nZIHugVmgpi4q0bsCtnhKWPcODOvS/kIttQ8umFQXHP3ECy9kdi3lcnbMlx2RyXeq4jAJr27R1l2f+Zbr6O5yFc1bjsuZ6zIXFqYEFq3fNL+RTYx2v88W/C/0m6wk+DqFH3QlUa1mz4tqFhh1jHqq2Xor9/yAKlq9raFjrcCOIzi2sCWg4eSBlgMXBYBNjWBft1tDeHFAEDYfGsM1OLzbw8cre12F7rIGneO3fhkl6gG7I4otAvbTXwGw5r4R22Th+ZNJrRcmtZ6bvPpu1cKTmt5fTe+O6e0Vy85gp0UnXb3ovONzjz3ttNZl4/r3KbZcbX79pvvBJWLVhbCFSrxlMwyljoMtSh1ms3XLnjuM8uiVeOdAUC4qcKvlGFTBnS1MsW0RyoVlc9t6Qqh6u65vHgDXvzB5g4MBOV8+Fuxdv178BjBWSs438x3o9i470G8eo9isX+Rs/EnpN9iCfmNye9vk9rerKgGWb0Hr3A/9+8UmtP+FmWpg8IXuVA+wDTahn/Qe9GPtHG3Ivdqdo4KDm+8cHUhA7R8Yus2alx1WbII6lDs2e0JYK1c/JKwFEJgwVwCJLYCSuK+aBFf2+0vUXtiCFhyqDPcJwT/IN+4OBf69fJp1kPvP/YX95/xFOKZ2otvVt1uG67Pe8vbrsGYDmhNi25bAtmMxm9z5JY+nvwPN/+93oC9oXs7WVq7LiF1UtuznXwjYAovdJCW5pH/7fRJnf/9NBpk5alTlzuS0tLtbk5n3/Nb4pts2FaXai0q9/fM/A7mZVu1D1orO3va/oBt9B6FdIdaK95QfnGWs8AeykUOwNV+Pe2hZ22wOM9sM5qq4EJGJIBxbjyX1+SLlL2WYedPNOH9+wJy/rFHrZjO1Lg9YrfOCYxcMNZHKFnez7LzKshZUFeWfR/Lmy0L6tpK+vZH0lxXpaYvajFFuUe6qH/uRHEUsMiro9dTBiw19RRwuqS4KzS4ZOkGKYhtEWlElFbPhJzeK6zqPY5ZBhkvfZdtEdPXEnrPbXSKSuYhkQxmrX/TePTWsF+8z8LSm7kG3kxFSZd14Eg1BTnSGzF30A1JfE8xPPsnhJIJy/8X8LgA8v++Pcgep0XrBQ4wYD7wPvsZHYN7MSzL9RjnKP4jF2LHV38OgFvCDmT0buOwylzLbJa5tcY6dhRf978aa3o01AbBLaJM6uMt4kx3x3nHn4MHwthksdTHl1KUYIDd42y3ChEshpGDb5cJxV+J9Uv6jC+q8+PNqL/8HUEsHCE/0k3SeDAAADU4AAFBLAQIUABQACAgIABFpYUNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAEWlhQ0/0k3SeDAAADU4AAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAA2DQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
:::<math> {V^\prime}^\prime (x_1) = 4(a+b+ \sqrt{a^2-ab+b^2})-4a-4b =4 \sqrt{a^2-ab+b^2} \qquad > \ 0 \qquad \Rightarrow \quad x_1 \ ist \ Minimum </math>
</popup>


<br />
:::<math> {V^\prime}^\prime (x_2) = 4(a+b- \sqrt{a^2-ab+b^2})-4a-4b =-4 \sqrt{a^2-ab+b^2} \quad < \ 0 \qquad \Rightarrow \quad x_2 \ ist \ Maximum </math>
<popup name="Lösung">
a) Bei Sekunde 12 beträgt die Wasserhöhe genau 8 cm, während das Wasser bei Sekunde 13 die Höhe 9,261 cm hat. In der einen Sekunden ist es also um 9,261 - 8 cm = 1,261 cm gestiegen. Die mittlere Änderungsrate in diesem Zeitabschnitt beträgt daher 1,261 cm/s.<br />
b) 8,6151 cm - 8 cm = 0,6151 cm => 0,6151 cm : 0,5 s = 1,2302 cm/s<br />
c) 1,206 cm/s<br />
d) 1,204 cm/s<br />
e) Der Wert scheint gegen 1,2 cm/s zu streben.<br />
</popup>


<br /><br />
 
{{Aufgaben-M|5|
'''Ergebnis:''' Nach Herausschneiden von Quadraten der Seitenlänge '''<math>x_2</math>''' an den Ecken des Kartons besitzt die gefaltete Schachtel das größtmögliche Volumen!
Die Höhe des Wasserstandes der bisher betrachteten Vase kann mit der Funktion <math>w(t)=0,001(t+8)^3</math> beschrieben werden. Hierbei gibt <math>w(t)</math> die Höhe des Wasserstandes in cm zu einem Zeitpunkt <math>t</math> (in Sekunden) an.<br />
a) Bestimmen Sie den Näherungswert für die momentane Änderungsrate noch genauer, indem Sie mit Hilfe der Funktionsvorschrift die mittlere Änderungsrate im Zeitabschnitt von Sekunde 12 bis 12,001 bestimmen.<br />
b) Beschreiben Sie, wie Sie vorgehen müssten, um einen möglichst exakten Wert für die momentane Änderungsrate bei Sekunde 12 zu erhalten.<br />
}}
}}
<popup name="Lösung">
a)<br />
<math>w(12)=0,001(12+8)^3=8</math><br />
<math>w(12,001)=0,001(12,001+8)^3=8,00120006</math><br />
=> Höhenzunahme: <math> 8,00120006 cm - 8 cm = 0,00120006 cm</math><br />
=> mittlere Änderungsrate: <math>0,00120006 cm : 0,001 s = 1,20006 cm/s</math><br />
b) Der Zeitabschnitt für die mittlere Änderungsrate müsste immer kleiner gewählt werden, z.B. zwischen Sekunde 12 und 12,00001 usw.<br />
</popup>
<br />


== Von der Sekanten- zur Tangentensteigung ==
'''Lösungsweg zu Teilaufgabe b.)'''
 
Für den Sonderfall '''<math> a = b </math>''' ersetzen wir also nun die Variable '''b''' durch die Variable '''a''', was bedeutet, dass unser Karton jetzt quadratisch ist. Dadurch erhalten wir sofort zwei neue Lösungen für die Seitenlänge '''x''' der herauszuschneidenden Quadrate.
 
{{Lösung versteckt mit Rand|<math> x_{1,2} = \frac{2a \pm \sqrt{a^2-a^2+a^2}}{6} = \frac{2a \pm a}{6} </math>
 
 
:<math> \Rightarrow </math>


===== Barringer-Krater =====
:::<math> x_1 = \frac{a}{2} \quad \Rightarrow \quad Fuer \ diesen \ Fall \ gibt \ es \ keine \ Schachtel, \ da \ (a-2x_1)=0 </math>
{{Mathematik|
 
Um entscheiden zu können, ob das Raumfahrzeug aus dem Krater kommt, benötigen wir die Steigung des Kraters am Rand des Kraters.
:::<math> x_2 = \frac{a}{6} \quad \Rightarrow \quad {V^\prime}^\prime (x_2) = 24 \left( \frac{a}{6} \right) -4a-4a = -4a \quad < \ 0 \qquad \Rightarrow \quad x_2 \ ist \ Maximum </math>
<br>
 
Die ''durchschnittliche'' Steigung des Kraters zwischen zwei Punkten <math>A\left( x_0 | k(x_0) \right)</math>  und <math>B\left( x_1 | k(x_1) \right)</math> kann mit <math> m=\frac{\Delta y}{\Delta x}=\frac{k(x_1)-k(x_0)}{x_1-x_0}</math> berechnet werden. Dies enspricht der Steigung der Geraden, die durch die Punkte A und B geht. Eine solche  Gerade, die den Graphen einer Funktion in zwei Punkten schneidet, nennt man '''Sekante'''.
 
<br>
'''Ergebnis:''' Die Schachtel hat die Kanten '''a/6''', '''4a/6''' und '''4a/6'''. Das ist das Verhältnis '''<math> 1 \ : \ 4 \ : \ 4 </math>'''.
<br><math> m=\frac{\Delta y}{\Delta x}=\frac{k(x_1)-k(x_0)}{x_1-x_0}</math> ist dann die '''Sekantensteigung'''.
}}
}}
<br>
 
'''Lösungsweg zu Teilaufgabe c.)'''
 
Zum Schluß haben wir noch zwei konkrete Werte für unsere Kartonseitenlängen gegeben, nämlich '''<math> a = 21 </math>''' und '''<math> b = 16 </math>'''. Wie groß ist hierfür das maximale Volumen '''<math>V_\mathrm{max} (x) </math>'''?
 
{{Lösung versteckt mit Rand|Dazu setzen wir zunächst '''a''' und '''b''' in die Formel unseres Maximums aus Teilaufgabe a.) ein:
 
 
<math>x = \frac{a+b- \sqrt{a^2-ab+b^2}}{6} = \frac{37- \sqrt{441-336+256}}{6} = \frac{37-19}{6} = 3 </math>




{{Aufgaben-M|6|
Jetzt wissen wir, welche Länge die Quadrate haben, die wir an den Ecken des Kartons ausschneiden müssen. Mit diesem Wert lässt sich schließlich '''<math>V_\mathrm{max} (x) </math>''' berechnen:
Überlegen Sie, wo  in der Zeichnung folgende Größen zu finden sind:
 
<math>x_1-x_0</math> und <math>k(x_1)-k(x_0)</math>
 
<math> V_\mathrm{max} (x) = (21-6) \cdot (16-6) \cdot 3 = 15 \cdot 10 \cdot 3 = 450 </math>.
 


