Terme/Umformen von Termen und Anwendungsbezogene Extremwertaufgaben: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Terme(Unterschied zwischen Seiten)
Main>Walla Marina
 
Main>Joerg Stadlinger
 
Zeile 1: Zeile 1:
= <span style="color: green">Umformen von Termen</span> =
{{Lernpfad-M|Üben, Anwenden und Veranschaulichung von Extremwertaufgaben an anwendungsbezogenen Beispielen.
==<span style="color: green">Äquivalente Terme </span> ==
*'''Zeitbedarf:''' eine Unterrichtsstunde/mehrere Unterrichtsstunden
*'''Material:''' Stift und Papier, Konzentration
}}


<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">
{{Kurzinfo-1|M-digital}}
{|
! width="910" |
|-
| valign="top" |
''' <span style="color: blue"></span>''' <br />
{|
! width="600" |
! width="10" |
|-
| valign="top" |
<br /> <br /> Übertrage die Zeichnung in dein Heft und überlege dir zwei verschiedene Terme, mit denen du den Flächeninhalt der <span style="color: green">grün</span> markierten Fläche ausrechnen kannst. (Hinweis: b<sub>1</sub>=b<sub>2</sub>=b)


= Extremwertaufgaben in der Anwendung =
[[Bild:einführungsgrafik4.png|left]]
Als Extremwert einer Funktion wird derjenige Wert bezeichnet, der innerhalb eines gewissen Bereichs größer ('''Maximum''') bzw. kleiner ('''Minimum''') als alle anderen Werte in diesem Bereich ist. Hierbei wird noch zwischen einem '''lokalen''' und einem '''globalen''' Extremwert unterschieden. Global ist der Extremwert dann, wenn er der größte bzw. kleinste Wert im '''gesamten''' Definitionsberich ist, im anderen Fall ist es ein lokaler Extremwert.


Tipp: In der vorherigen Aufgabe gab es auch 2 Möglichkeiten den Flächeninhalt zu errechnen.
|} <br /> <br />
|
| valign="top" |
[[Bild:einstieg_addierensubtrahieren_neu.jpg]] <br /> <br />
|}


<popup name="Lösung">
'''Formal ist er folgendermaßen definiert:'''


1. Möglichkeit: Man rechnet den Flächeninhalt des gesamten Rechtecks aus 2b•4 und zieht den Flächeninhalt des kleinen Rechtecks 2b ab. Also: A<sub>1</sub> (b)= 2b•4-2b
Es sei <math> U \subseteq\mathbb R </math> eine Teilmenge der Reellen Zahlen (z.B. ein Intervall) und <math> f\colon U\to\mathbb R </math> eine Funktion.


2. Möglichkeit: Man rechnet den Flächeninhalt eines kleinen Rechtecks aus 2b und nimmt ihn mal drei. Also A<sub>2</sub> (b)= 3•2b


Bei jeder Einsetzung für b müssen die beiden unterschiedlich aussehenden Terme dasselbe Ergebnis ergeben, weil es lediglich verschiedene Rechenwege zur Berechnung des gleichen Flächeninhalts sind. Diese Terme sind <u>'''gleichwertig'''</u>.
f hat an der Stelle <math> x_0\in U </math>
</popup>  


* ein lokales Minimum, wenn es ein Intervall <math> I = (a,b) </math> gibt, das <math>  x_0 </math> enthält, so dass <math> f(x_0)\leq f(x) </math> für alle <math> x\in I\cap U </math> gilt;


* ein globales Minimum, wenn <math> f(x_0)\leq f(x) </math> für alle <math> x\in U </math> gilt;


<div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: red">Erklärung:</span>'''
* ein lokales Maximum, wenn es ein Intervall <math> I = (a,b) </math> gibt, das <math> x_0 </math> enthält, so dass  <math> f(x_0)\geq f(x) </math> für alle <math> x\in I\cap U </math> gilt;
Zwei Terme, die bei jeder möglichen Einsetzung einer Zahl für die Variable jeweils den gleichen Wert annehmen, heißen <u>'''gleichwertig'''</u> oder <u>'''äquivalent'''</u>.
Durch Anwendung der Rechengesetze kannst du einen Term in einen äquivalenten Term umformen.


<span style="color: green"><u>Rechengesetze:</u></span>
* ein globales Maximum, wenn <math> f(x_0)\geq f(x) </math> für alle <math> x\in U </math> gilt.


