Die Parameter der Scheitelpunktform: Unterschied zwischen den Versionen

aus ZUM-Wiki, dem Wiki für Lehr- und Lerninhalte auf ZUM.de
Wechseln zu: Navigation, Suche
(Feedback angepasst)
K (Feedback angepasst)
Zeile 55: Zeile 55:
  
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).  
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).  
 
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
 
  
 
'''b)''' Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
 
'''b)''' Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}}
Zeile 106: Zeile 104:
 
::(1)  <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=(x+2)^2</math>  
 
::(1)  <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) <math>y=(x+2)^2</math>  
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).  
 
'''a)''' Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).  
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die zwei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup>
+
 
 
'''b)''' Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
'''b)''' Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
 
}}
 
}}
Zeile 198: Zeile 196:
 
[[Datei:Lucio, Fabian Binomische Formel.png|rahmenlos|Unterhaltung zu typischem Fehler|600px]]
 
[[Datei:Lucio, Fabian Binomische Formel.png|rahmenlos|Unterhaltung zu typischem Fehler|600px]]
  
<popup name="Hilfe">Schaue dir noch einmal die [https://de.serlo.org/mathe/terme-gleichungen/terme-variablen/binomische-formeln/binomische-formeln Binomischen Formeln] an.</popup>
 
 
<popup name="Lösung">Die Terme <math>f(x)=(x+3)^2</math> und <math>f(x)=x^2+9</math> sind nicht gleich.
 
 
Man darf das Quadrat nicht einfach in die Klammer von <math>f(x)=(x+3)^2</math> ziehen: <math>f(x)=(x+3)^2\neq x^2+3^2</math>
 
 
Die erste Binomische Formel besagt vielmehr:
 
  
<math>f(x)=(x+3)^2=(x+3)(x+3)=x^2+3x+3x+9=x^2+6x+9</math>.</popup>}}
+
<popup name="Lösung"> <math>f(x)=(x+3)^2=(x+3)(x+3)=x^2+3x+3x+9=x^2+6x+9</math> (1. Binomische Formel)</popup>}}
  
  

Version vom 25. August 2017, 16:28 Uhr


In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
1. herausfinden, wie man Parabeln strecken, stauchen und spiegeln kann,
2. entdecken, welche Parameter es in der Scheitelpunktform quadratischer Funktionen gibt.

Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben.


Inhaltsverzeichnis

Quadratische Funktionen verändern

Wenn du dir die Bilder von der Seite Quadratische Funktionen im Alltag noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x2) variiert und es entstehen die unterschiedlichsten Parabeln.


Golden Gate Brücke Lichtspiele
Bergmassiv Parabel Elbphilharmonie


Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.


UbuntuStudio-Icons-Video Production.svg Video: Parabelflug des DLR


Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der Pdf20.gif Broschüre des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16 (31) angucken.


Strecken, Stauchen und Spiegeln

Nuvola apps important.svg   Achtung:

Dieser Abschnitt ist identisch zu dem 1. Abschnitt in dem Kapitel die Parameter der Normalform. Wenn du ihn dort schon bearbeitet hast, kannst du direkt weitergehen zum nächsten Abschnitt "Verschiebung in x-Richtung".


Stift.gif   Aufgabe 1


Für diese Aufgabe benötigst du deinen Hefter (S. 4) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=2x^2,          (2) y=\frac{1}{2}x^2     und     (3) y=-x^2

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).

b) Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, als Funktion f(x) eingezeichnet. Du kannst den Schieberegler a betätigen und dadurch den Graph g(x) verändern. Was passiert?



Stift.gif   Aufgabe 2

In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.



Stift.gif   Aufgabe 3

Knobelaufgabe

Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.


Maehnrot.jpg
Merke:

Multipliziert man y=x^2 mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. y=ax^2 (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Verschiebung in x-Richtung

Stift.gif   Aufgabe 4


Für diese Aufgabe benötigst du deinen Hefter (S. 5) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=(x-2)^2          (2) y=(x+2)^2

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

b) Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?


In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler d betätigen und dadurch den Graph verändern.



Stift.gif   Aufgabe 5


Für diese Aufgabe benötigst du deinen Hefter (S. 6) Notizblock mit Bleistift.


Fabians Vermutung darüber, wie sich der Graph einer Funktion verändert, wenn man zu dem x‑Wert etwas addiert oder subtrahiert steht im Widerspruch zu seinen Beobachtungen in dem Applet. Merle versucht diesen vermeintlichen Widerspruch mit Hilfe einer Tabelle zu erklären.

a) Lies dir die Unterhaltung von Fabian und Merle durch und versuche die Begründung nachzuvollziehen.