''Achtung: Nicht auf den Monitor malen;-)''
}}


<popup name="Applet">
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAKBhY0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACgYWNDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ceXObSBb/O/MpulRTW8muJdHQgMhKMyU5vqacydQ6uzW1SXYKQUsmRqAAsuXM5Lvv626QkLgMtmw5Ltscfb7fO/t1S/2flzMXXdMgdHxv0MIdqYWoZ/m2400HrUU0afdaP//0Q39K/SkdByaa+MHMjAYtwmo69qBlasRQiDpp65ZttIml2W1Dt/S2jWUsSxPTIJrSQmgZOq89/1dzRsO5adEL65LOzHPfMiM+8GUUzV93uzc3N51kqI4fTLvT6bizDO0Wgml64aAV37yG7jYa3Si8uixJuPv723PRfdvxwsj0LNpCjISF89MPL/o3jmf7N+jGsaNLIFjuAR2X1JleAlGGrrVQl9WaAyJzakXONQ2hbeqREx3N5i1ezfRY+Qtxh9wVPS1kO9eOTYNBS+rIClF0tYX8wKFeFNfA8UjdpI/+tUNvRGfsjo9DWijyfXdssn7QX38hWZIldMAuWFxkuGiaKJLEO0kRF1lciLioog4RzYmoSkQdIuoQYNS1Ezpjlw5aE9MNATjHmwTAtNVzGN26lM8nfrGmGR8ATaHzFSorEqAqkIb3knTA/jT4I6ygu0kkTo0aBYuagyZDYlmT7z6mfC9KlVI6ZbWATq1kUEH4nQhVU2PCUPyX/2VGVMrI3B5RPN9vQI08Con9bqIr/Vg9UHjJ6sbiE9FZyBRGMZBqMLnHSAXl0HQQcxVhAy66jEAdEFYRUeER95DGrjpSdCggSEE9xOphBXHtUHvwj+i8Mw2p0Bl7q4NSIgwDEaQqCHOlIghUCXHFBCWVFaihqkiFRmx4LLMuFA0RDZ6UHiIwR6aTOoaKCjSEZxheRgpGCmuMdSRrSGP9YcJ0XeuxqUOXMtIkpGHWIag1qLRQZ6jfQwqjJrFmjjdfRBsQWTM7uY38+YoXUBsM0trYCQO1YQtf9F1zTF3wDxeMkwhdmy7TCD7QxPcitFJI8W4amPNLxwovaBRBqxB9Nq/NczOiy2OoHSZj87qW74W/BX506LuLmRciZPmutJqz7+LUvbyaNTwoqQKSLlBTBVrqXs8d14cStAgpjO8HYVLdtO0zVmNtGgDJd557OwqoeTX3nU0y+l3uavp0YbmO7Zjef0BY2SgMF7T2PMxeJZ5HN4xkJn5gX9yGIMJo+V8a+Myu4I4m91RNUlQDy0SCdreiSNOMjiSrPYnoqkFUHUpCy2TKhztYMsi6EWuzKlKJ1JN0rOm4J6kkHplerzhkLumK+GnAFDsmnD2chSPfXb/i5B+a82gR8JgBbGPAaBp6U5dyEeHWFhyydTX2lxdCNhTR1/vbOTxJYgLjKYcdgWmQVXCX0/g6Fldeh81sVUvidSReQ0qEzbFX5diQeQ1+HYsrrwXSK6YWU4oTMrGUDOOE3KBJrQ214aLPvPvCc6Lz5CFyrKuYUizq/7qYjelKgDa7xA/UZb+7JWD9Kxp41I3lGTi58BehUM+UqNvUcmbwKApiQEzGrH/DBMRbm04Dmszb5dGYgIuXSmlJzbzmXR0H/uzMu34PkrA1gX43mWU/tAJnzgQOjcEHXNG1TNlOaIILsdPtmAIC6RZzFQBPxKAB1VxEl37A4y2wKHBlerecBzRkAa0AF0E3ENUumZl7uXyFBkjqsOjo72j5v5fyK947dekMYjMUcYGcLDw+zoo7Ex7tMTYgf/wZbOEW91L4QnmBgCLTnV+aLCCMoXLNWxpsgMe7e+vb25ACxzjdYBbmQiLmlApZimIVQnPojmtgajJrQY/ABF9BoBlybRSNQNr53alj25T7XyFWAguO+WxmejbyuP/+jWl6a+1PTIkBI4heRMmboegkbpqBlpuLFW7DClzX6pOGFcvCOvBrbB12CS7OB5crQIiWPAxky6FbqNrjd1/FUkosJRjFzOxteErxdkt77ov9qA72o+8De7LCXpF3g/05KNEW9EOgGcd4b3DALOcA08cVwGYzo6LiDdfIHpviv0axjclKhKUERgg1pHWfeaaEpOxPxpJASPHFE01C4cqc2dx1LCcqx/vC9efbgJsZpGflSHuLGQ0cawXmjHcIxC9iCHCHiD43GJCsSUpVQFU4BxjyW4Ydl+L/bjIJacSFVuFQt2U5lz2ZMCXPetcz3u8CcJRT3zPdHHEeCXFeDiFGyQA9riHS46xIbyK6W0eZludYmhNZJhWSXAprU0kuBX1YBrpVA3Rrb0FXngL0My+COBlg2MLbKsN7+YdUx3ey6k28J8uPTMVlLC73R30dfLR34/+KAB2XA4rrAYr3BlCya0DvYhZuc1G1a5gFe1/MwgpNnKDZ2zdbPCoDndYAne4t6CI63hNbTMvwPqpjOI6eymwoRYjfbxkCPZpzviTi765egmV81QxkgS4H2s6AfFwH5OO9A/l+6+wckKWGII+LAD6pA/BJldl4Cu+3q1zGGyfelc11fCfZNfWY1beHFYhur/jWzbZXfuuo9C4muGJhVUDNSWGGQEzrpCJXU0DNyShDDbkfNdvZUpb9dSPzNs6Yrsflm0Plk4xbPs4Ml5szBD7fdYbLh5aInBk6kwkNqPeVel8WfsT2/ePpCoxQFyVE3GHSOZ0VZTMeQKIv6HRGM9nGUZF6TssFOYx7S4iZ3ivrFedc6mQd11kX1viWNS5Luqwt4TolltjBtqpVZcSSnHqTOIrD6rJc58rbgEhlt3CuKJ2znbN33vvA9EJ2JEfUSW0N1eJtbKziNdsGdy/rcffysblb4sli/5Xmny5X8W8VBsvPiH9JKukPKcM/px7/nP3mn1qZkX7O/Mva1s/1uPe5GfeS3faYfZgdMHi4Feh6P6ENHK1gn/EMreex4N4ww72rety7apg72C37FOl7176jolDdrcc/dx+1j6S0T65Uv73jXzayfk+XEVuN8GD6bywe/ufHNyyURrcfDwYfDyY8Y9Ke8DU9+niABuyfqIj+gV6em+/p7x9Wy5pPr+ClKBX/8wLyCMZsbU2gma4+oKN0Qk7KJnbxEbwQ1g+T9XE1fuZKaiVcizsABIKIHywQYL51bL6S/3BygEafmmgSC0AKI0mvnjZ5T6hNmaVA1peV65HyDN1YbAaPM4yb12PcfJ9CyMwS7jnzrSDVVKp1saE7fNMo3QTNdp4qYfYUxskx6MsBApJQGwgsteKHb5pZ8Zi6e0dc9zmCszsrDqgdMPw+5eZC2mq8PyQbjYSu0FrEPDmq2GAoELij491nDxnrYZy8CALETMQPKAkgyuTu6LiZ3B3l7Kd8P9HD0QE6zkQP+VzAG0x4k01zvkY/oo+TwLT+TDj0LblbfhuIko2A79uf8MAMxjf042CbbTl51GYMzDmr8Ji7vHfgXfxZm0rW8bRoRyGxLQD1Se337OIEw5dys7Cxmf5lbzfTn+QEQ94Z4C8ZgA/LAd7cdzxstu+4d4eAVUPrYElTdEVVJEWW8U43MP8V73FlRP4ww42gnBsB22eLoQ72TdrlLKg8C6TIhtHBRJcVlai6oau7UYRHCKjzNGqe4WFF6LypUZUh5TPRqPUhANAdQ9J0rClY1eBnBwqVvyB9U5RXDestSMMHySQ8zDn7bTD55/K2kqyKrHdkCZOeQfTnlKurc8pjWrRuGFZsJxed8pg+zkKVnTLIWajyzGMceVakHIcnzWLOYeUZoUfIL+9u1TA8QCd3XDUArwt5gO7IhGlDJuScXvi+mHDo+iENRemH6QEafirIHyi68A9KIzMwqjADo2ZmYJQxA7swAqMtAfSvacBM9J9raWNfdPJBbC6I+7TAfctuS6znfxcxHDUVw8dbgDaUwFFWAkefKvYiio5mToWMBRkZO60T0J3uz9FM3NHUHjZUzcC6ZvQkxTgSSqgTDfdgsaNhiNkJxiJGI5iopNMzZNkgMlElQ33AkK1cr08L9boC+yK9Ps1NC6Z/lPuoeQn/z5vxPz32HgXzT/CBlvOydFBUIx0U7dsCef/SQVEG4LM6tu7sO1m8arraIbJMJIMbRsPYqfQX+Z+JEHyA15RXe8op1vxShzW/7I8b2v23HWQTbL8ILM+yfqXqc4bpFJtZ+SnDxzYhypak9oTrboME61pHUhRdUsDV4bJEwD0+hP+IZ3bAhRee2RGfcmpf3enMzui02dptVBnJlTKfL9n2d9cNAufT/JUaFimmCpU7Tr7yJteGScKGsa+721bAr+Xql/kqna9PqoH1FSgNWTf9JUTsOfmuyp/+D1BLBwjoTTtWSAwAAEhTAABQSwECFAAUAAgICACgYWNDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAKBhY0PoTTtWSAwAAEhTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA4AwAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
</popup>
<br>
<popup name="Lösung">
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAImuYUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACJrmFDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ceXPaSBb/O/MpuqiprWTXgFpqSSgLMwW+U85kap3dmtokOyWkBisWEpGEjZPJd9/X3RIIdIBkY+O4bOvo8/3e2a8bur/OJy66oUHo+F6vgVtSA1HP8m3HG/cas2jU7DR+/eWn7pj6YzoMTDTyg4kZ9RqE1XTsXsPUiKEQddTULdtoEkuzm4Zu6U0by1iWRqZBNKWB0Dx0Xnv+b+aEhlPTopfWFZ2YF75lRnzgqyiavm63b29vW8lQLT8Yt8fjYWse2g0E0/TCXiO+eQ3drTS6VXh1WZJw+4+3F6L7puOFkelZtIEYCTPnl59edG8dz/Zv0a1jR1dAsNwBOq6oM74Cogxda6A2qzUFRKbUipwbGkLb1CMnOppMG7ya6bHyF+IOuQt6Gsh2bhybBr2G1JIVouhqA/mBQ70oroHjkdpJH90bh96KztgdH4c0UOT77tBk/aC//kKyJEvogF2wuMhw0TRRJIl3kiIusrgQcVFFHSKaE1GViDpE1CHAqBsndIYu7TVGphsCcI43CoBpi+cwunMpn0/8YkkzPgCaQucrVFYkQFUgDe8l6YD9afBHWEF7lUicGjUKZhUHTYbEsiZvP6Z8L0qVUjpltYBOrWRQQfhWhKqpMWEo/sv/MiMqZWSujyie7zegRh6FxG470ZVurB4ovGJ1Y/GJ6CRkCqMYSDWY3GOkgnJoOoi5irABF11GoA4Iq4io8Ig7SGNXHSk6FBCkoA5i9bCCuHaoHfhHdN6ZhlTojL3VQSkRhoEIUhWEuVIRBKqEuGKCksoK1FBVpEIjNjyWWReKhogGT0oHEZgj00kdQ0UFGsIzDC8jBSOFNcY6kjWksf4wYbquddjUoUsZaRLSMOsQ1BpUWqgz1O8ghVGTWDPHm86iFYisiZ3cRv50wQuoDQZpaeyEgVqxhS+6rjmkLviHS8ZJhG5Ml2kEH2jkexFaKKR4Nw7M6ZVjhZc0iqBViD6bN+aFGdH5CdQOk7F5Xcv3wt8DPzr03dnECxGyfFdazNl3cepeXswaHpRUAUkXqKkCLXWv547rQwmahRTG94MwqW7a9jmrsTQNgOQ7z70bBNS8nvrOKhndNnc1XTqzXMd2TO8/IKxsFIYLWnoeZq8Sz6MbRjITP7Av70IQYTT/Lw18ZldwS5M7qiYpqoFlIkG7O1GkaUZLktWORHTVIKoOJaFlMuXDLSwZZNmItVkUqUTqSDrWdNyRVBKPTG8WHDLndEH8OGCKHRPOHs7Dge8uX3HyD81pNAt4zAC2MWA09b2xS7mIcGsLDtm6HvrzSyEbiujr/d0UniQxgeGYw47ANMgquMtxfB2KK6/DZraoJfE6Eq8hJcLm2ItybMi8Br8OxZXXAukVU4spxQmZWEqGcUJu0KTGitpw0WfefeY50UXyEDnWdUwpFvV/m02GdCFAq13iB+qy214TsO41DTzqxvIMnJz5s1CoZ0rUbWo5E3gUBTEgJmPWv2EC4q1NxwFN5u3yaEzAxUultKRmXvOuTgJ/cu7dvAdJWJtAt53MshtagTNlAoeG4AOu6VKmbCc0wYXY6XZMAYF0i7kKgCdi0IBqzqIrP+DxFlgUuDK9m08DGrKAVoCLoBuIaufMzL2cv0I9JLVYdPR3NP/fS/kV7526dAKxGYq4QI5mHh9nwZ0Rj/YYG5A//Ay2cI17KXyhvEBAkelOr0wWEMZQueYdDVbA49299e11SIFjnG4wC1MhEVNKhSxFsQqhKXTHNTA1maWgR2CCryHQDLk2ikYg7fzuzLFtyv2vECuBBcd8MjE9G3ncf//ONL2x9CemxIARRM+i5E1fdBI3zUDLzcUCt/4GXJfqk4YVy8I68GtsHXYJLs4HlytAiOY8DGTLoTuo2uF3X8VSSiwlGMXM7K14SvF2TXvui/2gCvaDHwN7ssBekXeD/QUo0Rr0faAZx3ivcMAs5wDTxwXAZj2jouIV18ge6+K/RLGJyUKEpQRGCDWkZZ95poSk7E/GkkBI8cUTTULhypzJ1HUsJyrH+9L1p+uAmxmkJ+VIe7MJDRxrAeaEdwjEz2IIcIuIPlcYkKxJSlVAVTgHGPJrhh2X4v9uNAppxIVW4VA3ZTmXPZkwJc96VzPe7wJwlGPfM90ccR4IcZ73IUbJAD2sINLDrEivIrpbR5mW51iaE1kmGyS5FNa6klwKer8MdKsC6Nbegq48BejnXgRxMsCwhrdVhvf8T6mK72TV63hPlh8Zi8tQXO6P+jL4aO7G/xUBOiwHFFcDFO8NoGTXgG5jFu5yUbUrmAV7X8zCAk2coNnZN1s8KAOdVgCd7i3oIjreE1tMy/A+rmI4jp/KbChFiN9vGQI9mlO+JOLvrl+CZXxVD2SBLgfazoB8UgXkk70D+X7r7ByQpZogD4sAPq0C8Okms/EU3m9XuYwjJ96VzXV8p9k19ZDVt/sbEF1f8S2bra/8llHpNiZ4w8KqgJrTwgyBmNbphlxNATWngww15H7UrGdLWfbXjcy7OGO6HJdvDpVPMm75ODOcr84Q+LztDOcPLRE5M3RGIxpQ7yv1vsz8iO37x9MVGKE2SojYYtI5nRVlMx5Aoi/peEIz2cZBkXqOywU5jHtLiBnfK+sV51yqZB2XWRfW+I41Lku6LC3hMiWW2MGmqm3KiCU59TpxFIfVZbnOhbcBkcpu4VxTOmU7Z++894HphexIjqiT2hqqxNvYWMVrthXuXlXj7tVjc7fEk8X+K80/Xd7Ev0UYLD8j/iWppD+lDP+cavxz9pt/6saM9HPmX9a2fq7Gvc/1uJfstsfsw+yAwcOtQJf7CU3g6Ab2Gc/Qep4I7vUz3Luuxr3rmrmD3bJPkX507TsuCtXdavxz91H7SEr75I3qt3f8y0bW7+k8YqsRHkz/jcXD//x4xEJpdPfxoPfxYMQzJs0RX9Ojjweox/6Jiugf6OWF+Z7+8WGxrPn0Cl6KUvE/LyCPYMzG2gTq6eoDOkon5KSsYhcfwQth/TBaHlfjZ66kRsK1uANAIIj4wQIB5lvH5iv5D6cHaPCpjiaxAKQwkvSqaZP3hNqUWQpkfVm5HinP0I3FZvAkw7hpNcZN9ymEzCzhnjPfClJNpVoXG7rDo1rpJmi281QJs6cwTo5Bn/cQkISaQGCpFT88qmfFY+ruHXHd5wjO7qw4oHbA8PuUmwtpqvH+kGzUErpCaxHz5HjDBkOBwB2f7D57yFgP4+RFECBmIn5ASQBRJnfHJ/Xk7jhnP+XHiR6OD9BJJnrI5wJeYcJRNs35Gv2MPo4C0/qWcOh7cjf/3hMlKwHf92/wwAzGd/Rzb51tOXnUegzMOavwmLu8W/Au/qzNRtbxtGhLIbEtAPVJ7ffs4gTDl3KzsLKZ/mVvN9Of5ARD3hngLxmAD8sBXt13PKy377h3h4BVQ2thSVN0RVUkRZbxTjcw/xXvcWVE/jDDjaCcGwHbZ4uhDvZN2uUsqDwLpMiG0cJElxWVqLqhq7tRhEcIqPM0aprh4YbQeVWjNoaUz0SjlocAQHcMSdOxpmBVg58dKFT+gvSoKK8aVluQhg+SSXiYc/brYPLP5a0lWRVZb8kSJh2D6M8pV1fllMe4aN3Q37CdXHTKY/w4C1V2yiBnocozj3HkuSHl2D+tF3P2N54ReoT88u5WDf0DdLrlqgF4XcgDtCUTxjWZUPP0wrPhwaHrhzQUpR/GB6j/qSB9oOjCPSi1rMBggxUY1LMCg4wV2IUNGKzJn39DA2ahvy2FjX3PyQextyDu0/L2PbsrsZz/NlI4yJHCPVt/1pTAQVYCB582bEUUncwcCxkLMjJ2ViWeO9ufk5m4pakdbKiagXXN6EiKcSyUUCca7sBaR8MQshOMRYhGMFFJq2PIskFkokqG+oARW7lenxXq9Qbsi/T6LDcrmP5R7qPmJfy/qMf/9Nh7FMs/wedZLsqyQVGFbFC0b+vj/csGRRmAz6vYuvMfZO2q6WqLyDKRDG4YDWOn0l/kf0ZC8AFeU15sKadY86YKa97sjxva/ZcdZPNrbwSW51m/suljhukMm7nxQ4aPbUKUNUntCNfdBAnWtZakKLqkgKvDZXmAe3wG/xGP7IALLzyyIz7k1Lze6sjO4Kze0m2QE8ltz3u+YtvfPTeIm8/yF2pYJJg2aNxJ8oU3uSZMEiaMfdnduv59Lde+zBfpfH1SBayuP2nI2umvIGLPyTdV/vJ/UEsHCJ8LMPFHDAAARlMAAFBLAQIUABQACAgIAImuYUNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAia5hQ58LMPFHDAAARlMAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADfDAAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
</popup>


