Die Winkelhalbierende
| | | |
Max und Moritz - welch' zwei Knaben,
die sich sehr an Scherzen laben,
sind an ihrem Lieblingsort,
ganz weit von den Eltern fort.
Im Dachgeschoss, das ich da mein',
fehlt der rechte Lichterschein.
Sie beschließen ganz geschwind,
weil sie so geschickt doch sind
mitten in des Daches Gängen
soll die große Lampe hängen.
| | | | Haus von Max und Moritz mit zwei gleichgeneigten Dachflächen
 |
Arbeitsaufträge:
- Nimm das
orange-farbene gleichschenklige Dreieck aus Tonpapier zur Hand, das das Dach des Hauses darstellen soll. Wie erhält man experimentell die Position des Lampenseils (beliebige Länge) und der Lampe? Zeichne das Seil und die Lampe auf dem Tonpapier ein!
- Überlege Dir zusammen mit Deinem/r NachbarIn welche Schritte notwendig sind, um das Seil der Lampe zu konstruieren. Zeichne die beiden sich schneidenden Dachflächen auf ein Blatt und konstruiere das Seil! Notiere daneben die einzelnen Schritte die notwendig sind!
- Überprüfe Deine Konstruktionsschritte mit der folgenden Animation der Konstruktion der Winkelhalbierenden!
|  |
Was ist eine Winkelhalbierende?
Das Seil, an dem die Lampe aufgehängt ist, halbiert den Winkel der beiden Dachflächen. Aufgrund welcher geometrischen Eigenschaft der Winkelhalbierenden konntest Du das Seil konstruieren?
Definition der Winkelhalbierenden
Sei ein Winkel α gegeben mit den beiden Halbgerade g und h als Schenkel. Die Symmetrieachse der beiden Halbgeraden g und h heißt Winkelhalbierende w des Winkels α.
|
|
|