* '''Kommutativgesetz (KG)''': für alle rationalen Zahlen a, b gilt: 
::a+b = b+a
::a•b = b•a
* '''Assoziativgesetz (AG)''': für alle rationalen Zahlen a, b, c gilt:
::a+(b+c) = (a+b)+c = a+b+c
::a•(b•c) = (a•b)•c = a•b•c
* '''Distributivgesetz (DG)''': für alle rationalen Zahlen a, b, c gilt:
::a•(b+c) = a•b+a•c
:für alle rationalen Zahlen a, b, c (a<math>\neq</math> 0) gilt:
::(b+c):a = b:a+c:a
</div>


''' <span style="color: blue">Beispiel:</span>'''
==Wozu überhaupt Extremwerte? ==
T(a;b)= 3a+(7b+2a) 
Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. So kann durch die Bestimmung des Extremwertes herausgefunden werden, welche Verpackungsform das geringste Material verbraucht, unter welchen Parametern eine Strecke in kürzester Zeit zurückgelegt werden kann usw.
: <sup>(KG)</sup>= 3a+(2a+7b)
== Allgemeines Lösungsverfahren ==
:<sup>(AG)</sup>= (3a+2a)+7b 
:= 5a+7b


Durch geschicktes Anwenden der Rechengesetze kannst du einen Term zu einem äquivalenten Term vereinfachen.
Ein Extremwert einer Funktion tritt immer dort auf, wo die 1. Ableitung dieser Funktion eine Nullstelle hat und die zweite 2. Ableitung keine Nullstelle besitzt (Alternativ können hier statt der 2. Ableitung auch die Vorzeichen der ersten Ableitung betrachtet werden. Bei Vorzeichenwechsel liegt dann ein Extremwert vor).  
Vereinfache nun selbst folgende Terme:


a)T(a;b)= 7a+(9b+6a)
Ist allerdings wie bei praktischen Problemen keine explizite Funktion vorgegeben, sondern nur das Problem formuliert, muss zunächst eine passende Funktion, die Zielfunktion, aufgestellt werden. Hierbei hilft es, sich an folgendes Schema zu halten:


b)T(a;b)= 2•(a•3)•b+4•(a•5)•b
'''1. Stelle das Problem in einer Skizze dar'''


c)T(a;b)= (3+5•x)•x
Eine Skizze hilft, sich die Problemstellung deutlich zu machen. Kennzeichne in der Skizze die bekannten und unbekannten Größen. Überlege dir, welche Größen in der Skizze du noch nicht weißt und ob du diese durch die anderen Größen ermitteln kannst.


<popup name="Lösung">
'''2. Stelle die Zielfunkion auf'''
a) T(a;b)= 7a+(9b+6a)
:<sup>(KG)</sup>= 7a+(6a+9b) 
:<sup>(AG)</sup>= (7a+6a)+9b 
:= 13a+9b


b) T(a;b)= 2•(a•3)•b+4•(a•5)•b
Versuche nun, deine Skizze in eine Funktion zu übertragen. Hierbei musst du die Größe, die du maximieren oder minimieren willst, durch die anderen vorhandenen Größen ausdrücken.
:<sup>(KG)</sup>= 2•(3•a)•b+4•(5•a)•b 
: <sup>(AG)</sup>=(2•3)•a•b+(4•5)•a•b
:= 6ab+20ab
:= 26ab


c)T(a;b)= (3+5•x)•x
'''3. Nebenbedingung in Zielfunktion einsetzen'''
:<sup>(DG)</sup>= 3•x+5•x•x
:= 3x+5x<sup>2</sup>
</popup> </div>
<br /><br />


==<span style="color: green">Addieren und Subtrahieren äquivalenter Termglieder </span> ==
Unter Nebenbedingung versteht man einen für die Aufgabe notwendigen Zusammenhang, der nicht direkt aus der Aufgabenstellung hervorgeht. Ist in der Zielfunktion also noch eine Größe, die du nicht kennst, versuche sie durch die anderen gegebenen Größen z.B. mit Hilfe eines geometrischen Zusammenhangs auszudrücken. Am Schluss darf deine Zielfunktion nur noch von einer Größe abhängen.


<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue"></span>'''Überlege, ob du folgende Terme vereinfachen kannst:
'''4. Extremwert der Zielfunktion bestimmen'''
*5•x+3•x=


*5•x-3•x=
Nun musst du nur noch den Extremwert der Zielfunktion herausfinden. Dies geschieht durch Nullstetzen der ersten Ableitung und durch die Betrachtung des Randes der Definitionsmenge. Betrachtest du die Nullstelle der ersten Ableitung, so musst du diesen Wert noch durch einsetzen in die 2. Ableitung überprüfen. Ist die 2. Ableitung an dieser Stelle positiv, so handelt es sich um eine Minimum, ist sie negativ, um ein Maximum. Falls die 2. Ableitung ebenfalls eine Nullstelle hat, ist es kein Extremum.
<popup name="Lösung">
*5•x+3•x= 8•x=8x