<br>


{{Aufgaben-M|7|
'''Skizze zur Veranschaulichung:'''
Berechnen Sie die durchschnittliche Steigung des Kraters zwischen den Punkten A(300<nowiki>|</nowiki>180) und B(400<nowiki>|</nowiki>320), wenn man sich das Kraterprofil über den Wert x<sub>0</sub> hinaus fortgesetzt denkt.
}}
<popup name="Lösung">
<math>m=\frac{320-180}{400-300}=\frac{140}{100}=1,4</math>


Dieser Wert ist größer als 1,15. Das heißt, dass das Raumfahrzeug diese Steigung nicht mehr bewältigen kann. Es ist aber auch nur die durchschnittliche Steigung zwischen den Punkten A und B und nicht die Steigung im Punkt A, die für das Herauskommen des Fahrzeugs interessant ist.
</popup>


Dies ist ein interaktives Koordinatensystem, in dem man durch Einstellen der Kartonseitenlängen '''a''' und '''b''' das Volumen der Schachtel durch die Funktion '''f''' in Abhängigkeit von '''x''' angezeigt bekommt. Auf der x-Achse ist die Seitenlänge der auszuschneidenden Quadrate und auf der y-Achse das Schachtelvolumen angegeben.


Vorgehensweise: Mit Hilfe der Schieberegler stellt man die gewünschten Seitenlängen des Kartons ein. Dadurch verändert sich der Graph der Funktion '''f'''. Im höchsten Punkt der nach unten geöffneten Parabel ist dann das maximale Volumen der erzeugten Schachtel angegeben. Senkrecht unterhalb dieses Punktes auf der x-Achse lässt sich dann leicht der Wert '''x''' ablesen, für den das maximale Schachtelvolumen erreicht wird. Die zweite Nullstelle des Graphen neben der Nullstelle '''<math> x = 0 </math>''' zeigt an, ab welcher Größe der auszuschneidenden Quadrate keine Schachtel mehr gefaltet werden kann. Der restliche Verlauf des Graphen ab der zweiten Nullstelle ist irrelevant.




<br>  
<ggb_applet width="400" height="300" filename="VolumenSkizze.ggb" showResetIcon="true" />
{{Kasten_blau|
Eine Sekante schneidet den Graphen in zwei Punkten. Wenn nun der Punkt B immer weiter dem Punkt A angenähert wird und bei diesem Prozess letztendlich der Punkt B mit dem Punkt A zusammenfällt, so berührt die Gerade den Graphen nur noch in einem Punkt, dem sogenannten Berührpunkt. Diese Gerade nennt man nun nicht mehr Sekante (da es keine zwei Schnittpunkte mehr gibt), sondern '''Tangente an den Graphen der Funktion k im Punkt A'''. Die Steigung der Tangenten gibt die Steigung des Graphen der Funktion im Berührpunkt an.
}}
}}


In der Graphik der Lösung der  Aufgabe 6 kann man den Punkt B bewegen, indem man mit der Maus auf ihn zeigt und bei gedrückter linker Maustaste die Maus bewegt.
=== Der schräge Wurf ===


{{Aufgaben-M|8|
{{Aufgabe|
Vollziehen Sie den beschriebenen Übergang von der Sekante zur Tangente im obigen Applet nach.
Nun wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. }}


Berechnen Sie die Steigungen verschiedener Sekanten mit Hilfe der Werte, die Sie  für <math>\Delta x </math> und <math>\Delta y</math> aus dem Applet entnehmen können.
'''1. Skizze:'''
 
Als erstes solltest du eine Skizze von einem Wurf nach schräg oben anfertigen. Wo befindet sich dabei der entscheidende Winkel <math>\alpha</math>? Was sind die entscheidenden Größen?
 
 
''Falls du nicht weiterkommst, findest du hier die Skizze des Wurfes:''{{Lösung versteckt|Skizze:
 
<ggb_applet width="400" height="250" filename="schraeger_Wurf4.ggb" showResetIcon="true" />


Was können Sie nun über die Steigung im Punkt A sagen?
}}


<br>


Um zu entscheiden, ob das Fahrzeug aus dem Krater heraus kommt, muss ein genauer Wert für die Steigung der Tangenten an den Graphen im Punkt A betrachtet werden.
Als feste Größe ist die Abwurfgeschwindigkeit <math>\vec v_{0}</math> anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel <math>\alpha</math>.}}
Wenn  die Steigung des Kraters im Punkt A(300|180) kleiner als 1,15 ist, kann das Raumfahrzeug den Krater verlassen.


<br>
Entscheidend ist nun die Zerlegung der Bewegung in eine x- und eine y-Komponente. Versuche zunächst, die Geschwindigkeit an Hand der Skizze in diese Komponenten zu zerlegen.


Die weiteren Betrachtungen führen wir nun etwas allgemeiner auch für andere Funktionen durch, bevor wir die Steigung im Punkt A des Kraters tatsächlich berechnen.
{{Lösung versteckt mit Rand|Die Größen <math> v_{x} </math> und <math> v_{y} </math> lassen sichmit Hilfe von <math>\alpha</math> wie folgt bestimmen:


==== Verallgemeinerung ====
<math> v_{x}=v_{0} \cdot cos(\alpha) </math> und


Die Überlegungen, die wir für die Kraterfunktion angestellt haben, kann man auch für andere Funktionen durchführen.
<math> v_{y}=v_{0} \cdot sin(\alpha) </math>
<br><br>


{{Aufgaben-M|9|
Auf dem [[Media:AB Zeichnerische Bestimmung der Sekantensteigung.pdf|Arbeitsblatt]], das am Pult liegt, ist der Graph der Funktion f mit <math> f(x)=x^2</math> gezeichnet.<br>
a) Zeichnen Sie die Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)) und bestimmen Sie aus der Zeichnung ihre Steigung.<br>
b) Zeichnen Sie ebenso die Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und C(1,5<nowiki>|</nowiki>f(1,5)) und bestimmen Sie aus der Zeichnung ihre Steigung.<br>
c) Zeichnen Sie (näherungsweise) die Tangente an den Graphen im Punkt A(1<nowiki>|</nowiki>1) ein und bestimmen Sie ihre Steigung aus der Zeichnung.
}}
}}


<popup name="Lösung">
'''2. Physikalische Formeln'''
a) Die Steigung ist (ungefähr) 3.<br>
 
b) Die Steigung ist (ungefähr) 2,5.<br>
Wir wollen allerdings die Flugweite und Flughöhe, nicht die jeweiligen Geschwindigkeiten betrachten. Erinnerst du dich, wie die Ortskomponenten in der Physik mit den Geschwindigkeitskomponenten zusammenhängen? Schreibe die entsprechenden Gleichungen auf!
c) Die Steigung ist (ungefähr) 2.
 
</popup>
{{Lösung versteckt mit Rand|Der Ort des Wurfobjekts ergibt sich aus dem Anfangsort, der Geschwindikeit in die jeweilige Richtung mal die entsprechende Zeit und die Geschwindigkeitsänderungen (welche über die Beschleunigung ausgedrückt werden) mal die quadratische Zeit:
 
<math> x(t)=x_{0}+v_{0} \cdot t + \frac{1}{2} \cdot a_{0} \cdot t^2 </math>


Dies müssen wir nun in x- und y-Richtung ausdrücken. In x-Richtung bleibt die Geschwindigkeit (wenn wir die Reibung vernachlässigen) über die ganze Strecke konstant und wir starten am Anfangspunkt 0:


<br><br>
<math> x(t)=v_{x} \cdot t = v_{0} \cdot cos(\alpha) \cdot t</math>


{{Aufgaben-M|10|
In y-Richtung starten wir ebenfalls am Anfangspunkt 0, allerdings nimmt die Geschwindigkeit mit der Erdbeschleunigung g ab:
Wir betrachten weiterhin die Funktion f mit <math>f(x)=x^2</math>.<br>
 
a) Bestimmen Sie  rechnerisch für die Werte <math>x_0=1</math> und <math>x_1=2</math> mit Hilfe der Formel  <math>m=\frac{f(x_1)-f(x_0)}{x_1-x_0}</math> die Steigung der Sekante durch die Punkte A(1<nowiki>|</nowiki>f(1)) und B(2<nowiki>|</nowiki>f(2)). Vergleichen Sie mit dem Ergebnis aus der vorherigen Aufgabe.<br>
<math> y(t)=v_{y} \cdot t - 1/2 \cdot g \cdot t^2 = v_{0} \cdot sin(\alpha) \cdot t - 1/2 \cdot g \cdot t^2</math>
b) Näheren Sie nun die Steigung der Tangenten im Punkt A(1<nowiki>|</nowiki>1) an den Graphen besser an, indem Sie für x<sub>1</sub> einen Wert wählen, der näher an x<sub>0</sub> liegt. Vergleichen Sie mit Ihrem Ergebnis aus der vorherigen Aufgabe.<br>
c) Überlegen Sie, wie man einen möglichst genauen Wert für die Steigung der Tangenten erhalten kann.
}}
}}


<popup name="Lösung">
a) Die Steigung ist <math>m=\frac{4-1}{2-1}=3</math>.<br>
b) Wählt man <math> x_1=1,5</math>, so ergibt sich <math>m=2,5</math>.<br>
c) Wenn man x<sub>1</sub> sehr dicht an 1 wählt, ist die Näherung recht genau.
{{Kasten_blau|
Die Idee bei der Annäherung der Tangente durch Sekanten ist es, den Wert x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern. Dann ergibt die Steigung der Sekanten eine immer bessere Näherung für die Tangentensteigung.
}}
</popup>


<br><br>
'''3. Nebenbedingung formulieren'''
 
Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels <math> \alpha </math>. Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.


''Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.''


