Quadratische Funktionen erforschen/Die Parameter der Scheitelpunktform und Benutzer:Maria Eirich: Unterschied zwischen den Seiten

Aus ZUM-Unterrichten
< Quadratische Funktionen erforschen(Unterschied zwischen Seiten)
(→‎Strecken, Stauchen und Spiegeln: A4 + Merksatz ergänzt)
 
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Navigation verstecken|{{Quadratische Funktionen erforschen}}}}
::*Lehrerin am [http://schulzentrum.net/ Regiomontanus-Gymnasium Haßfurt] (Mathematik, Sport)  
 
::*Stellvertretende Schulleiterin 
{{Box
::*im [https://www.zum.de/portal/%C3%BCber/die-zum ZUM] - Vorstand (seit 2007)
|
::*<small>[https://wiki.zum.de/wiki/Benutzer:Maria_Eirich mehr Infos] - [mailto:mariaeirich@zum.de Mail ] - [https://twitter.com/#!/mariaeirich Twitter (me)] - [https://twitter.com/#!/search/digilern Twitter(digilern)] </small>
|In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
{{Navigation verstecken|
#herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,
*[[Mathematik-digital/Todo]]
#entdecken, welche Parameter es in der [[{{BASEPAGENAME}}/Die Scheitelpunktform|Scheitelpunktform]] quadratischer Funktionen gibt.  
*[[Benutzer:Maria Eirich/Box mit Tabelle|Box mit Tabelle]]
 
*[[Benutzer:Maria Eirich/Test 1|Test 1]]
Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.
*[[Benutzer:Maria Eirich/Test 2|Test 2]]
|Kurzinfo
*[[Benutzer:Maria Eirich/Test 3|Test 3]]
}}
*[[Benutzer:Maria Eirich/Test Lernpfade 1|Test Lernpfade 1]]
 
*[[Benutzer:Maria Eirich/Test Lernpfade 2|Test Lernpfade 2]]
 
*[[Benutzer:Maria Eirich/Hilfe|Hilfe]]
== Quadratische Funktionen verändern ==
*[[Benutzer:Christian/Farbenvielfalt|Farben]]
Wenn du dir die Bilder von der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen im Alltag|Quadratische Funktionen im Alltag]] noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x<sup>2</sup>) variiert und es entstehen die unterschiedlichsten Parabeln.
*[[Vorlage:Farbe]]
 
*[[Benutzer:Maria Eirich/Kurz-Überblick|Kurz-Überblick]]
<gallery mode="packed-hover"><gallery mode="packed-hover">
*[[Benutzer:Maria Eirich/Interaktive Übungen|Interaktive Übungen]]
Datei:Golden-gate-bridge-388917 640.jpg
*[[Vorlage:Fortsetzung]]
Datei:Planten un Blomen.JPG
*[[Vorlage:Button]]
Datei:Turret-arch-1364314 1280.jpg
*[[Benutzer:Maria Eirich/Vorlagen|Vorlagen]]
Datei:Elbphilharmonie Hamburg.JPG
*[[Benutzer:Maria Eirich/Tipps|Tipps]]
</gallery>
*[[Hilfe:Interaktive Übungen|Interaktive Übungen]]
 
*[[Hilfe:R-Quizze|R-Quizze]]
 
|Hilfe- und Testseiten|Seiten verstecken}}
 
Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.
 
 
{{Video}} [http://www.dlr.de/portaldata/1/resources//webcast/dlr_parabelfluege_320x240.mp4 Video: Parabelflug des DLR]
 
 
Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der {{pdf-extern|http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/publikationen/Broschuere_Parabelflug_lowres.pdf|Broschüre}} des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16&nbsp;(31) angucken.
 
 
== Strecken, Stauchen und Spiegeln==
 
{{Box
|Achtung
|Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel [[{{BASEPAGENAME}}/Die Parameter der Normalform|die Parameter der Normalform]]. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt '''"Verschiebung in x-Richtung"'''.
|Hervorhebung1
}}
 
 
{{Box
|1=Aufgabe 1
|2='''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=2x^2</math>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=\frac{1}{2}x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;und&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3) <math>y=-x^2</math> ?
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).
 
'''b)''' Überprüfe deine Vermutungen aus Aufgabenteil a) mit dem folgenden Geogebra-Applet. Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
 
In dem Applet ist die Normalparabel <math>f(x)=x^2</math> grau eingezeichnet, die du auf der Seite [[{{BASEPAGENAME}}/Quadratische Funktionen kennenlernen|Quadratische Funktionen kennenlernen]] erkundet hast. Du kannst verschiedene Werte für "<math>a=</math>" eingeben. Dadurch wird der grüne Graph <math>g(x)=a \cdot x^2</math> verändert.
<ggb_applet width="100%" height="500" version="4.2" showMenuBar="true" showResetIcon="true" id="eK5MmMmb" />
 
{{Lösung versteckt|Richtige Vermutungen können wie folgt lauten:
 
1. Die Parabel von Funktion (1) ist im Vergleich zu der Normalparabel '''schmaler'''.
 
2. Die Parabel von Funktion (2) ist im Vergleich zu der Normalparabel '''breiter'''.
 
3. Die Parabel von Funktion (3) ist im Vergleich zu der Normalparabel '''"umgedreht"'''.}}|3=Arbeitsmethode}}
 
 
{{Box
|Aufgabe 2
|In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
 
{{LearningApp|app=pm1vv0zbj16|height=375px}}
{{Lösung versteckt|Wenn a kleiner Null ist (<math>a<0</math>), dann ist die Parabel nach unten geöffnet.
 