*5•x-3•x= 2•x= 2x
== Der schräge Wurf ==
</popup> </div>
Als erstes Beispiel wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. Hierzu sind natürlich einige Vorüberlegungen zu treffen. Von was hängt die Wurfweite sonst noch ab? Erinnerst du dich an die entsprechenden physikalischen Formeln? Wenn du dich nicht erinnern kannst oder um deine Formeln zu überprüfen, klicke auf Lösung anzeigen! Aber: Vorher nachdenken!
<br />
<div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: red">Erklärung:</span>'''
Gleichartige Glieder werden addiert, indem man die Koeffizienten addiert und die gemeinsame Variable beibehält:
::<span style="color: red">m</span>•x+<span style="color: red">n</span>•x=(<span style="color: red">m+n</span>)•x


Gleichartige Glieder werden subtrahiert, indem man vom Koeffizienten des Minuenden den Koeffizienten des Subtrahenden subtrahiert und die gemeinsame Variable beibehält:
{{Lösung versteckt mit Rand|Entscheidend ist die Zerlegung der Bewegung in eine x- und eine y-Komponente.
::<span style="color: red">m</span>•x-<span style="color: red">n</span>•x=(<span style="color: red">m-n</span>)•x
Der Ort des Objekts ergibt sich aus dem Anfangsort, der Geschwindikeit in die jeweilige Richtung mal die entsprechende Zeit und die Geschwindigkeitsänderungen (welche über die Beschleunigung ausgedrückt werden) mal die quadratische Zeit:
</div>
<br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Beispiel</span>'''
T(x)= 9•x-6+7•x+8 = 9x+7x-6+8 = 16x+2
Um einen Term übersichtlicher zu machen, solltest du die Teilterme nach dem Alphabet ordnen und dann die Teilterme mit gleicher Variable zusammenfassen.<br />
Fasse nun selbst folgende Terme so weit wie möglich zusammen:


* T(z)= 8•z<sup>2</sup>-7+3•z+(4•z<sup>2</sup>+2•z<sup>2</sup>)-2z
<math> x(t)=x_{0}+v_{0} \cdot t + \frac{1}{2} \cdot a_{0} \cdot t^2 </math>
* T(n)= 2,2•n+2,8•n<sup>2</sup>-0,25+ <math>\left[ n(2.7+0,3n)\right]</math>
* T(a;b)= 4a<sup>2</sup>-2a+3b+2-8b<sup>2</sup>+a(2b+9)
<popup name="Lösung">


* T(z)= 8•z<sup>2</sup>-7+3•z+(4•z<sup>2</sup>+2•z<sup>2</sup>)-2z =
Dies müssen wir nun in x- und y-Richtung ausdrücken. In x-Richtung bleibt die Geschwindigkeit (wenn wir die Reibung vernachlässigen) über die ganze Strecke konstant und wir starten am Anfangspunkt 0:
:= 8z<sup>2</sup>-7+3z+6z<sup>2</sup>-2z =
:= 8z<sup>2</sup>+6z<sup>2</sup>+3z-2z-7 =
:= 14z<sup>2</sup>+z-7
* T(n)= 2,2•n+2,8•n<sup>2</sup>-0,25+ <math>\left[ n(2.7+0,3n)\right]</math> =
:= 2,2n+2,8n<sup>2</sup>-0,25+ <math>\left[ 2,7n+0,3n^2)\right]</math> =
:= 2,2n+2,8n<sup>2</sup>-0,25+2,7n+0,3n<sup>2</sup> =
:= 2,8n<sup>2</sup>+0,3n<sup>2</sup>+2,2n+2,7n-0,25 =
:= 3,1n<sup>2</sup>+4,9n-0,25
* T(a;b)= 4a<sup>2</sup>-2a+3b+2-8b<sup>2</sup>+a(2b+9) =
:= 4a<sup>2</sup>-2a+3b+2-8b<sup>2</sup>+2ab+9a =
:= 4a<sup>2</sup>-2a+9a+2ab-8b<sup>2</sup>+3b+2 =
:= 4a<sup>2</sup>+7a+2ab-8b<sup>2</sup>+3b+2
</popup> </div>
<br />


==<span style="color: green">Multiplizieren eines Produkts mit einer Zahl und Dividieren eines Produkts durch eine Zahl </span> ==
<math> x(t)=v_{x} \cdot t </math>


<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue"></span>'''
In y-Richtung starten wir ebenfalls am Anfangspunkt 0, allerdings nimmt die Geschwindigkeit mit der Erdbeschleunigung g ab:
Überlege, wie du mit Hilfe der Rechengesetze den folgenden Term vereinfachen kannst.


T(x)= (3•a)•2
<math> y(t)=v_{y} \cdot t - 1/2 \cdot g \cdot t^2 </math>
<popup name="Lösung">
}}
T(x)= (3•a)•2=
:<sup>(AG)</sup> = 3•(a•2) =
:<sup>(KG)</sup> = 3•(2•a) =
:<sup>(AG)</sup> = (3•2)•a =
: = 6•a
: = 6a
</popup> </div>
<br />
<div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: red">Erklärung:</span>'''
Man multipliziert ein Produkt mit einer Zahl, indem man '''einen''' der Faktoren mit dieser Zahl multipliziert.
:(<span style="color: red">4</span>•a)•<span style="color: red">3</span> = 4•(a•3) = 4•(3•a) = (<span style="color: red">4•3</span>)•a = <span style="color: red">12</span>•a = 12a
</div>
<br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue"></span>'''
Überlege nun, wie du folgenden Term vereinfachen kannst.