{{Mathematik|
Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:
<big>'''Information'''</big><br>
Da sich dadurch einige Rechungen später einfacher gestalten lassen, betrachten wir noch eine andere Schreibweise:
<br>
Anstatt x<sub>1</sub> immer mehr x<sub>0</sub> anzunähern, kann man auch die Differenz <math>h=\Delta x=x_1-x_0</math> klein werden lassen. Es ist dann <math> x_1=x_0+h</math>.
}}
<br>


{{Aufgaben-M|11|
{{Lösung versteckt mit Rand|Störend ist bei uns noch die Variable t. Wir interessieren uns ja nur für den Zeitpunkt, an dem der Ball/Stein oder ähnliches wieder auf dem Boden aufkommt. Dies ist genau der Zeitpunkt, bei dem unsere zweite Ortsfunktion y(t) (also die Höhe) wieder 0 ist. Als Funktion:
a) Überlegen Sie, wo in der folgenden Zeichnung die Größen <math>h</math>, <math>x_0+h</math>, <math>f(x_0+h)</math>, <math>f(x_0+h)-f(x_0)</math> zu finden sind.<br>
b) Geben Sie eine Formel für die Sekantensteigung für eine Funktion f an, wenn die Sekante durch den Punkt  A(x<sub>0</sub><nowiki>|</nowiki> f(x<sub>0</sub>)) und den Punkt B(x<sub>0</sub>+h<nowiki>|</nowiki> f(x<sub>0</sub>)+h) gehen soll.<br>
c) Welches rechnerische Problem ergibt sich, wenn man in dieser Formel einfach h<nowiki>=</nowiki> 0 setzen würde.
}}


<popup name="Applet">
<math> y(x)=v_{y}(t) \cdot t - \frac{1}{2} \cdot g \cdot t^2 = v_{0}(t) \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 =0 </math>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAO9hY0MAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADvYWNDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1ba2/bOBb93PkVhDFYtJg4Fkk9u3YHSZtkC6TTAdJdDHbaHcgSLbORJY0kJ3Zn+t/3kpRs2bLlR+rULZCEkvi859wXKaX782QUojuWZjyOei18qrUQi7zY51HQa43zQdtu/fzih27A4oD1UxcN4nTk5r2WLlpyv9dyTd2hujFoW57vtHXP9NuO5VltHxNMtIHr6CZtITTJ+PMo/sUdsSxxPXbjDdnIvY49N5cTD/M8ed7p3N/fn5ZTncZp0AmC/ukk81sIlhllvVZx8RyGW+h0T2Vzomm489ubazV8m0dZ7kYeayEhwpi/+OFJ955HfnyP7rmfD0FgYoMcQ8aDIQjlWGYLdUSrBBBJmJfzO5ZB38qtFDofJS3ZzI1E/RN1hcKZPC3k8zvus7TX0k4J1alltFCcchblRQtczNQpx+jecXavBhNXch69hfI4DvuuGAf9/TciGtHQiSiwKggUpqmqNPVMo6ogqtBVYag2uuquq6a6aqOrNjoQdccz3g9ZrzVwwwyA49EgBdJm91k+DZlcT/FgLjM+AZky/gkaUw1QVUjDc007Eb8m/OqiorMoJK7MmqfjHSctp8TEJNvPSR4kKW2Ukxhr5DQbJlWCbyWoUZkTppI/8rc2I20Sc3lGdf+wCU39UUTsdkpb6RbmgbKhaFuoT85GmTAY6iDDEXqPkQHGYVqg5gbCDhQWQWAOCBtIN+AW28gUpYWoBRU6oshGoh2mSFqHYcMf3ZKDmciAwcRTC4wSYZhIRwZFWBqVjsCUkDRMMFJCoYVhIAM6iekxEUNQE+km3FEb6bBGYZMWhoYUOsI9TE8QxYiKzthCxESmGA/rwtZNWywdhiTI1JCJxYBg1mDSypyhvY2okKb0ZjxKxvkCRN7ILy/zOJlxAa3BIc2dnXJQC77wSTd0+yyE+HAjmETozg2FRciJBnGUo5lBqmdB6iZD7mU3LM+hV4Y+unfutZuzySW0zsq5ZVsvjrJf0zh/GYfjUZQh5MWhNltzHOLKNZmtGm5opUKvVhiVCrNyba2cN4YaNM4YzB+nWdnc9f3XosXcNQCSb6Nwep4y9zaJ+aIY3Y4MNV029kLuczf6DyirmEXgguaRR/irMvJYjlOuJE79m2kGKowm/2VpDC2xeaoZhmVZNjFskzjQb6qqTBufUt0xHKrZBGumBWvzXGF8lFin1HSIaTjYtmzh2qdFFcS8U+pQ2zYMwzYsjdhqanY3o8idsJn0QSosu5Bc3LzOzuNw/kjK/9JN8nEqkwaYKRVCnUVByKSOSHcLEdm77ceTG6UcVI31bprAnaYW0A8k7gh8AzEgXgZF2VelbCNWNmulyTaabKGV2sb9WT0WUAVF2VelbAXqq5ZWSIpLMbFWTsMz6dG01oLdSN0X4X0c8fy6vMm5d1tIilX7X8ajPptp0OKQ+AsN2e0saVj3lqURCwuFBibH8ThT9lnRdZ95fAS3qqIAxBVk/RsWoJ76LEhZue5QpmMKLlmrVVW19lgOdZnGo9fR3TvQhKUFdDvlKruZl/JEKBzqQxC4ZXOd8nnmQgzxq/2EBYLonogVAE8uoAHbHOfDOJUJF7gUKIXhTZKUZSKjVeAiGAbS2onwc08nz1APTf73lDyTo7KQjSApQ7lUxME4kuPPWBnINE/Aj+L+R3CCS6xVcIX6NYqJ3DAZuiITLCAK3SlLF0CTw72J/WUogSkpL/iDRGlCwpjSobwwHZTAcNLyKouZK3gOvvcWMsxMWuask7j4F/d9JuOu0iYFRQ0UaeAzic82IDJX+CogmCh7lmVhz4eEBa+GRapshibFTmdalJ9UqTJ/Ia1wUguBTT1d0vUqZF48GrmRjyKZ6vwqIZuHXlcTqqRQGeflk3M1SNF1A+7n3wfu5FTTNJPYFBMHYwqhSdIA20mNGJiauqkTYprmAUi5BptY4uQMwMAFEQvUuM3UCPOaIe/u5yMMvBDhxO2+xMzhbdM6kErLa6h/UmRgyAMopQbGxLLpvt4Dsoc/I9UlU1GLj5KQezxv5uQmjJNlUtwaG6NmNqLxiKXcmwE+kgMCQONSX5bELxKeBcrK3UijNRlUcia4WvLsuJGxt4NBxnJBkEzEgCdCVhJay08qBJBt3fcixG9TiJBBHLnhCgM4VwYwOYPkpAZ7fwcj6NeNYBHRw0bKigWUnl0rPPsKj7MnxvsqeSMDZ00MeDsw4B0tAzM3/niQv45yyJUBhCW0vSa0J39ou0Rk0XyfmCwOSQJV9FXxcMxLyNs1zL9I6FwHZ78ZTrwbnHiTBh8MT7plmvIgeGF82CWL9Ek+A/X5afhwxzFdib2/g+Pwj8VxaKUS15LyI/HV502Qsx0gZ0cLeT0RPxLPzZqwv9jF0Vzsl68fwm2X8D/G9mcdsApRCa5fA/ZyF2Avjw/Yw2zvN4TDOoxXu8B49dXCYA3GNWHwMKi+4sXb2pVx7qq+R++L9v7ZBnCXd4fzbku7xBWb5K0d8IY92BrRrtYeP6g1Xm04IVoj2tX5qg3wCq++l2TLp6vitDjM3Wlxwjpfg3yb1Lzgoufjr3ayuFpQhm1XOzmo2qxYLh8MWMqiTyz6cxzn4guCYu0KPNRBpURbSLBisO3OSr6AEdywYMRqx6Ln68w7aNb9rBitFC140ClccaLzoOPRudtcfQhX7h3aJlSbDmCLNYcajmMaDUmWvn+SJeEMxWHsLGCBYtXfCN0ylogXcW+jd6kbZeITH9Wm8qZpJ04Lv1ZsABdYHe7G6vCIWF0+1mjvd7JEviEiy8OpP7QakXw3IvkxE7nlPvMbZK7uVj/uxtvH/Xgr398XxGGNfOGsftXrjPa6UPzdONZLxepZjdXb3Vi9PVJWv1tzvFiX6Ye7ERceI3GrdomCRxueW4ZOMKG2blG7Kc35JlkVcXFtphPtxmz0FZklOzpabTsD/YaYLOzzssZishuLyRGlOc27kG+ZwzXHKY3mWOz0X77a60gFun3106K1Olqs8WLDYe0a0S4uH/f85R2b5OK8RZ5h/EMcQ/xz+P4E9RD8UbfoJ/T02n3Hfvt9djzz4Rk8VLXq76rTjhxGbi1Ns+Eo9RHiJc+kLIu6XXwqnQEhg/lnxfLTWK1VWlUxAECQ5vKLMoXZG+7Lk9Xfz07Q1YftAAf9XQC8Ee6Xr/aDuzCSB8P9kE+hDoc2eJcTBJ7lQ2X6+Xc9baN4kUac7RgBs6sy8v6VOMRDUyBm8FS+Gn6G2vLqWSNXF5f7cXWx4mXNVlx9wVB1OK4uTtDllpYhDqpX8PD+pPf+pGSiJGKDm7o634+LqxXfdn4/XFydoPMtucALVNywWxcyiCjLGQ/GUfAc/YjeD1LX+6sk6XN5NfncUzVLjH3+a/gZ/dhb5mvFMfh+zG38YuWw7/G3IK34p6uNnKms37axpVvEwo6FTWLp5UcvxCEizSFQWtbCy+kqqZ3qJ/rivvxXzhf/B1BLBwgzSfx8FwoAAGc6AABQSwECFAAUAAgICADvYWNDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAO9hY0MzSfx8FwoAAGc6AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAArwoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
</popup>
<br>


<popup name="Lösung">
um t zu elimieren, müssen wir diese Gleichung nach t auflösen. Etwas anders sortiert lässt sich die Gleichung auch schreiben als
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAHWxYUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAB1sWFDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1bbW/bOBL+3P0VhLE4NNg4Fkm99uwukjbJFUi3C6R3WNy2t5AlWmYjS1pJTuzu9r/fkJRs2bLllzSpUyAJJXH4Ms8zMxxSSvfnyShEtyzNeBz1WvhEayEWebHPo6DXGueDtt36+eUP3YDFAeunLhrE6cjNey1dSHK/13JN3aG6MWhbnu+0dc/0247lWW0fE0y0gevoJm0hNMn4iyj+xR2xLHE9du0N2ci9ij03lwMP8zx50enc3d2dlEOdxGnQCYL+ySTzWwimGWW9VnHxArpbaHRHpTjRNNz57e2V6r7Noyx3I4+1kFBhzF/+8Kx7xyM/vkN33M+HoDCxQY8h48EQlHIss4U6QioBRBLm5fyWZdC2ciuVzkdJS4q5kah/pq5QONOnhXx+y32W9lraCaE6tYwWilPOoryQwMVInbKP7i1nd6ozcSXH0Vsoj+Ow74p+0N9/I6IRDR2LAquCQGGaqkpTzzSqCqIKXRWGktFVc12J6kpGVzI6EHXLM94PWa81cMMMgOPRIAXSZvdZPg2ZnE/xYK4zPgadMv4ZhKkGqCqk4bmmHYtfE351UdFZVBJXRs3T8Y6DlkNiYpLtxyT30pQ26kmMNXqaDYMqxbdS1KiMCUPJH/lbG5E2qbk8orq/34Cm/igqdjulr3QL90DZUMgW5pOzUSYchjrIcITdY2SAc5gWmLmBsAOFRRC4A8IG0g24xTYyRWkhakGFjiiykZDDFEnvMGz4o1uyMxMZ0Jl4aoFTIgwD6cigCEun0hG4EpKOCU5KKEgYBjKgkRgeE9EFNZFuwh21kQ5zFD5pYRCk0BDuYXiCKEZUNMYWIiYyRX9YF75u2mLq0CVBpoZMLDoEtwaXVu4M8jaiQpsymvEoGecLEHkjv7zM42TGBUhDQJoHOxWgFmLhs27o9lkI68O1YBKhWzcUHiEHGsRRjmYOqZ4FqZsMuZddszyHVhn65N66V27OJhcgnZVjS1kvjrJf0zh/FYfjUZQh5MWhNptzHOLKNZnNGm5opUKvVhiVCrNyba0cN4YaNM4YjB+nWSnu+v4bITEPDYDkuyicnqXMvUlivqhGtyOXmi4beyH3uRv9B4xVjCJwQfOVR8SrcuWxHKecSZz619MMTBhN/svSGCSxeaIZhmVZNjFskzjQbqqqTBufUN0xHKrZBGumBXPzXOF8lFgn1HSIaTjYtmwR2qdFFax5J9Shtm0Yhm1YGrHV0Ox2RpE7YTPtg1R4dqG5uHmTncXh/JHU/5Wb5ONUJg0wUiqUOo2CkEkbkeEWVmTvph9PrpVxUNXX+2kCd5qaQD+QuCOIDcSA9TIoyr4qpYyY2UxKkzKalNBKa+P+rB4LqIKi7KtSSoH5qqkVmuJSTayVw/BMRjStteA30vbF8j6OeH5V3uTcuyk0xUr+l/Goz2YWtNgl/kpddjtLFta9YWnEwsKggclxPM6Uf1Zs3WceH8GtqigAcQVZ/4YJqKc+C1JWzjuU6ZiCS9ZqVVOtPZZdXaTx6E10+x4sYWkC3U45y27mpTwRBof6sAjcsLlN+TxzYQ3xq+2EB4LqnlgrAJ5cQAO+Oc6HcSoTLggpUArHmyQpy0RGq8BF0A2ktRMR555PjlAPTf73nBzJXlnIRpCUoVwa4mAcyf5nrAxkmifgR3H/EwTBJdYquEL9GsNEbpgMXZEJFhCF7pSlC6DJ7t7G/jKUwJTUF+JBoiwhYUzZUF64DkqgO+l5lcnMDTyH2HsDGWYmPXPWSFz8i/s+k+uusiYFRQ0U6eAzjU83IDI3+CogmCh/lmXhzw8JC14NizTZDE2Knc60KD+rUmX+QlsRpBYWNvV0ydarkHnxaORGPopkqvOrhGy+9LqaMCWFyjgvn5ypToqmG3A/+z5wJyeappnEppg4GFNYmiQNsJ3UiIGpqZs6IaZpPgApV+ATS5ycAhi4IGKBGreZGuFeM+Td/WKEgRdWOHG7LzFzeNu0DqSy8hrqnxUZGPIASqmBMbFsum/0gOzhz0g1ydSqxUdJyD2eN3NyHcbJMilujY1RMxvReMRS7s0AH8kOAaBxaS9L6hcJzwJl5W6k0ZsMKjkTXC1FdtzI2LvBIGO5IEgmYsATISsJreUnFQLItuF7EeJ3KayQQRy54QoHOFMOMDmF5KQGe38HJ+jXnWAR0YddKSseUEZ2rYjsKyLOnhjva+SNDJw2MeDtwIB3sAzMwvjjQf4myiFXBhCW0Paa0J78oe2yIgvxfdZkcUgSqKKvivtjXkLermH+VZbOdXD2m+HEu8GJvxWcdMss5V7oQv+wSRbZk3wG1vPT8P5xY7oSen+HuOEfStzQShuu5eQHEqrPmiBnO0DODhbyeh5+IIGbNWF/vkucOd8vXX+IqF3C/xi7n3XAKkQluH4N2ItdgL04PGAfZne/YTWsw3i5C4yXm4LD42UVa5bBh0H1NS9e1q5c5y7rW/S+kPdPN4C7vDmcN1vaJK7YI28dgDdswdaodrn29EHN8XLDAdEa1S7PVu1/V0T1vTRbPlwVh8Vh7k6LA9b5HOTLpOYJFy0ff7aTxdmCMWw728mDms2K6fLBgKUs+syiP8dxLj4gKOauwEMdVGq0hQYrOtvuqOQrOME1C0asdip6ts69g2bbz4reStWCex3CFQc69zodnYfN1Wdw5d6hbUK16QC2WHOo4Tim0ZBk6fsnWRLOUJzFzhYsMKz6C6EbxhLxHu5d9D51o0x84aNkKi+aduK0iGvF/m+B1eFurA4PiNXlU432fgdL5AkRWZ5N/aHViOS7EckPmcgt95lPkLl6WP20G2+f9uOtfH1fEIc18pWz+lVvM9rrluLvJrBeKFZPa6ze7MbqzYGy+t264/m6TD/cjbjwEIlbtUsUPNrw3DJ0ggm1dYvaTWnOk2RVrItrM51oN2ajb8gs2THQats56BNisvDPixqLyW4sJgeU5jTvQp4yh2uOUxrdsdjpv3q915EKNPvmp0VrbbSY4/mGw9o1qp1fPO75y3s2ycV5izzD+Ic4hvjn8MMx6iH4o27RT+j5lfue/fb77Hjm4xE8VLXq76rTjhx6bi0N882XS55JVRZNu/hQOgM+BvOPiuWHsVqrdKqiA0AgzeX3ZAqyt9yXB6u/nx6jy4/b4Q3mu4B3I9qvXu+HduEj90X7Pt9BPRzYEFuOEcSVj5Xh5x/1tI3iNRpxtiMEnK5KyIfX4ggPTYGXwXP5YvgIteXVUSNV5xf7UXW+56uar7hOPRxV58foYku/EKfUK2j4cNz7cFwSUfKwIUZdnu1HxeWm7zqfMhWXx+hsSyrwAhPX7MaF7CHKcsaDcRS8QD+iD4PU9f4qOfpSXk2+9FTNEmFf/hp+QT/2lulacQS+H3GbPlZ52Ff4W3BW/LvVRspUwm/b2NItYmHHwiax9PJ7F+IQkeEQKC1r4b10ldNO9eN8cV/+E+fL/wNQSwcIVACzyxIKAABhOgAAUEsBAhQAFAAICAgAdbFhQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAB1sWFDVACzyxIKAABhOgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAKoKAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<br ><br>