Wenn a größer Null ist (<math>a>0</math>), dann ist die Parabel nach oben geöffnet.
 
Wenn a zwischen minus Eins und Eins liegt (<math>-1<a<1</math>), dann wird der Graph der Funktion breiter. Man nennt das auch eine gestauchte Parabel.
 
Wenn a kleiner als minus Eins (<math>a<-1</math>) oder größer als Eins ist (<math>a>1</math>), dann wird der Graph der Funktion gestreckt. Er ist somit schmaler als die Normalparabel.}}|Arbeitsmethode
}}
 
 
{{Box
|Aufgabe 3
|'''Knobelaufgabe'''
 
Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.
{{LearningApp|app=pcssvbrfj16|height=500px}}
|Arbeitsmethode
}}
 
 
{{Box|1=Aufgabe 4|2='''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.|3=Arbeitsmethode}}
{{Box
|Merke
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}
 
== Verschiebung in x-Richtung ==
 
{{Box
|Aufgabe 4
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 5) [[Datei:Notepad-117597.svg|40px|right|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1)  <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=(x+2)^2</math> ?
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
{{Lösung versteckt|Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die zwei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.}}
 
'''b)''' Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
|Arbeitsmethode
}}
 
 
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler d betätigen und dadurch den Graph verändern.
 
<ggb_applet width="100%" height="478" version="4.2" showMenuBar="true" showResetIcon="true" id="grh32PSP" />
 
{{Box
|Aufgabe 5
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6)''' [[Datei:Notepad-117597.svg|40px|right|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Fabians Vermutung darüber, wie sich der Graph einer Funktion verändert, wenn man zu dem x‑Wert etwas addiert oder subtrahiert steht im Widerspruch zu seinen Beobachtungen in dem Applet. Merle versucht diesen vermeintlichen Widerspruch mit Hilfe einer Tabelle zu erklären.
 
'''a)''' Lies dir die Unterhaltung von Fabian und Merle durch und versuche die Begründung nachzuvollziehen.
[[Datei:Verschiebung horizontal.JPG|rahmenlos|center|Gespräch horizontale Verschiebung|750px]]
'''b)''' Erstelle geschickt ohne zu rechnen eine Tabelle für die Funktion <math>y=(x+3)^2</math>.
{{Lösung versteckt|'''1.''' Zeichne eine Tabelle wie sie in Aufgabenteil a) dargestellt ist in deinen Hefter.
 
'''2.''' Füge zunächst nur die x-Werte hinzu, für die du die Tabelle erstellen möchtest - zum Beispiel von -6 bis 2.
 
'''3.''' Wie ist der Term <math>y=(x+3)^2</math> im Vergleich zu <math>y=x^2</math> verschoben? Schau dir an, mit welchem Trick Merle und Fabian die Tabelle in Aufgabenteil a) erstellt haben.}}
 
{{Lösung versteckt|Die Tabelle für <math>y=(x+3)^2</math> sieht wie folgt aus:
<!--
{| class="wikitable float left"
|- style="background-color:#FFFFFF"
 
| style="width:3em"|'''x'''||style="text-align:center"|-6 ||style="text-align:center"|-5 ||style="text-align:center"|-4 ||style="text-align:center"|-3 ||style="text-align:center"|-2 ||style="text-align:center"|-1 ||style="text-align:center"|0 ||style="text-align:center"|1 ||style="text-align:center"|2
 
|-
| style="width:3em"|'''y'''||style="text-align:center"|9 || style="text-align:center"|4||style="text-align:center"|1 ||style="text-align:center"|0 ||style="text-align:center"|1 ||style="text-align:center"|4 ||style="text-align:center"|9 ||style="text-align:center"|16 ||style="text-align:center"|25
 
|}-->
}}
|Arbeitsmethode
}}
 
 
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:
 
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.
 
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.
|Merksatz
}}
 
 
== Verschiebung in y-Richtung ==
{{Box
|Aufgabe 6
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) [[Datei:Notepad-117597.svg|40px|right|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Was passiert, wenn man statt der Funktion <math>y=x^2</math> folgende Funktionen gegeben hat:
::(1) <math>y=x^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=x^2-3</math> ?
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
{{Lösung versteckt|Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die beiden Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.}}
''b)''' Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
|Arbeitsmethode
}}
 
 
 
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler e betätigen und dadurch den Graph verändern.
 