T(a)= (14•a):2
<popup name="Lösung">
T(a)= (14•a):2=
:= <math>\frac{14*a}{2}</math>


Versuche nun nach dem oben dargestellten Schema vorzugehen, dir also in einer Skizze die Situation zu verdeutlichen und die entsprechenden Größen einzuzeichnen! Wo befindet sich der Winkel <math>\alpha</math>?


:= <math>\frac{7*a}{1}</math>
{{Lösung versteckt|Skizze:


<ggb_applet width="400" height="250" filename="schraeger_Wurf4.ggb" showResetIcon="true" />


:= 7•a
}}
:= 7a
</popup> </div>
<br />
<div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: red">Erklärung:</span>'''<br />
Man dividiert ein Produkt durch eine Zahl, indem man '''einen''' der Faktoren durch diese Zahl dividiert.
: (<span style="color: red">9</span>•a):<span style="color: red">3</span> = <math>\frac{9*a}{3}</math> = <math>\frac{3*a}{1}</math> = <span style="color: red">3</span> •a = 3a
</div><br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Beispiel</span>'''
Forme möglichst einfache Terme:


* (-6n):2
* 24•0,5b
* 2m•6
* 25y:(-0,1)
* <math>\left( \frac{x}{4} +\frac{x}{12} \right) :3</math>
* (2y+5y-6y)•2
<popup name="Lösung">


* (-6n):2= <math>\frac{-6n}{2}</math> = <math>\frac{-3n}{1}</math> = -3n
Als feste Größe ist die Abwurfgeschwindigkeit <math>\vec v_{0}</math> anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel <math>\alpha</math>. Kannst du die noch unbekannten Größen mit Hilfe von <math>\vec v_{0}</math> und <math>\alpha</math> ausdrücken?
* 24•0,5b= (24•0,5)•b= 12•b= 12b
* 2m•6= (2•6)•m= 12•m= 12m
* 25y:(-0,1)= <math>\frac{25y}{-0,1}</math> = <math>\frac{-250y}{1}</math> = -250y
* <math>\left( \frac{x}{4} +\frac{x}{12} \right) :3</math> = <math>\left( \frac{3x}{12} +\frac{x}{12}\right)  :3</math> = <math>\left( \frac{4x}{12}\right)  :3</math> = <math>\left( \frac{x}{3}\right)  :3</math> = <math>\frac{x}{3} *\frac{1}{3}  </math> = <math>\frac{x}{9}  </math>
* (2y+5y-6y)•2= y•2= 2y
</popup> </div>
<br />


==<span style="color: green">Übungsaufgaben </span> ==
{{Lösung versteckt mit Rand|Um unsere Gleichungen für x(t) und y(t) aufzustellen benötigen wir die noch unbekannten Größen <math> v_{x} </math> und <math> v_{y} </math> die sich aus der Skizze ablesen lassen:
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 1:</span>'''
Prüfe, ob die Terme äquivalent sind
<div class="multiplechoice-quiz">
<big>''' 1: '''</big>


T<sub>1</sub> (x)= 5x-2x+6x
<math> v_{x}=v_{0} \cdot cos(\alpha) </math> und


T<sub>2</sub> (x)= 2•x•2+5x
<math> v_{y}=v_{0} \cdot sin(\alpha) </math>
(äquivalent)  (!nicht äquivalent)


<big>''' 2 : '''</big>
}}


T<sub>1</sub> (y)= 4y-3•4y+15
Nun kannst du die beiden Ortsgleichungen aufschreiben und zu einer Funktionsgleichung umformen. Die Zielfunktion ist dabei die Funktion der Größe, die du maximieren willst. In unserem Fall möchten wir zunächst das Maximum der Wurfweite in Abhängigkeit des Abwurfwinkels bestimmen. Unsere Zielfunktion ist also die Ortsfunktion in x-Richtung. Versuche diese Funktion mit Hilfe der bisherigen Gleichungen aufzustellen.


T<sub>2</sub> (y)= 3•5+2y-4y-6y


(!äquivalent) (nicht äquivalent)
{{Lösung versteckt mit Rand|Durch das Zusammensetzen der obigen Funktion von <math> x(t) </math> und <math> v_{x}(t) </math> ergibt sich folgender Zusammenhang:


<big>''' 3: '''</big>
<math> x(t)=v_{x} \cdot t = v_{0} \cdot cos(\alpha) \cdot t = x(t,\alpha) </math>


T<sub>1</sub> (y;z)= 2y-3+z
}}


T<sub>2</sub> (y;z)= 5y•2+z+5-8y-8
Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels <math> \alpha </math>. Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren.
Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.