{{untersuchen|}} Vollziehen sie im Applet den Übergang von der Sekante zur Tangente nach. Wie ändert sich dabei h?
<math> 0 = \underbrace{- \frac{1}{2} \cdot g}_{a} \cdot t^2 + \underbrace{v_{0}(t) \cdot sin(\alpha)}_{b} \cdot t = a \cdot t^2 + b \cdot t = 0</math>


<br>
Dies ist eine einfache quadratische Gleichung, die sich mit der Mitternachtsformel lösen lässt:


Sekantensteigung: <math>m=\frac{f(x_0+h)-f(x_0)}{h}</math>
<math> t_{1/2}=\frac{-v_{0} \cdot sin(\alpha)\pm \sqrt{v_{0}^2 \cdot sin(\alpha)^2+4 \cdot \frac{1}{2}\cdot 0}}{-g} </math>


<br>


Wenn man h<nowiki>=</nowiki> 0 setzt, würde man durch 0 dividieren, was ja nicht erlaubt ist. Daher können wir zur Bestimmung der Tangensteigung nicht einfach h gleich 0 setzen, sondern können nur einen Grenzwert betrachten, indem wir h immer kleiner werden lassen und so der 0 annähern.
<math> \qquad =\frac{-v_{0} \cdot sin(\alpha) \pm v_{0} \cdot sin(\alpha)}{-g} </math>
</popup>


<br><br>


{{Aufgaben-M|12|
<math> \Rightarrow t_{1} = 0 \qquad und \qquad t_{2} = \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g} </math>
Gegeben ist wieder die Funktion f mit <math> f(x)=x^2</math>.


Berechnen Sie für <math>h = 0,1</math> (<math>h= 0,01</math> und <math>h = 0,001</math>) die Steigung der Sekanten für <math>x_0= 1</math> und <math>x_1= 1+h </math>. (Verwenden Sie die Tabellenfunktion Ihres Taschenrechners; Schreiben Sie dazu <math>h=0,1^n</math> mit n gleich 0, 1, 2, 3,...)
Wir erinnern uns, dass <math> t_{1} </math> und <math> t_{2} </math> jeweils die Zeiten sind, an denen die Höhe des Wurfobjekts 0 ist. Dies ist logischerweise zur Zeit 0 der Fall, was unserer Lösung <math> t_{1} </math> entspricht. Die für uns interessante Lösung ist allerdings <math> t_{2} </math>, also die Zeit, wenn das Wurfobjekt nach dem Wurf wieder am Boden ist.


Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1<nowiki>|</nowiki>1). Vergleichen Sie mit den Ergebnissen der vorherigen Aufgaben.
}}
<br>
<popup name="Lösung">
Die Sekantensteigung ist <math>m=\frac{(1+h)^2-1^2}{h}=\frac{(1+0,1^n)^2-1}{0,1^n}</math>.
Dies muss für verschiedene n ausgerechnet werden. (Bei der Tabellenfunktion des Taschenrechners muss statt n als Variable x gewählt werden.)
<br>
{| class="wikitable"
!'''n''' !! '''h'''  !!'''x<sub>1</sub>''' !!'''Sekantensteigung m'''
|-
| 0 || 1|| 2 || 3
|-
| 1 || 0,1 || 1,1 || 2,1
|-
| 2 || 0,01 || 1,01 || 2,01
|-
| 3 || 0,001 || 1,001 || 2,001
|-
| 4 || 0,0001 || 1,0001 || 2,0001
|-
| 5 || 0,00001 || 1,00001 || 2,00001
|}
</popup>
<br>
{{Differenzieren|Übungen für Fortgeschrittene}}
{{Aufgaben-M|13|
a) Bestimmen Sie wie in der vorherigen Aufgabe  einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit <math>f(x)=x^2</math> im Punkt A(3<nowiki>|</nowiki> 9).<br>
b)  Bestimmen Sie wie in der vorherigen Aufgabe  einen Näherungswert für die Steigung der Tangenten an der Graphen der Funktion f mit <math>f(x)=3 x^2+2</math> im Punkt A(2<nowiki>|</nowiki> f(2)).
}}
}}


<br>
'''4. Nebenbedingung einsetzen und Funktion aufstellen'''
<popup name="Lösung">
a) Die Steigung ist 6.<br>
b) Die Steigung ist 12.
</popup>


<br />
Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch die für die Aufgabe wesentlichen Größen ausdrücken und in die Zielfunktion einsetzen.
<br />


== Differenzenquotient ==
{{Lösung versteckt mit Rand|Mit der Information über t können wir t nun in unserer Ortsfunktion <math> x(t,\alpha) </math> elimieren.


{{Aufgaben-M|14|
<math> x(t_{2},\alpha)= v_{0} \cdot cos(\alpha) \cdot t_{2} = v_{0} \cdot cos(\alpha) \cdot \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g}= \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha)=x(\alpha) </math>
Erläutern Sie die Vorgehensweise im Abschnitt "Von der mittleren zur momentanen Änderungsrate" und im Abschnitt "Von der Sekanten- zur Tangentensteigung". Vergleichen Sie dabei die Vorgehensweisen und arbeiten Sie Gemeinsamkeiten heraus.
}}
<br>
[[File:Farm-Fresh plenum.png|Farm-Fresh plenum]]'''Plenumsphase'''
<br>


<br />
Somit hängt unsere Wurfweite wie gewollt nur noch vom Abwurfwinkel <math> \alpha </math> ab. In der Skizze kannst du zusätzlich die Abwurfgeschwindigkeit <math> v_{0} </math> variieren, die wir in der Berechnung zunächst einmal als fest voraussetzen.
<br />


== Differentialquotient ==
Skizze:
{{Mathematik|
[[Datei:Nuvola_Icon_Kate.png|40px]] <big>'''Information'''</big><br>
Der Differentialquotient  f'(x<sub>0 </sub>) ist definiert als Grenzwert eines Differenzenquotienten:


Differentialquotient  <math> f'(x_0) = \lim_{x_1\to x_0} \frac{f(x_1)-f(x_0)}{x_1-x_0}</math>
<ggb_applet width="400" height="250" filename="wurfweite2.ggb" showResetIcon="true" />


Der Differentialquotient  f'(x<sub>0</sub>)  wird auch als ''Ableitung der Funktion f an der Stelle  x<sub>0</sub>'' bezeichnet.
}}
}}


'''5. Bestimmung des Extremwerts (maximale Wurfweite)'''
Du hast nun eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von <math> x(\alpha)</math>.
Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von <math> \alpha </math> abhängt, musst du jetzt natürlich nach <math> \alpha </math> ableiten. Versuche, die Nullstelle zu bestimmen.


Der Differentialquotient f'(x<sub>0 </sub>)
{{Lösung versteckt mit Rand|Die Funktion