<ggb_applet id="HcpKPj4G" width="677" height="550" border="888888" />
 
{{Box
|Aufgabe 7
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 7) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
 
Graphen zeichnen einmal „verkehrt herum”: Bei dieser Aufgabe sind die Funktionsgraphen und Terme bereits gezeichnet bzw. angegeben. Was fehlt, sind die passenden Koordinatensysteme.
 
'''a)''' Zeichne in deinem Hefter die passenden Koordinatensysteme für folgende quadratische Funktionen:
 
[[Datei:Koordinatensystem finden.PNG|rahmenlos|850px|Funktionen für Aufgabe]]
 
{{Lösung versteckt|Nutze für die Abstände auf der x- und y-Achse jeweils 1&nbsp;Kästchen und gehe in Einserschritten voran.}}
 
{{Lösung versteckt|[[Datei:Koordinatensystem finden Lösungsteil 1.PNG|rahmenlos|800px|Lösungsteil 1]][[Datei:Koordinatensystem finden Lösungsteil 2.PNG|rahmenlos|800px|Lösungsteil 2]][[Datei:Koordinatensystem finden Lösungsteil 3.PNG|rahmenlos|800px|Lösungsteil 3]]}}
 
'''b)''' Wenn du das Koordinatensystem für die Funktion <math>(1)  y=0,5\cdot x^2+2</math> gezeichnet hast, wie kommst du dann ganz einfach auf das Koordinatensystem der Funktion <math>(4)  y=0,5\cdot x^2+5</math>? Formuliere einen Tipp.
 
{{Lösung versteckt|[[Datei:Beispiel-Tipp Koordinatensystem finden.PNG|rahmenlos|600px|Beispiel-Tipp]]}}
|Arbeitsmethode
}}
 
{{Box
|Aufgabe 8
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 8)''' [[Datei:Notepad-117597.svg|40px|right|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Lucio hat noch ein Problem bei der Unterscheidung von Termen in der Form <math>f(x)=x^2+9</math> und <math>f(x)=(x+3)^2</math>. Lies dir die folgende Unterhaltung durch. Führe sie anschließend in deinem Hefter fort, indem du dir eine Antwort auf Lucios Problem überlegst.
 
[[Datei:Lucio, Fabian Binomische Formel.png|rahmenlos|center|Unterhaltung zu typischem Fehler|600px]]
 
{{Lösung versteckt
|Schaue dir noch einmal die [https://de.serlo.org/mathe/terme-gleichungen/terme-variablen/binomische-formeln/binomische-formeln Binomischen Formeln] an.
}}
 
{{Lösung versteckt
|Die Terme <math>f(x)=(x+3)^2</math> und <math>f(x)=x^2+9</math> sind nicht gleich.
}}
 
Man darf das Quadrat nicht einfach in die Klammer von <math>f(x)=(x+3)^2</math> ziehen: <math>f(x)=(x+3)^2\neq x^2+3^2</math>
 
Die erste Binomische Formel besagt vielmehr:
 
<math>f(x)=(x+3)^2=(x+3)(x+3)=x^2+3x+3x+9=x^2+6x+9</math>.
|Arbeitsmethode
}}
 
 
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:
 
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
 
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.
|Merksatz
}}
 
 
== Zusammenfassung der wichtigsten Inhalte ==
 
{{Box
|Aufgabe 9
|'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 2-3) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Ergänze die folgenden Merksätze durch Beispiele.
|Arbeitsmethode
}}
 
 
{{Box
|Merke
|Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für:
 
'''a > 0''': Die Parabel ist nach oben geöffnet.
 
'''a < 0''': Die Parabel ist nach unten geöffnet.
 
'''a < -1''' bzw. '''a > 1''': Die Parabel ist gestreckt.
 
'''-1 < a < 1''': Die Parabel ist gestaucht.
 
Der Parameter a wird auch '''Streckungsfaktor''' genannt.
|Merksatz
}}
 
 
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt:
 
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben.
 
'''d < 0''': Die Parabel wird entlang der x-Achse nach links verschoben.
|Merksatz
}}
 
 
{{Box
|Merke
|Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt:
 
'''e > 0''': Die Parabel wird entlang der y-Achse nach oben verschoben.
 
'''e < 0''': Die Parabel wird entlang der y-Achse nach unten verschoben.
|Merksatz
}}
 
 
[[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|100px]]
 
Die auf dieser Seite gewonnen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische Funktion der Form <math>y=a(x-d)^2+e</math>. Diese Form heißt '''Scheitelpunktform''', da die Parameter d und e die Koordinaten des Scheitelpunktes <math>S(d|e)</math> der Parabel angeben.
 
Auf der [[{{BASEPAGENAME}}/Die Scheitelpunktform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[{{BASEPAGENAME}}/Übungen|Übungen]].
 
{{Fortsetzung|weiter=Die Scheitelpunktform|weiterlink=Quadratische Funktionen erforschen/Die Scheitelpunktform}}
 
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]])
 
[[Kategorie:Mathematik]]
[[Kategorie:ZUM2Edutags]]
[[Kategorie:Quadratische Funktion]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:LearningApps]]
[[Kategorie:GeoGebra]]

Version vom 27. November 2018, 18:00 Uhr