(äquivalent) (!nicht äquivalent)
Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung:
{{Lösung versteckt mit Rand|Störend ist bei uns noch die Variable t. Wir interessieren uns ja nur für den Zeitpunkt, an dem der Ball/Stein oder ähnliches wieder auf dem Boden aufkommt. Dies ist genau der Zeitpunkt, bei dem unsere zweite Ortsfunktion y(t) (also die Höhe) wieder 0 ist. Als Funktion:


<big>''' 4: '''</big>
<math> y(x)=v_{y}(t) \cdot t - \frac{1}{2} \cdot g \cdot t^2 = v_{0}(t) \cdot sin(\alpha) \cdot t - \frac{1}{2} \cdot g \cdot t^2 =0 </math>


T<sub>1</sub> (z)= 4•<math>\frac{3}{2}</math> -2z
um t zu elimieren, müssen wir diese Gleichung nach t auflösen. Etwas anders sortiert lässt sich die Gleichung auch schreiben als


T<sub>2</sub> (z)= 6+8z-5•20%-z•9
<math> 0 = \underbrace{- \frac{1}{2} \cdot g}_{a} \cdot t^2 + \underbrace{v_{0}(t) \cdot sin(\alpha)}_{b} \cdot t = a \cdot t^2 + b \cdot t = 0</math>


(!äquivalent)  (nicht äquivalent)
Dies ist eine einfache quadratische Gleichung, die sich mit der Mitternachtsformel lösen lässt:


<big>''' 5: '''</big>
<math> t_{1/2}=\frac{-v_{0} \cdot sin(\alpha)\pm \sqrt{v_{0}^2 \cdot sin(\alpha)^2+4 \cdot \frac{1}{2}\cdot 0}}{-g} </math>


T<sub>1</sub> (r)= 3r-2<sup>3</sup> r+5-r


T<sub>2</sub> (r)= 3•r•2
<math> \qquad =\frac{-v_{0} \cdot sin(\alpha) \pm v_{0} \cdot sin(\alpha)}{-g} </math>
(!äquivalent) (nicht äquivalent)


</div>


<br><br><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
<math> \Rightarrow t_{1} = 0 \qquad und \qquad t_{2} = \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g} </math>


</div>
Wir erinnern uns, dass <math> t_{1} </math> und <math> t_{2} </math> jeweils die Zeiten sind, an denen die Höhe des Wurfobjekts 0 ist. Dies ist logischerweise zur Zeit 0 der Fall, was unserer Lösung <math> t_{1} </math> entspricht. Die für uns interessante Lösung ist allerdings <math> t_{2} </math>, also die Zeit, wenn das Wurfobjekt nach dem Wurf wieder am Boden ist.
<br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 2:</span>'''
Wie ändert sich der Flächeninhalt eines Dreiecks, wenn man seine Grundseite c verdoppelt und die dazugehörige Höhe h<sub>c</sub> verdreifacht?
<popup name="Lösung">
A = <math>\frac{1}{2}</math>•c•h<sub>c</sub><br />
A <sub>neu</sub> = <math>\frac{1}{2}</math>•2•c•3•h<sub>c</sub> = <math>\frac{1}{2}</math>•c•h<sub>c</sub>•2•6 = <math>\frac{1}{2}</math>•c•h<sub>c</sub>•6 = A•6 = 6A


Der Flächeinhalt des Dreiecks versechsfacht sich.
}}
</popup> </div>
<br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 3:</span>'''
Wie ändert sich das Volumen eines Quaders, wenn man die Länge verdoppelt, die Breite vervierfacht un die Höhe halbiert?
<popup name="Lösung">
V = l•b•h<br />
V<sub>neu</sub> = 2•l•4•b• <math>\frac{1}{2}</math> •h = 2•4•<math>\frac{1}{2}</math>•l•b•h = 4•l•b•h<br />
Das Volumen des Quaders vervierfacht sich.
</popup> </div>
<br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 4:</span>'''
Finde heraus, welcher der beiden unteren Terme jeweils der äquivalente zum oberen, ursprünglichen Term ist. Notiere die Buchstaben hinter der richtigen Lösung und überprüfe dein Lösungswort.


Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch für die Aufgabe wesentliche Größen ausdrücken. Dies musst du nun in die Zielfunktion einsetzen.