* beschreibt die momentane Änderungsrate der Funktion f an der Stelle  x<sub>0 </sub> und entsteht im Rahmen eines Grenzprozesses, wenn man bei der durchschnittlichen Änderungsrate zwischen  x<sub>0</sub> und  x<sub>1</sub> den Wert  x<sub>1</sub> immer mehr dem Wert  x<sub>0</sub> annnährt,
<math> x(\alpha) = \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha) </math> soll maximiert werden.
* beschreibt die Steigung der Tangenten an den Graphen der Funktion im Punkt A(x<sub>0</sub>|f(x<sub>0</sub>)) und entsteht, wenn man im Rahmen eines Grenzprozesses bei der Sekantensteigung zwischen den Punkten  A(x<sub>0</sub>|f(x<sub>0</sub>)) und  B(x<sub>1</sub>|f(x<sub>1</sub>)) den Punkt  B(x<sub>1</sub>|f(x<sub>1</sub>)) immer mehr dem Punkt  A(x<sub>0</sub>|f(x<sub>0</sub>)) annähert.
<br>
<popup name="Applet">
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAGe1YUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABntWFDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1be2/bthb/u/sUhDAMDW4cU9TL6uwOSZtkBdJ1QHIvhrv2DrJEy2xkSZXkxO7W734PScmWLVu2nLh1CiShJB4+zu88+Uj3l8koQHc0SVkU9hT1BCuIhm7ksdDvKeNs0Ooov7z8oevTyKf9xEGDKBk5WU/ROSXzeopj6ramG4OW5Xp2S3dNr2VbrtXyVKISPHBs3dQUhCYpexFGvzkjmsaOS6/dIR05V5HrZGLgYZbFL9rt+/v7k2Kokyjx277fP5mknoJgmmHaU/KHF9DdQqN7TZATjNX2H2+vZPctFqaZE7pUQZyFMXv5w7PuPQu96B7dMy8bAsOkA3wMKfOHwJRtmQpqc6oYEImpm7E7mkLb0qtgOhvFiiBzQl7/TD6hYMaPgjx2xzya9BR8QjRdswwFRQmjYZZTqPlI7aKP7h2j97Iz/iTG0RWURVHQd3g/6J9/EMEEo2NeqLIgUJimrMLyG9ZkQWShy8KQNLpsrktSXdLokkYHQd2xlPUD2lMGTpACcCwcJCC02XuaTQMq5pN/mPOsHgNPKfsMxBoGVCXS8B3jY/5rwq/OK9qLTKqlUbNk3HDQYkiVmGT7McmDONVq+STGGj7NmkEl41sxapTGhKHEj/itjKjVsbk8onx/2ICm/lVY7LYLW+nm5oHSIafN1Sejo5QbjGYjw+Z6ryIDjMO0QM0NpNpQWASBOSDVQLoBr2oHmby0kGZBhY401EGcTtWQsA6jA390S3RmIgM6418tMEqkwkA6MjSkCqPSEZgSEoYJRko0oDAMZEAjPrxKeBeaiXQT3rQO0mGO3CYtFQg1aAjvMDxBmoo03li1EDGRyftTdW7rZodPHbokyMTIVHmHYNZg0tKcgb6DNM5N4c1YGI+zBYjckVc8ZlE8kwVQg0OaOzvpoBZ84bNu4PRpAPHhmksSoTsn4BYhBhpEYYZmBim/+YkTD5mbXtMsg1Yp+ujcOVdORicXQJ0WYwtaNwrT35MoexUF41GYIuRGAZ7NOQrU0jOZzRpetFKFXq4wShVm6dlaOW4ENWicUhg/StKC3PG8N5xi7hoAyXdhMD1LqHMbR2yRjW5bhJouHbsB85gT/geUlY/CcUHzyMP9VRF5LNsuZhIl3vU0BRVGk//SJAIDME80Fdu62lGxoWumDWKd5lWaeWJjC9x5RyPYsi2Ym+tw49OglW7ptmURXYMwwePPNK+Dbk4MopEOMbWOZRrYkmPTu5mMnAmdse8n3LRz1vnLm/QsCuafBACvnDgbJyJrAO+YcK5OQz+gQkmEv4WQ7N72o8m11A5N9nUzjeENywn0fQE8AudADJiwn5d9WQoaPrMZFRY0WFDgQt2YN6tXbSIoRNmXpaAC/ZVTyzlVCzZVXAzDUuHSsLJgOEL5eXwfhyy7Kl4y5t7mnKqS/rfxqE9nKrTYpfpIXXbbSyrWvaVJSINco0GS42icSgMtKbtHXTaCV1lRwMqF9W+YgPzqUT+hxbwDkY9JuEQtLutq5bPo6iKJRm/CuxvQhKUJdNvFLLupm7CYKxzqQxS4pXOd8ljqQBDxyu24CQLrLg8WAE/GoQHjHGfDKBEZF/gUKLnlTeKEpjylleAi6Aby2gl3dM8nR6iHJv97To5ErzSgI8jKUCYUcTAORf8zqQxEnsfhR1H/I3jBJamVcIX6NYqJnCAeOjwVzCEKnClNFkAT3b2NvGUoQVKCX3AIsdSEmFKpQ1luOiiG7oTllSYzV/AMnO8tpJipTCeLRvzhV+Z5VAReqU0SCgH1aOSEHgpF4P6dG7gyDyQO5rhInsdZ8eVUdpI3rSArvMQMttMNsM6tpoyqSqRTEGXuFPaJrboaW6H3KZrk66VpXn6WpVw/cG65p1sIj/LrksE8FPezJriffR+4kxx3fS+4X4HtLMF+CvyqOdYL6Dv16HMznIHr7OZLDHUhEvLXXbGfI9jSllSXzPpq7Dkgc/gUyiapjFhsFAfMZVk9ztdBFC8D7VQQHtUjHI5HNGHuDMSR6BCYHhc6UDC2AHyx+KhVe0MTyHPEl/y4Wov7u8EgpRmHmS+pAeQWISvFUslGSpCT3Zz1uwTioR+FTrBCjc+kGk9OIRWpAN1voMr9qiovIrrfuFjS48IF4630uBbUXfW4FvLTOsjdBpC7Bwu5+vUhfxNmkAoDCEtou3VoT/7CTWIlJ98lWvJNEF8WfVk8HPMC8lYF80eJeOvg7NfDqTaDUz0YOMl+4dzGIUxXYuo1cAjeoTgEXKBZSYMPxAef1UFOG0BODxZy/XB8MK1D+7yJyzjfBPfX8xgF4PtZcayDUmIo4PQqUF40gfLi8KDcz6J5QyirwnjZBMbLw4GR7BXG1yw/Ol0ZvC6r6+A+p/dON6C5vFqbN1tatc242caNblgSreHlcu2aXk7qcsPOyhpeLs/WrkB34mV5M5NvzgaZM803NOejitOb+inmLb/G/CaL8wMJbzu/yePqwor5scGAJjT8TMNP4yjjh/L5ZCU+qI0KFraY8orOHhXfpT0T6o9oZVfwbJ1Z+vUqnOa9Fcz4D9qhyvdJHrQ7OPdvxQZVkaK3zH2lOAKxgG83zoIHaEv14OSW0pifV70LbxInTPlVGElTOpBpJLbcA+ULqQXBDZsJbnhAglveHmhtuSVDnpDkil2dv3BFcqyZ5NghS27LhdwTlFzVVX5sJrePu8mtONfOBadiso+UelvBPSG5XUi5nVbkdttMbrffg9yeksGdr0uzg2aCCw5RcKQQXOdpCa6aFN/QScaTdJEH/8RT2Z/fv+ZZMJq8P+69P4YkpQXh7v0x6iH4IynQv9DzK+eG/vHnLM3/cAQfZa38uyqJzmAwZWnk3XbWHlO8LBW8LKKWX2pLIekfzC+AiTtMWCnkVZwwZk6SiVN7CeNb5oll95+nx+jyw3Yy4Au5qgymQgaD5yCFoxYv8BHaIIrLs91EcbnpjsD+M5L9CeLyGJ1VBLGNF+OZ3tpkPWzmycJv6MnIphCEv7vMIQ9AFxWxxc3EFn9zu1i/OH7KUluzPVdrcbmPe/V6py06aLbnLSbuSGGUVdG0h4AhxGNprft+9Xo3953z9lDv8pBbRvtz3wDaMYfvQ2n4+WWblpEfihF7J41b6yhykZxvOHFZo23nF/vecOVyh1FW5Q2gYzJrQEXaUKd05xe7Kd35xuOlp5w0nB+jiy2zN3VBCK+re8Mv0I/o/SBx3L8LCX0pniZferJmIc378neeeX9BP/aWxbZi83k3AW66mlF7rk2w/tCT7S2El//70EbZyaTG1G3bwli3SIeQjm0X1z1sXTMwxprV4f8uYdnlo7P1DuPGCf21W0nVK7mf6v3EwpWCT7shX9xNlP5CvD3Cza61Z4qPcSkUDGPHS6GfKgiPNt09qlwLzW8flbzwbFu68XXoXe+FPvLFz9UuiCy4oFxzaZhmlPnj0EeDn5w4Sn8WzmXuUACfXfwG+ebau8LyTcMmYOUmNjXN7hT3ZCzTNA1imAQWTh21Q9ZZfrv8fyb8vfiH5Jf/B1BLBwjqzqwHSgoAAC09AABQSwECFAAUAAgICABntWFDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAGe1YUPqzqwHSgoAAC09AAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA4goAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
</popup>


<br>
Erste Ableitung:
{{Protokollieren|
<big>'''Übertragen Sie die Definition des Differentialquotienten zusammen mit einer Skizze in Ihr Heft.'''</big>
}}
<br>


<br><br>
<math> x'(\alpha)= \frac{2 \cdot v_{0}^2}{g} (-sin(\alpha) \cdot sin(\alpha)+cos(\alpha)cos(\alpha))\qquad \qquad (Produktregel) </math>  


{{Aufgaben-M|15|
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (cos(\alpha)^2 - sin(\alpha)^2) </math>
Verschieben Sie im Applet den Punkt B nahe zu A und beobachten Sie den Wert des Differenzenquotienten. Was passiert, wenn B und A zusammenfallen? Beschreiben Sie Ihre Beobachtungen in Ihrem Heft.
}}  


<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (1-2sin(\alpha)^2) \stackrel{!}{=} 0 \qquad \qquad (sin(x)^2+cos(x)^2=1)</math> 


{{Mathematik|
<math> \Leftrightarrow 2 \cdot sin(\alpha)^2 = 1 \qquad \Leftrightarrow sin(\alpha) = \pm \frac{1}{\sqrt{2}} </math>
'''Andere Schreibweise des Differentialquotienten:<br>
Statt den Wert x<sub>1</sub> immer mehr dem Wert x<sub>0</sub> anzunähern, können wir auch jetzt wieder die Differenz der beiden Werte <math> h=x_1-x_0</math> immer kleiner werden lassen.
}}
<br>
{{Aufgaben-M|16|
Ersetzen Sie in der Definition des Differentialquotienten  den Wert x<sub>1</sub> durch x<sub>0</sub>+h.
}}
<popup name="Lösung">
<math> f'(x_0)=\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}</math>


<math> \Leftrightarrow \qquad \alpha = \pm 45^\circ </math>


Dies nennt man die ''h-Schreibweise'' des Differentialquotienten.
Die negative Lösung entspräche dem Abwurf in 45° nach unten in den Boden, also eine nichtpraktische Lösung.


<br>
<math> \Rightarrow \qquad \alpha = 45^\circ </math>
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAOu1YUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADrtWFDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1b+2/bthb+ufsrCGEYGiyOSepldXYHp018C6TrgOReDHftHWSJttXIkirJidOt//s9JEVbtvySE7dJgaaUxMPH+b5zDp9u/zodh+iGpVkQRx2NnGANsciL/SAadrRJPmi0tF9f/tAesnjI+qmLBnE6dvOOZnDJwO9ormU4umEOGrbnOw3Ds/yGY3t2wyeUUDxwHcPSNYSmWfAiin9zxyxLXI9deiM2di9iz81Fw6M8T140m7e3tyeqqZM4HTaHw/7JNPM1BN2Mso5WPLyA6hYK3epCnGJMmn+8vZDVN4Ioy93IYxriKkyClz88a98GkR/fotvAz0egMG2BHiMWDEeglGNbGmpyqQQQSZiXBzcsg7KlV6F0Pk40IeZGPP+ZfELhTB8N+cFN4LO0o+ETqhu6bWooTgMW5YUEKVpqqjraNwG7lZXxJ9GOoaE8jsO+y+tB//yDKKYYHfOEyIRCYlkyC8tvWJcJlYkhE1PKGLK4IUUNKWNIGQOIugmyoB+yjjZwwwyAC6JBCqTN3rP8LmSiP8WHuc7kGHTKgs8grGNAVSIN3zE+5n8W/Bk8o7moJCm1mqeTmo2qJgm16O5t0ntpqm/Uk5pr9LQ2NCoV30lRs9QmNCX+ib9Ki/omNZdblO/3a9AyvoqK7abylXbhHigbcdnCfHI2zrjD6A4yHW73BJngHJYNZm4i4kBiUwTugIiJDBNeSQtZPLWRbkOGgXTUQlyO6Eh4h9mC/wxbVGYhEyrjX21wSkSgIQOZOiLCqQwEroSEY4KTUh0kTBOZUIg3TyivQreQYcGb3kIG9JH7pE1AUIeC8A7NU6QTpPPCxEbUQhavjxjc160W7zpUSZGFkUV4heDW4NLSnUG+hXSujYpmQZRM8gWIvLGvHvM4mXEB0hCQ5sFOBqiFWPisHbp9FsL4cMmZROjGDblHiIYGcZSjmUPKb8PUTUaBl12yPIdSGfro3rgXbs6m5yCdqbaFrBdH2e9pnL+Kw8k4yhDy4hDP+hyHpPRMZ72GF72UYZQzzFKGVXq2V7YbQw6aZAzaj9NMibu+/4ZLzEMDIPkuCu9OU+ZeJ3GwqEa7KYaaNpt4YeAHbvQfMFbeCscFzUceHq/UyGM7jupJnPqXdxmYMJr+l6UxOAA9gbCNdYPatk0oBR+7K3Is/cS0HNoiDnF0SmCMyTyX+55ukxNdN02nRfnwTBwoU2QR3DqxiE2xaWDbaZmGKVtmNzOG3CmbKT9MuWMXivOXN9lpHM4/CfVfuUk+ScWcAWJjynXqRsOQCRMR0RYGZO+6H08vpW3osq6ruwTesOxAfyhgRxAaqAmqDIu0L1Mhw3s2k8JCBgsJrIwt8Gf5xKFCQqR9mQopsF7ZtUJTotQkWDUTZCKgYW3BbYTp89F9EgX5hXrJA++60JRI+d8m4z6bGdBileSBqmw3lwysfc3SiIWFPQOTk3iSSfcsmbrPvGAMrzJDwcrJ+jd0QH712TBlqt+hmI1JuEQuLltq5bOo6jyNx2+imyuwhKUOtJuql+3MS4OEGxzqwxhwzeY25QeZC0OIXy7HHRBU9/hQAfDkHBpwzUk+ilMx34KIAin3u2mSsoxPaCW4CKqBWe2Uh7nn0yPUQdP/PadHolYWsjHMyVAuDHEwiUT9M1YGYpbH4Udx/yPEwCXWSrhC/hrDRG6YjFw+ESwgCt07li6AJqp7G/vLUAJTQl8IB4m0hIQxaUN54ToogeqE55U6MzfwHELvNUwwMzmZVIX4w78C32di2JXWJKEQUI/HbuSjSAzbv3MH1+bDiIs5LlLnSa6+dGUlRdEKsiJKzGDrboF17jVlVAmVQUGkRVA4JLZkNbbC7jM0LVZLd0X6WaZy9cC15ZFuYXCUX5cc5r64n9bB/fT7wJ0WuBsHwf0CfGcJ9i7oSwqsF9B3N6PP3XAGrrtfLDHJwkjIX/fFfo5gQ18yXTqrq3bkgJnDp0gWyeSIFYyTMPCCfDPOl2GcLAPtVhAeb0Y4moxZGngzEMeiQlB6omxAKbYAvFp6bDR7UxfIc8SX4jjZiPu7wSBjOYeZL6gB5AalK2mpzEZKkNP9gvW7FMbDYRy54QozPpVmPO3CVKQCdL+GKferpryI6GHHxZIdqxCMd7LjjaDua8cbIe9ugtyrAbn3aCEnXx/yN1EOU2EAYQltbxPa079wnbGSi+8zWvItkKFM+jK5P+YK8kYF8wcZ8dbB2d8MJ6kHJ/lWcOrr5g/3ghMqhEUvn8iIb2AuP4/uHyjuVmLt1wgU/mMJFFihXJkeP5LYfLoJclYDcvZoITceT2xmm9A+qxNKzvabSB8iMCvAD7MSWQelxFDA6VegPK8D5fnjg/Iwi+ktQ1wVxl4dGHt7BoBD4EgPiuProDhRXTl69aoL5D6X97tb4Fxexs2LLS3nZtrsEke3rJXW6NJbu9iXnept2XJZo0vvdO3SdC9dlnc5+a5tmLt3xU7nvFVxqLO5i0XJr9G/6WL/gOFd+zd9WFtY0b9gMGApiz6z6NMkzvlZfdFZiQ9qIqXCDl1eUdmD4ru0mcKGY1bZLjxd55bDzSacFbUpZYb32roqNlDutW04j29q50rN3RvWoeY4ArGQ70PORg+wluqJyjVjCT/IehddpW6U8RsyUqZ0UlOLtiICFSusBeJG9YgbPSLilvcNGjvu1dAnxJza7vkLV5gL6jEXPGbmdlzJPUHmqqHyYz3ePu7HmzrwLogjmB5iTr0rcU+It3PJW7fC23U93q6/B96eksOdrZtmh/WICx8jcVQR1/r+iOOD29r5SVSPvOgbkke3eR3+7oJl4XPnFdqSerQlj2hysrweeMqsrdmR2OhxxUL61eu9diWg2NffYVlrhkWnzrbsYa7R5ez8kCvsKzcarp02Vu/lfNqswsL5waf93EldUJCqiLcHON5du3/4EDdD2HTfmyGfKgiPtx1AVu6GFEeQJQOZLUFr34na93LIA9/+qO5iXbFpTot9q5/41tMvheWyKMtZMJxEQzT4yU3i7JfnEFiOOlII/YwAH/hfvsr/V2105VC/ttjYt7Ze8P40F9flkBzHLdMwMLaJaVgtQiyiDsUsQhys45YOmZaNjbKBb0eVLKD6urrB9wL9iN4PUtf7+/1rvlGI7r6op+mXjswZPBcnxUcN8XD05e/RF/TjnIPnF+4V++PPFbuHH472IWfbofuWS2fYuO/hZJAJjRZHwOKHAhm452D2uxBxMRxrKlSs5dZwHBtjw6YtSluOo07yHUM3Mca63cK2Y9tOPW5hHCyTO+qg98domZXZmLkfF8VYW/+YaGm6e58rgDvQoX7jsJUPgdfbwBdHSH+CNR8jmKB8KDU/vwnXMIuTaersRgg/GCgTAnRs4qTb24+T7oqjux3C/0OuHg9HSfcY9dbQQS1Bh27txgY/RiqxocLb++PO++OliIa2MNU73Y+p3rbLy4dfdByOqd4xOv2wGxUwy11FBWCuiECKiU00nJ3vR8PZiisDOwWxJ8HD2TE6r/DQLP/0hL+rXyi//D9QSwcIDbAhtk4KAAA+PQAAUEsBAhQAFAAICAgA67VhQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADrtWFDDbAhtk4KAAA+PQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAOYKAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
<br> <br>