Gespräch horizontale Verschiebung

b) Erstelle geschickt ohne zu rechnen eine Tabelle für die Funktion y=(x+3)^2.


Maehnrot.jpg
Merke:

Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel entlang der x-Achse verschoben. Für y=(x-d)^2 gilt:

d > 0: Die Parabel wird entlang der x-Achse nach links verschoben.

d < 0: Die Parabel wird entlang der x-Achse nach rechts verschoben.


Verschiebung in y-Richtung

Stift.gif   Aufgabe 6


Für diese Aufgabe benötigst du deinen Hefter (S. 6) Notizblock mit Bleistift.


Was passiert, wenn man statt der Funktion y=x^2 folgende Funktionen gegeben hat:

(1) y=x^2+3          (2) y=x^2-3  ?

a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).

b) Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?

In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler e betätigen und dadurch den Graph verändern.


Stift.gif   Aufgabe 7


Für diese Aufgabe benötigst du deinen Hefter (S. 7) Notizblock mit Bleistift.


Graphen zeichnen einmal „verkehrt herum”. Bei dieser Aufgabe sind die Funktionsgraphen und Terme bereits gezeichnet bzw. angegeben. Was fehlt, sind die passenden Koordinatensysteme.

a) Zeichne in deinem Hefter die passenden Koordinatensysteme für folgende quadratische Funktionen:

Funktionen für Aufgabe

b) Formuliere einen Tipp, wie du, wenn du das Koordinatensystem für die Funktion (1)  y=0,5\cdot x^2+2 gezeichnet hast, ganz einfach auf das Koordinatensystem für die Funktion (4)  y=0,5\cdot x^2+5 kommen kannst. Worin unterscheiden sich die Lagen der beiden Funktionsgraphen?


Stift.gif   Aufgabe 8


Für diese Aufgabe benötigst du deinen Hefter (S. 8) Notizblock mit Bleistift.


Lucio hat noch ein Problem bei der Unterscheidung von Termen in der Form f(x)=x^2+9 und f(x)=(x+3)^2. Lies dir die folgende Unterhaltung durch. Führe sie anschließend in deinem Hefter fort, indem du dir eine Antwort auf Lucios Frage überlegst.

Unterhaltung zu typischem Fehler



Maehnrot.jpg
Merke:

Addiert oder subtrahiert man eine Zahl e von y=x^2, wird die Parabel entlang der y-Achse verschoben. Für y=x^2+e gilt:

e > 0: Die Parabel wird entlang der y-Achse nach oben verschoben.

e < 0: Die Parabel wird entlang der y-Achse nach unten verschoben.


Zusammenfassung der wichtigsten Inhalte

Stift.gif   Aufgabe 9


Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 2-3) Notizblock mit Bleistift.

Ergänze die folgenden Merksätze durch Beispiele.


Maehnrot.jpg
Merke:

Multipliziert man y=x^2 mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. y=ax^2 (mit a≠0) ergibt demnach für:

a > 0: Die Parabel ist nach oben geöffnet.

a < 0: Die Parabel ist nach unten geöffnet.

a < -1 bzw. a > 1: Die Parabel ist gestreckt.

-1 < a < 1: Die Parabel ist gestaucht.

Der Parameter a wird auch Streckungsfaktor genannt.


Maehnrot.jpg
Merke:

Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel entlang der x-Achse verschoben. Für y=(x-d)^2 gilt:

d > 0: Die Parabel wird entlang der x-Achse nach links verschoben.

d < 0: Die Parabel wird entlang der x-Achse nach rechts verschoben.


Maehnrot.jpg
Merke:

Addiert oder subtrahiert man eine Zahl e von y=x^2, wird die Parabel entlang der y-Achse verschoben. Für y=x^2+e gilt:

e > 0: Die Parabel wird entlang der y-Achse nach oben verschoben.

e < 0: Die Parabel wird entlang der y-Achse nach unten verschoben.


Ausblick

Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form y=a(x-d)^2+e. Diese Form heißt Scheitelpunktform, da die Parameter d und e die Koordinaten des Scheitelpunktes S(d|e) der Parabel angeben.

Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.


Pfeil Hier geht's weiter.png




Erstellt von: Elena Jedtke (Diskussion)