{| class="wikitable center"
{{Lösung versteckt mit Rand|Mit der Information über t können wir t nun in unserer Ortsfunktion <math> x(t,\alpha) </math> elimieren.
|- style="background: #DDFFDD;"
! ursprünglicher Term
! 3x+2x<sup>2</sup>-x+3x<sup>2</sup>
! 7x+x
! x<sup>3</sup>-x<sup>2</sup>+2x<sup>3</sup>
! x•x•x
! x+x-2x
! x-2x
! x+x+3x<sup>2</sup>
|-
| 1.Vorschlag
| 5x<sup>2</sup>+2x  [S]
| 7x<sup>2</sup>  [E]
| x+2x<sup>3</sup>  [H]
| x<sup>3</sup>  [T]
| 0  [Z]
| -x  [E]
| 3x<sup>4</sup>  [?]
|-
| 2.Vorschlag
| 6x<sup>4</sup>-3x<sup>2</sup>  [F]
| 8x  [P]
| 3x<sup>3</sup>-x<sup>2</sup>  [I]
| 3x  [L]
| x<sup>2</sup>-2x  [E]
| -2x<sup>2</sup>  [R]
| 2x+3x<sup>2</sup>  [!]
|}
<br />
Lösungswort: <big><u style="color:blue;background:blue">SPITZE!  </u></big><br />(Zum Sichtbarmachen mit der Maus markieren)</div>  
<br /><br />
[[Facharbeit Lernpfad Terme/Übersicht/Auflösen von Klammern|Weiter zum nächsten Kapitel]]


[[Benutzer:Walla Marina/Facharbeit Lernpfad Terme|Zurück zur Übersicht]]
<math> x(t_{2},\alpha)= v_{0} \cdot cos(\alpha) \cdot t_{2} = v_{0} \cdot cos(\alpha) \cdot \frac{2 \cdot v_{0} \cdot sin(\alpha)}{g}= \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha)=x(\alpha) </math>
 
Somit hängt unsere Wurfweite wie gewollt nur noch vom Abwurfwinkel <math> \alpha </math> ab. In der Skizze kannst du zusätzlich die Abwurfgeschwindigkeit <math> \v_{0} </math> variieren, die wir in der Berechnung zunächst einmal als fest voraussetzen.
 
Skizze:
 
<ggb_applet width="400" height="250" filename="wurfweite2.ggb" showResetIcon="true" />
 
}}
 
Du hast nun die Zielfunktion aufgestellt und die störende Variable durch deine Nebenbedingung elimiert. Nun hast du eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von <math> x(\alpha)</math>.
 
Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von <math> \alpha </math> abhängt, musst du jetzt natürlich nach <math> \alpha </math> ableiten. Versuche, die Nullstelle zu bestimmen.
 
{{Lösung versteckt mit Rand|Die Funktion
 
<math> x(\alpha) = \frac {2 \cdot v_{0}^2}{g} \cdot cos(\alpha) \cdot sin(\alpha) </math> soll maximiert werden.
 
Erste Ableitung:
 
<math>  x'(\alpha)= \frac{2 \cdot v_{0}^2}{g} (-sin(\alpha) \cdot sin(\alpha)+cos(\alpha)cos(\alpha))\qquad \qquad (Produktregel) </math> 
 
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (cos(\alpha)^2 - sin(\alpha)^2) </math>
 
<math> x'(\alpha) = \frac{2 \cdot v_{0}^2}{g} (1-2sin(\alpha)^2) \stackrel{!}{=} 0 \qquad \qquad sin(x)^2+cos(x)^2=1</math> 
 
<math> \Leftrightarrow 2 \cdot sin(\alpha)^2 = 1 \qquad \Leftrightarrow sin(\alpha) = \pm \frac{1}{\sqrt{2}} </math>
 
<math> \Leftrightarrow \qquad \alpha = \pm 45^\circ </math>
 
Die negative Lösung entspräche dem Abwurf in 45° nach unten in den Boden, also eine nichtpraktische Lösung.
 
<math> \Rightarrow \qquad \alpha = 45^\circ </math>
 
Zur Überprüfung, ob es sich tatsächlich um ein Maximum handelt, sollten wir noch die 2. Ableitung überprüfen:
 
<math> x''(\alpha) = - \frac{8 \cdot sin(\alpha)*cos(\alpha)}{g} < 0 \qquad für \alpha \approx 45^\circ </math>
 
Somit handelt es sich tatsächlich um ein Maximum und die Wurfweite wird bei <math> \alpha = 45^\circ </math> maximal.
 
}}
 
==Dritte Überschrift ==
 
==Extremwertaufgabe mit Nebenbedingung: Acker neben Straße==
 
{{Aufgabe|
Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage
 
(a.) 1000m
 
(b.) 100m.
 
Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?}}
 
 
                  Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!
 
 
 
[[Bild:AckerStraße.jpg]]
 
 
 
                    Ansonsten löse die Aufgabe in folgenden Schritten:
 
 
'''1. Stelle die Aufgabensituation in einer Skizze dar''':
 
Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Skizze "Acker neben Straße"|Skizze "Acker neben Straße"]]
 
 
'''2. Zielfunktion für Teilaufgabe a)''' :
 
Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion|Zielfunktion]]
 
 
'''3. Nebenbedingung in Zielfunktion für Teilaufgabe a)''':
 
Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Zielfunktion mit Nebenbedingung|Zielfunktion mit Nebenbedingung]]
 
 
'''4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):'''
 
Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.
 