{{untersuchen|}} Vergleichen Sie die beiden Applets und untersuchen Sie die Veränderungen.
Zur Überprüfung, ob es sich tatsächlich um ein Maximum handelt, sollten wir noch die 2. Ableitung überprüfen:
</popup>


<br /><br />
<math> x''(\alpha) = - \frac{8 \cdot sin(\alpha) \cdot cos(\alpha)}{g} < 0 \qquad \qquad \alpha \approx 45^\circ </math>


Mit Hilfe dieser h-Schreibweise des Differentialquotienten kann man die Ableitung f'(x<sub>0</sub>) berechnen.
Somit handelt es sich tatsächlich um ein Maximum und die Wurfweite wird bei <math> \alpha = 45^\circ </math> maximal.


{{Aufgaben-M|17|
Bearbeiten Sie nun folgende Aufgaben. Schreiben Sie die Rechnungen auch in Ihr Heft.
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue1.htm Übung1]
* [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/06_diffue2.htm Übung 2]
}}
}}
<br>
'''6. Untersuchung der Flughöhe'''
 
Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.
 
Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei <math> \alpha=0^\circ </math>, also den Wurf senkrecht nach oben, sein Maximum haben wird.
Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.


== Ableitungsfunktion ==
{{Lösung versteckt mit Rand|Wir müssen die Ableitung der Funktion y(t) wieder gleich 0 setzen, um die Extremwerte der Funktion herauszufinden und diese Werte dann mithilfe der 2. Ableitung überprüfen:
{{Mathematik|
<br>[[File:Farm-Fresh plenum.png|Farm-Fresh plenum]] <big>'''Beispielaufgabe:'''</big><br>
Betrachtet wird die Funktion <math>k(x)=0,002x^2</math> (die in der Einstiegsaufgabe die Höhes des Kraters beschreibt).
<br>
* Die Ableitung an der Stelle x<nowiki>=</nowiki>100 wird wie folgt berechnet:


<popup name="Lösung">
<math> y(t)= v_{0} \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 </math>
:<math>f'(100)= \lim_{h\to 0} \frac{f(100+h)-f(100)}{h}</math><br>
:::<math>= \lim_{h\to 0} \frac{0,002 \cdot (100+h)^2-0,002 \cdot 100^2}{h}</math><br>
:::<math>= \lim_{h\to 0} \frac{0,002 \cdot (100^2+2 \cdot 100h+h^2-100^2)}{h}</math> <br>
:::<math>= \lim_{h\to 0} \frac{0,002 \cdot (2 \cdot 100h+h^2)}{h}</math> <br>
:::<math>= \lim_{h\to 0} 0,002 \cdot \left( 2 \cdot 100+h \right)=0,004 \cdot 100 = 0,4</math><br>
</popup>


* Ganz analog lässt sich die Ableitung auch für eine beliebige Stelle x<nowiki>=</nowiki>x<sub>0</sub> bestimmen:
<math> y'(t)= v_{0} \cdot sin(\alpha) - \frac{1}{2} \cdot g \cdot 2 \cdot t \stackrel{!}{=} 0</math>
<popup name="Lösung">
 
:<math>f'(x_0)= \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}</math><br>
<math> \Rightarrow t_{max} = \frac{ v_{0} \cdot sin(\alpha)}{g} </math>
:::<math>= \lim_{h\to 0} \frac{0,002 \cdot (x_0+h)^2-0,002 \cdot x_0^2}{h}</math><br>
:::<math>= \lim_{h\to 0} \frac{0,002 \cdot (x_0^2+2 \cdot x_0 \cdot h+h^2-x_0^2)}{h}</math> <br>
:::<math>= \lim_{h\to 0} \frac{0,002 \cdot (2 \cdot x_0 \cdot h+h^2)}{h}</math> <br>
:::<math>= \lim_{h\to 0} 0,002 \cdot \left( 2 \cdot x_0+h \right)=0,004 \cdot x_0</math><br>
</popup>
}}


<br>
Einsetzen in y(t):
{{Aufgaben-M|18|
# Bestimmen Sie wie in der Beispielaufgabe die Ableitung für die die Funktion <math>w(t)=0,001(t+8)^3</math> (die in der Einstiegsaufgabe die Wasserhöhe in der Vase beschreibt) zum Zeitpunkt t<nowiki>=</nowiki>5s und für einen bliebigen Zeitpunkt t<nowiki>=</nowiki>t<sub>0</sub>.
# Welche Bedeutung haben die beiden allgemeinen Terme aus der Beispielaufgabe  und Teilaufgabe 1. jeweils?
# Variieren Sie die Stelle x<sub>0</sub> im [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/content/07_ableitung.htm Applet] und beschreiben Sie die Bedeutung der sich ergebenden Ortslinie.
# Treffen Sie sich mit einem weiteren Lernteam und vergleichen Sie Ihre Lösungen.
<br>[[File:Farm-Fresh plenum.png|Farm-Fresh plenum]]'''Plenumsphase'''
}}


<br><br>
<math> y(t_{max})= v_{0} \cdot sin(\alpha) \frac{v_{0} \cdot sin(\alpha)}{g} - \frac{1}{2} \cdot g \frac{v_{0}^2 \cdot sin(\alpha)^2}{g^2} </math>


{{Mathematik|
<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{g} - \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>
[[Datei:Nuvola_Icon_Kate.png|40px]] <big>'''Information'''</big><br>
Die Berechnung des Grenzwertes des Differenzenquotienten für eine bestimmte Stelle x<sub>0</sub> ergibt die Ableitung an dieser Stelle. Wird diese Berechnung für eine allgemeine Stelle x durchgeführt, so erhält man eine '''Funktion f´(x)''', die jeder Stelle x die Ableitung an der Stelle zuordnet – die sogenannte '''Ableitungsfunktion'''.<br>
Mithilfe der Ableitungsfunktion lässt sich die Steigung des Graphen an jeder beliebigen Stelle bzw. die Änderungsrate zu jedem beliebigen Zeitpunkt schnell berechnen.
}}


<br>
<math> = \frac{v_{0}^2 \cdot sin(\alpha)^2}{2g} </math>


{{Aufgaben-M|19|
Einsetzen von <math> \alpha_{max}=45^\circ </math>
# Bestimmen Sie mit Hilfe des Applets, wie weit das Fahrzeug im Barringer-Krater kommt.
# Berechnen Sie mit Hilfe der Ableitungsfunktion aus der vorherigen Aufgabe, wie weit das Fahrzeug kommt.


}}
<math> y(t_{max})= \frac{v_{0}^2}{4g} </math>
<br>
<popup name="Applet">
<ggb_applet width="650" height="500"  version="4.0" ggbBase64="UEsDBBQACAgIAAW9YUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAFvWFDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1aW2/bOBZ+7vwKQg+DdrexxYtuHaeDJECwATLTwaa7WOzDBrREO5rIkiJRiV3Mj99DUpJlK3Ejt2mCokAcSuIRD893vnOR7Mmvy0WCbkVRxll6aOGRbSGRhlkUp/NDq5KzA9/69f1Pk7nI5mJacDTLigWXhxZTknF0aHGXBZQ5swMvjIIDFrrRQeCF3kGECSb2jAfMpRZCyzJ+l2a/84Uocx6Ki/BKLPh5FnKpFV9Jmb8bj+/u7kaNqlFWzMfz+XS0LCMLwTbT8tCqD97Bchs33VEtTmwbj//z27lZ/iBOS8nTUFhImVDF7396NbmL0yi7Q3dxJK/AYOKDHVcinl+BUYHnWmispHJAJBehjG9FCfd2TrXRcpFbWoynav6VOUJJa4+Fovg2jkRxaNkjQhn1HAtlRSxSWUvgWtO4WWNyG4s7s5g60nqYhWSWJVOu1kF//YWITWz0Vg3YDAQG1zVTtrlmUzMQMzAzOEaGmduZEWVGhhkZBo66jct4mohDa8aTEoCL01kBTmvPS7lKhN5PfWFtM34LNpXxJxCmNqBqkIbrtv1WfVz4MDUx3jQSd7TKohqotFGJiUser5N8kaV0p53EecBOd4dSY/ijDHU6OkGV/tOfnka6y8xtjeb8yxS67JuYOBk3sTKpwwOVV0q2po8Ui1IFDA2QEyjeY+RAcLge0NxBOIDBIwjCAWEHMQdOsY9cNXqIejDBEEU+UnKYIh0djg//mKcXc5EDi6mrHgQlwqCIIYcirIOKIQglpAMTgpRQkHAc5MBNSj0magnqIubCGfURgz2qmPQwCFK4Ec5BPUEUI6puxh4iLnLVepipWHd9tXVYkiDXRi5WC0JYQ0ibcAZ5H1FlTZPN4jSv5AZE4SJqDmWWt74AaUhI62RnEtRGLnw1SfhUJFAfLpQnEbrliYoIrWiWpRK1AWmuzQueX8VheSGkhLtK9Ce/5edciuUpSJeNbi0bZmn5R5HJkyypFmmJUJgldrvnLMGdY9LuGk5oZ4J1J5zOhNs59u7Vm8EMqkoB+rOibMR5FJ0piXVqACQ/pMnquBD8Os/iTTMmY11qJqIKkziKefpvIKvSonBB68qj8lVTebwgaHaSFdHFqgQKo+V/RZGpvIJHFLu+jSn1GMMUSsnKTLluMHKo5wYEVvOZKl9lyFXw4ZGHfep7lBCfYjgEZat6jozswMeBxwhxmO842KgWt62L+FK01s8LFdm15erkrDzOkvUlbf8Jz2VV6KYBkmOhjDpK54nQHNHpFipyeD3NlheGHNSs9XGVw5ltNjCda9wR5AbigJHzepyaUcuonbVStpaxtYTdsC2O2nkcEC2hx6kZtRTQ12ytthQ3ZmK7UROXOqPZ1kbcaO6r8l6lsTxvTmQcXteWYiP/e7WYipZBm0vir7TkZLzFsMm1KFKR1IQGT1ZZVZr47HA9EmG8gFMz0cCqnPUv2IC5Gol5IZp9J7odM3DpWbtL1d5lvdRpkS3O0tuPwIStDUzGzS4nZVjEuSIcmkIRuBZrTkVxyaGGRN37VASC6aGqFQCPVNBAbFbyKit0wwUpBUYVeMu8EKXqaA24CJaBtnap8tzr5Rt0iOyRao/+hpb/e03e6NVFIhbQnCGpCTmrUq2n9c5Mt3vKDSib/gnJcMt7HXxh/gGCIp7kV1x1hDVUCV+JYgM8vdxvWbQNKXhM2w15ITeMyIUwXJJ1CKEcltMR2NnMmugScvA1dJqljkZzE7BdH/0jjiKhC7ChlcFCY75Y8DRCqS7gf6hIt9YFhdsKGGN0JZsrR2aR+tYetDpdtLgdfQbXdfh0YcXEZAc91tnhKcHF94OrA6BES90HquehFYj6+uiTeZYyzxLKYpX2NkqluboVPQ9j/6EAns+zlCfn4NItJxyB9VAal0eQYnr+CHf7QzGkhTvsu6Pp0r4Fz9eAHuAazwZNg/AjOH0fpaG23aTmltLk1HiRJ3EYy92gn6USMi7AsIV3uAvv5aU9JAKU+D4xoFrtuRmmZvhy1Nc0Png+Fq/uRTUawOLopbC4RRM3aPoviMUGaI151MP7dAiHTz8H+Lej8FPn4QsxV9cfSMCXdg/IeDeQZb1eg1S8X6PhYA2lGr60Hq6xrDHsZOEDh9mPTcRkOIc1cImqsy1noS73W9hrIXL15PAh/VjwtFTvJI1MpzUe5L9T47+jnveuh3nves/M0zzu1P7DNvmasVCn9e/Cf/tXkJsBFeTmRwX5XON/0wP4ZEjJONmvZLy4zt8J3BG2XepRh9qUEPyk1eeffHU/5U963ih2e6OAlRqoi5fGdtIHVScvSoJghJlHqMMcL/CcpwmEJ0ljO5+CL8l+4dD1wLOHwnM/BF+SXelfDkj/8qUFxMtL/7IH8NmQ9H/2naR/RoMR8dyA+j7zGAs89q3zf8P6s55D+CV+fA1Qwns9eTwZ5/E90KoqQBzbDUY+84OAQDsbOL13+p14YC+sCmy68yNP5w8+TPbfrPIBKYzv501is25Jsb/KMzlkL2Jc+sgsNtBrYvmYLLb/k8N0AO7TH6Vj4LunaQ/v4yGV5Hg/on8/756OH3p3IYa9uxB7Zowfry4e++opyfLtvMN7Xlvs9lpaLUQRh61XFnpB2EFVQ6ly7Xi/5sqhXU92sxB+pB93leKd+WXjSWnr61uok2Ipcf0N7s83VSZ/qSunSKF1i+dVOkezn3melb+8Xl7abw6NEPo7WsCnPjGD+Y3LJqYSlrc2dT138SwlL6Tuu5F+E8uCUeBQ18MMO9D1YN/kdkpHtk883w2YzwLsdJPOw0Q8bb7d3uTizCQS5Xdiftq2zc1Pu7nZ+9b807O2lMNbi8+zkGyw8Kjl2VHLswE0u+ehfyg8X5VkDh0x5tuO75LAp4pNun8IRp5rB9gn0HI7Lqb+Qywbd3+ioX8HVf+U9/3/AVBLBwiHUbG4jggAAGcsAABQSwECFAAUAAgICAAFvWFDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAAW9YUOHUbG4jggAAGcsAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAJgkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
</popup>