[[Mathematik-digital/Testlernpfad Hofmeier/Extremwertbestimmung|Extremwertbestimmung]]
 
 
 
 
{{mitgewirkt|* <Ihr Name>}}
 
 
[[Kategorie:Kurvendiskussion]]

Version vom 7. Dezember 2008, 01:51 Uhr

Vorlage:Lernpfad-M

Vorlage:Kurzinfo-1

Extremwertaufgaben in der Anwendung

Einführungsgrafik4.png

Als Extremwert einer Funktion wird derjenige Wert bezeichnet, der innerhalb eines gewissen Bereichs größer (Maximum) bzw. kleiner (Minimum) als alle anderen Werte in diesem Bereich ist. Hierbei wird noch zwischen einem lokalen und einem globalen Extremwert unterschieden. Global ist der Extremwert dann, wenn er der größte bzw. kleinste Wert im gesamten Definitionsberich ist, im anderen Fall ist es ein lokaler Extremwert.


Formal ist er folgendermaßen definiert:

Es sei eine Teilmenge der Reellen Zahlen (z.B. ein Intervall) und eine Funktion.


f hat an der Stelle

  • ein lokales Minimum, wenn es ein Intervall gibt, das enthält, so dass für alle gilt;
  • ein globales Minimum, wenn für alle gilt;
  • ein lokales Maximum, wenn es ein Intervall gibt, das enthält, so dass für alle gilt;
  • ein globales Maximum, wenn für alle gilt.


Wozu überhaupt Extremwerte?

Extremwerte geben maximale bzw. minimale Größen bei vorgegebenen Randbedingungen an und sind Lösungen bei sogenannten Optimierungsproblemen, d.h. sie geben den idealen Zusammenhang der Funktionsgrößen wieder. So kann durch die Bestimmung des Extremwertes herausgefunden werden, welche Verpackungsform das geringste Material verbraucht, unter welchen Parametern eine Strecke in kürzester Zeit zurückgelegt werden kann usw.

Allgemeines Lösungsverfahren

Ein Extremwert einer Funktion tritt immer dort auf, wo die 1. Ableitung dieser Funktion eine Nullstelle hat und die zweite 2. Ableitung keine Nullstelle besitzt (Alternativ können hier statt der 2. Ableitung auch die Vorzeichen der ersten Ableitung betrachtet werden. Bei Vorzeichenwechsel liegt dann ein Extremwert vor).

Ist allerdings wie bei praktischen Problemen keine explizite Funktion vorgegeben, sondern nur das Problem formuliert, muss zunächst eine passende Funktion, die Zielfunktion, aufgestellt werden. Hierbei hilft es, sich an folgendes Schema zu halten:

1. Stelle das Problem in einer Skizze dar

Eine Skizze hilft, sich die Problemstellung deutlich zu machen. Kennzeichne in der Skizze die bekannten und unbekannten Größen. Überlege dir, welche Größen in der Skizze du noch nicht weißt und ob du diese durch die anderen Größen ermitteln kannst.

2. Stelle die Zielfunkion auf

Versuche nun, deine Skizze in eine Funktion zu übertragen. Hierbei musst du die Größe, die du maximieren oder minimieren willst, durch die anderen vorhandenen Größen ausdrücken.

3. Nebenbedingung in Zielfunktion einsetzen

Unter Nebenbedingung versteht man einen für die Aufgabe notwendigen Zusammenhang, der nicht direkt aus der Aufgabenstellung hervorgeht. Ist in der Zielfunktion also noch eine Größe, die du nicht kennst, versuche sie durch die anderen gegebenen Größen z.B. mit Hilfe eines geometrischen Zusammenhangs auszudrücken. Am Schluss darf deine Zielfunktion nur noch von einer Größe abhängen.

4. Extremwert der Zielfunktion bestimmen

Nun musst du nur noch den Extremwert der Zielfunktion herausfinden. Dies geschieht durch Nullstetzen der ersten Ableitung und durch die Betrachtung des Randes der Definitionsmenge. Betrachtest du die Nullstelle der ersten Ableitung, so musst du diesen Wert noch durch einsetzen in die 2. Ableitung überprüfen. Ist die 2. Ableitung an dieser Stelle positiv, so handelt es sich um eine Minimum, ist sie negativ, um ein Maximum. Falls die 2. Ableitung ebenfalls eine Nullstelle hat, ist es kein Extremum.

Der schräge Wurf

Als erstes Beispiel wollen wir untersuchen, in welchem Winkel du einen Ball nach vorne oben werfen musst, um eine möglichst große Wurfweite zu erzielen und welche maximale Höhe der Ball dabei jeweils erreicht. Hierzu sind natürlich einige Vorüberlegungen zu treffen. Von was hängt die Wurfweite sonst noch ab? Erinnerst du dich an die entsprechenden physikalischen Formeln? Wenn du dich nicht erinnern kannst oder um deine Formeln zu überprüfen, klicke auf Lösung anzeigen! Aber: Vorher nachdenken!

Vorlage:Lösung versteckt mit Rand


Versuche nun nach dem oben dargestellten Schema vorzugehen, dir also in einer Skizze die Situation zu verdeutlichen und die entsprechenden Größen einzuzeichnen! Wo befindet sich der Winkel ?

Skizze:

GeoGebra


Als feste Größe ist die Abwurfgeschwindigkeit anzusehen. Dies ist die Geschwindigkeit, die du durch deine Wurfbewegung dem Ball in einer bestimmten Richtung mitgibst. Der entscheidende Parameter ist der Winkel . Kannst du die noch unbekannten Größen mit Hilfe von und ausdrücken?

Vorlage:Lösung versteckt mit Rand

Nun kannst du die beiden Ortsgleichungen aufschreiben und zu einer Funktionsgleichung umformen. Die Zielfunktion ist dabei die Funktion der Größe, die du maximieren willst. In unserem Fall möchten wir zunächst das Maximum der Wurfweite in Abhängigkeit des Abwurfwinkels bestimmen. Unsere Zielfunktion ist also die Ortsfunktion in x-Richtung. Versuche diese Funktion mit Hilfe der bisherigen Gleichungen aufzustellen.


Vorlage:Lösung versteckt mit Rand

Nun musst du dir klar werden, welche Größen du darstellen willst! In unserem Fall: Wurfweite x in Abhängigkeit des Wurfwinkels . Steht dies schon da? Oder steht in der Funktion eine Variable, die stört bzw. nicht gegeben ist? Dann musst du diese Variable durch deine eigentlich interessanten Größen ausdrücken, oder anders gesagt, eine Nebenbedinung formulieren. Tipp: Nicht erschrecken vor zunächst etwas unhandlichen Termen.

Falls du nicht weiterkommst, findest du hier die Nebenbedingung mit entsprechender Auflösung: Vorlage:Lösung versteckt mit Rand

Wenn du die Nebenbedingung formuliert hast und umgeformt hast, kannst du die störende Variable durch für die Aufgabe wesentliche Größen ausdrücken. Dies musst du nun in die Zielfunktion einsetzen.

Vorlage:Lösung versteckt mit Rand

Du hast nun die Zielfunktion aufgestellt und die störende Variable durch deine Nebenbedingung elimiert. Nun hast du eine Funktion, die dir die Wurfweite in Abhängigkeit des Winkels darstellt. Wir wollen den Winkel herausfinden, bei dem die Wurfweite maximal wird. Wir suchen also das Maximum von .

Dieses Maximum können wir bestimmen, indem wir die Funktion einmal ableiten und die Nullstellen dieser Ableitung suchen. Da die Funktion nur von abhängt, musst du jetzt natürlich nach ableiten. Versuche, die Nullstelle zu bestimmen.

Vorlage:Lösung versteckt mit Rand

Dritte Überschrift

Extremwertaufgabe mit Nebenbedingung: Acker neben Straße

Aufgabe

Ein Acker liegt an einer geradlinigen Straße. Ein Fußgänger befindet sich auf dem Acker im Punkt A und möchte möglichst schnell zu einem Punkt B auf der Straße gelangen. Der Fußpunkt C des Lotes von A auf die Straße hat von A die Entfernung 400m und die Entfernung B nach C betrage

(a.) 1000m

(b.) 100m.

Auf der Straße kann sich der Fußgänger doppelt so schnell fortbewegen wie auf dem Acker. Welchen Weg soll er einschlagen?


                  Versuche zuerst die Aufgabe ohne Hilfestellung zu lösen!


Datei:AckerStraße.jpg


                   Ansonsten löse die Aufgabe in folgenden Schritten:


1. Stelle die Aufgabensituation in einer Skizze dar:

Beschrifte, was gegeben und gesucht ist. Gebe den Bekannten und Unbekannten passende Namen.

Skizze "Acker neben Straße"


2. Zielfunktion für Teilaufgabe a) :

Erkenne die Zielfunktion und formuliere sie als mathematische Funktion in Abhängigkeit von den Ausgangsgrößen und Unbekannten.

Zielfunktion


3. Nebenbedingung in Zielfunktion für Teilaufgabe a):

Erkenne die Nebenbedingung, die unabhängige Größen der Zielfunktion zueinander in Beziehung setzt, formuliere sie als mathematischen Ausdruck und setze sie in die Zielfunktion so ein, dass eine äquivalente Zielfunktion für den zu optimierenden Wert in Abhängigkeit von nur einer Variablen entsteht.

Zielfunktion mit Nebenbedingung


4. Bestimmung des Extremwertes der Zielfunktion für Teilaufgabe a) und b):

Bestimmung des Extremwertes durch Nullsetzen der ersten Ableitung und Überprüfung des Vorzeichens der zweiten Ableitung.

Extremwertbestimmung



Vorlage:Mitgewirkt