<br>
Zuletzt noch die Überprüfun der 2. Ableitung:


==Üben und Vertiefen==
<math> y''(t_{max})= -g < 0 </math>
{{Aufgaben-M|20|
{{Differenzieren|}}'''Aufgaben zum Trainieren'''
* Seite 45 Aufgabe 1 (Lambacher-Schweizer: Mathematik für Gymnasien, Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4)
* Seite 45 Aufgabe 2 (Lambacher-Schweizer: Mathematik für Gymnasien, Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4 )
}}


<br>
Somit handelt es sich um ein Maximum und wir haben die Flughöhe für beliebige Anfangsgeschwindigkeiten bestimmt.


{{Aufgaben-M|21|
{{Differenzieren|}}'''Anwendungsaufgabe'''
<br>
* Seite 45 Aufgabe 3 (Lambacher Schweizer: Mathematik für Gymnasien, Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4 )
}}
}}


<br>
Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!
 


{{Aufgaben-M|22|
{{Untersuchen|}}{{Begründen|}}Betrachten Sie  noch einmal die beiden Einstiegsaufgaben und bearbeiten Sie schriftlich folgende Fragen:
* Was waren die Problemstellungen?
* Was waren die ersten Lösungsansätze?
* Wie sieht die mathematische Lösung aus?
}}


<br>


{{Aufgaben-M|23|
{{mitgewirkt|
{{Testen|}}Schätzen Sie Ihren aktuellen Lernstand anhand des ausliegenden [[Media:Selbsteinschätzungsbogen Differentialrechnung.pdf|Selbsteinschätzungsbogen]] ein.
* [[Benutzer:Joerg Stadlinger|Jörg Stadlinger]]
}}
* [[Benutzer:MatThe|Matthias Then]]
* [[Benutzer:Hofmeier|Mareike Hofmeier]]}}


<br>
<br>


{{Mitgewirkt|
{{SORTIERUNG:{{SUBPAGENAME}}}}
*[[Benutzer:JochenDoerr|Jochen Dörr]]  
[[Kategorie:Extremwertaufgaben|!]]
*[[Benutzer:Tobias.Rolfes|Tobias Rolfes]]
[[Kategorie:Mathematik in der Oberstufe]]
*[[Benutzer:D.Schmerenbeck|Dirk Schmerenbeck]]
[[Kategorie:ZUM2Edutags]]
*[[Benutzer:Roland Weber|Roland Weber]]}}
<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Anwendungsbezogene Extremwertaufgaben,Mathematik,Extremwertaufgaben,11. Klasse,Oberstufe,Lernpfad,GeoGebra</metakeywords>

Version vom 26. Februar 2015, 19:50 Uhr

Vorlage:Lernpfad-M

Einführung

Willkommen zum Lernpfad "Anwendungsbezogene Extremwertaufgaben". Hier findet ihr Aufgaben, in denen die Bestimmung von Extremwerten anhand von Beispielen aus dem Alltag eingeübt und vertieft werden kann.


Kurz zur Wiederholung:

Ein Extremwert ist der größte bzw. kleinste Wert einer Funktion (in einem gewissen Bereich). Hier findest du noch die formale mathematische Definition: Definition Extremwerte. Um diesen Wert zu finden, ist es sinnvoll die Ableitung der Funktion näher zu betrachten. Diese beschreibt nämlich anschaulich die Steigung einer angelegten Tangente an der ursprünglichen Funktion. Bei einem Extremwert, ist diese Tangente waagrecht, d.h. die Ableitungsfunktion an dieser Stelle ist Null.


Diesen Sachverhalt kannst du dir nochmal in folgender Skizze näher anschauen:

GeoGebra


Du siehst hier die Funktion , an der du die Werte a, b, c und d verändern kannst. Wie du siehst, gibt es an bestimmten Stellen maximale und minimale Werte. Betrachte nun folgende Aspekte:


  • Welchen Einfluss haben die Parameter a, b, c und d auf die Funktion? Wo liegen die Unterschiede?
  • Wo befinden sich die Maxima und Minima der Funktion
  • Blende die Ableitungsfunktion ein. Welchen Zusammenhang siehst du? Wie ändert sich die Ableitung mit der Veränderung von a, b, c und d? Was erkennst du bei der Änderung von d?
  • Um den Zusammenhang deutlicher zu sehen, klicke auf das Kontrollkästchen Extremwerte

Wozu überhaupt Extremwerte?

Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. Im folgenden soll dies an drei Beispielen verdeutlicht werden. Als erstes wollen wir untersuchen, auf welchem Weg ein Ziel am schnellsten erreicht werden kann (dies ist nicht immer der direkteste Weg). Danach schauen wir uns an, wie man eine größtmögliche Schachtel aus vorgegebenen Karton basteln kann. Als letztes soll untersucht werden, in welchem Winkel man einen Ball werfen muss, um damit eine maximale Wurfweite zu erzielen.

Dies ist ein Ausschnitt aus einem breiten Anwendungsbereich von Extremwertaufgaben bzw. der Differentialrechnung. Denn auch in der Natur werden meist Zustände angenommen, die minimale Energie benötigen und somit über Extremwertbestimmungen ermittelt werden könne.

Nun aber zu unseren Aufgaben...


Beispiele für anwendungsbezogene Extremwertaufgaben (mit Lösungsanleitung)

Extremwertaufgabe mit Nebenbedingung: Der schnellste Weg

Aufgabe


AckerStraße2.jpg
Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage

(a.) 1000m

(b.) 100m.

Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?
                            Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!


Ansonsten löse die Aufgabe in folgenden Schritten:


1. Stelle die Aufgabensituation in einer Skizze dar (Teilaufgabe a)):

Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.

Vorlage:Siehe

2. Zielfunktion für Teilaufgabe a) :

Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.

Vorlage:Lösung versteckt mit Rand


3. Nebenbedingung in Zielfunktion für Teilaufgabe a):

Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.

Vorlage:Lösung versteckt mit Rand


4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):

Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.

Vorlage:Lösung versteckt mit Rand

Bastelstunde: Falten einer Schachtel

Aufgabe

Von einem rechteckigen Karton mit Seitenlängen a und b (mit b a) schneidet man an den Ecken Quadrate der Seitenlänge x aus, so dass man damit eine oben offene Schachtel falten kann. Die Schachtel besteht dabei aus der Grundfläche G und den Seitenflächen S1 bis S4.


a.) Berechne x in Abhängigkeit von a und b für den Fall, dass das Schachtelvolumen möglichst groß ist.
b.) Was ergibt sich im Sonderfall a b?
c.) Wie groß ist das maximale Volumen für a 21 und b 16?
           Schreibe deine Gedanken, den Rechenweg und deine Ergebnisse auf einem Blatt Papier nieder. 
      Falls du an einer Stelle nicht weiterkommst, oder du zum Schluss die Lösungen vergleichen möchtest, 
                                 kannst du folgende Hinweise zu Hilfe nehmen:


Fertige zuerst eine Skizze der Aufgabenstellung an, in welche die gegebenen und gesuchten Variablen eingezeichnet werden. Dadurch sind die Zusammenhänge leichter ersichtlich.

Vorlage:Lösung versteckt mit Rand


Lösungsweg zu Teilaufgabe a.)

Nun gilt es, mit Hilfe der Variablen in der Skizze die Formel für das Schachtel-Volumen aufzustellen. Weißt du noch, wie man das Volumen eines Quaders berechnet?

Vorlage:Lösung versteckt mit Rand

Jetzt bilden wir die erste Ableitung der Volumenformel V(x) und setzen diese gleich Null, um "Kandidaten" für Extrempunkte zu bekommen.

Vorlage:Lösung versteckt mit Rand

Für welchen unserer Extremstellen-"Kandidaten" das Schachtelvolumen maximal wird, sehen wir nun durch sukzessives Einsetzen der erhaltenen Punkte in die zweite Ableitung der Volumenformel V(x).

Vorlage:Lösung versteckt mit Rand

Lösungsweg zu Teilaufgabe b.)

Für den Sonderfall ersetzen wir also nun die Variable b durch die Variable a, was bedeutet, dass unser Karton jetzt quadratisch ist. Dadurch erhalten wir sofort zwei neue Lösungen für die Seitenlänge x der herauszuschneidenden Quadrate.

Vorlage:Lösung versteckt mit Rand

Lösungsweg zu Teilaufgabe c.)

Zum Schluß haben wir noch zwei konkrete Werte für unsere Kartonseitenlängen gegeben, nämlich und . Wie groß ist hierfür das maximale Volumen ?

Vorlage:Lösung versteckt mit Rand

Der schräge Wurf

Aufgabe
Nun wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht.

1. Skizze:

Als erstes solltest du eine Skizze von einem Wurf nach schräg oben anfertigen. Wo befindet sich dabei der entscheidende Winkel ? Was sind die entscheidenden Größen?


Falls du nicht weiterkommst, findest du hier die Skizze des Wurfes:

Skizze:

GeoGebra


Als feste Größe ist die Abwurfgeschwindigkeit anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel .

Entscheidend ist nun die Zerlegung der Bewegung in eine x- und eine y-Komponente. Versuche zunächst, die Geschwindigkeit an Hand der Skizze in diese Komponenten zu zerlegen.

Vorlage:Lösung versteckt mit Rand

2. Physikalische Formeln

Wir wollen allerdings die Flugweite und Flughöhe, nicht die jeweiligen Geschwindigkeiten betrachten. Erinnerst du dich, wie die Ortskomponenten in der Physik mit den Geschwindigkeitskomponenten zusammenhängen? Schreibe die entsprechenden Gleichungen auf!

Vorlage:Lösung versteckt mit Rand


3. Nebenbedingung formulieren

Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels . Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.

Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.

Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:

Vorlage:Lösung versteckt mit Rand

4. Nebenbedingung einsetzen und Funktion aufstellen

Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch die für die Aufgabe wesentlichen Größen ausdrücken und in die Zielfunktion einsetzen.

Vorlage:Lösung versteckt mit Rand

5. Bestimmung des Extremwerts (maximale Wurfweite)

Du hast nun eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von .

Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von abhängt, musst du jetzt natürlich nach ableiten. Versuche, die Nullstelle zu bestimmen.

Vorlage:Lösung versteckt mit Rand

6. Untersuchung der Flughöhe

Du hast nun herausgefunden, dass die Flugweite eines geworfenen Objekts nicht nur von der Anfangsgeschwindigkeit abhängt, sondern auch vom Winkel, in dem das Objekt abgeworfen wird. Unter dem soeben bestimmten Winkel ist die Flugweite maximal.

Versuche nun noch zu berechnen, welche maximale Höhe das Objekt dabei erreicht. Wir suchen also wieder den Extremwert, diesmal allerdings den maximalen Wert der Höhe. Die Höhe wurde bisher als Funktion y(t) bezeichnet. Klar ist, dass der Ball wohl je höher fliegen wird, je steiler man ihn nach oben wirft und die Flughöhe bei , also den Wurf senkrecht nach oben, sein Maximum haben wird. Die Frage ist nun allerdings wie hoch der Ball unter dem berechneten "optimalen" Abwurfwinkel fliegt.

Vorlage:Lösung versteckt mit Rand

Herzlichen Glückwunsch! Du hast das Extremwertproblem des schrägen Wurfes gelöst!



Vorlage:Mitgewirkt <metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Anwendungsbezogene Extremwertaufgaben,Mathematik,Extremwertaufgaben,11. Klasse,Oberstufe,Lernpfad,GeoGebra</metakeywords>